Accepted Manuscript

Total Page:16

File Type:pdf, Size:1020Kb

Accepted Manuscript Accepted Manuscript Evaluation of [11C]KB631 as a PET tracer for in vivo visualisation of HDAC6 in B16·F10 melanoma Koen Vermeulen, Muneer Ahamed, Kaat Luyten, Guy Bormans PII: S0969-8051(19)30083-6 DOI: https://doi.org/10.1016/j.nucmedbio.2019.05.004 Reference: NMB 8069 To appear in: Nuclear Medicine and Biology Received date: 2 April 2019 Revised date: 9 May 2019 Accepted date: 14 May 2019 Please cite this article as: K. Vermeulen, M. Ahamed, K. Luyten, et al., Evaluation of [11C]KB631 as a PET tracer for in vivo visualisation of HDAC6 in B16·F10 melanoma, Nuclear Medicine and Biology, https://doi.org/10.1016/j.nucmedbio.2019.05.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Evaluation of [11C]KB631 as a PET tracer for in vivo visualisation of HDAC6 in B16.F10 melanoma Abbreviated title: [11C]KB631 for HDAC6 melanoma visualisation Koen Vermeulen1, Muneer Ahamed2, Kaat Luyten1, 3 Guy Bormans1 1 Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, KU Leuven, Leuven, Belgium 2 Centre for Advanced Imaging, University of Queensland, Brisbane, Australia 3 Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven, Belgium Corresponding author: Prof. Dr. Guy Bormans. Email: [email protected]; Tel: +3216330447; Herestraat 49, box 821, O&N II, Campus Gasthuisberg, 3000 Leuven, Belgium Keywords: HDAC6, KB631, B16.F10 melanoma, carbon-11 Abstract Introduction: HDAC6, a structural and functional distinct member of the HDAC-family, shows great promise as a target to treat several cancers and neurodegenerative diseases. Several clinical trials are evaluating HDAC6 inhibitors in solid tumours and haematological malignancies, but so far no HDAC6 inhibitor has received marketing authorisation. The availability of an HDAC6- specific PET tracerACCEPTED can potentially aid in cancer MANUSCRIPT diagnosis, select patients for HDAC6 inhibitor treatment and accelerate HDAC6 drug development. We have evaluated the HDAC6 PET tracer [11C]KB631, in vitro and in vivo in B16.F10 melanoma inoculated mice. Methods: The radiosynthesis of [11C]KB631 was optimized. In vitro binding specificity was evaluated by autoradiography studies on rodent brain, B16.F10 melanoma and PC3 prostate 1 ACCEPTED MANUSCRIPT carcinoma cryosections. Biodistribution and quantification of plasma radio-metabolites was determined in NMRI-mice in control conditions and after blocking with KB631, Ricolinostat and SAHA. Tracer tumour uptake was evaluated in B16.F10 melanoma inoculated C57BL/6 mice. Results: In vitro autoradiography studies showed HDAC6-selective binding to rodent brain, B16.F10 melanoma and PC3 prostate carcinoma tissue slices. Tracer binding in several organs of interest could be partially blocked in NMRI-mice pre-treated with KB631, Ricolinostat or SAHA, indicating specific tracer binding. A biodistribution and 90-min dynamic µPET study on B16.F10 melanoma mice, pre-treated with vehicle or Ricolinostat (50 mg/kg), indicated HDAC6-specific tumour uptake. Conclusions: [11C]KB631 shows HDAC6-selective binding in mouse B16.F10 melanoma tumours in vitro and in vivo. [11C]KB631 PET can be used for in vivo investigation of the expression of HDAC6 in tumours. Advances in Knowledge: [11C]KB631 shows increased expression of HDAC6 in mouse B16.F10 melanoma tumours and can be used to visualise target engagement of HDAC6 inhibitors. 1. Introduction The alternate acetylation state of evolutionarily conserved lysine residues located at the N- terminal tails of histoneACCEPTEDs contributes to the general MANUSCRIPT transcriptional regulation of underlying genes. This process, controlled by the opposing actions of histone acetyl transferases (HATs) and histone deacetylases (HDACs), is part of a broader network of epigenetic post translational modifications (PTMs) [1], contributing to the histone homeostasis which in turn influences 2 ACCEPTED MANUSCRIPT cellular homeostasis. Aberrant levels of HAT/HDAC can lead to various pathologies, ranging from oncological malignancies to cardiac diseases and even neurophysiological anomalies [2,3]. Currently 18 HDAC-isoforms are known, divided into 4 classes based on their sequence homology to yeast HDAC: Class I (HDAC1, 2, 3, 8), class II (HDAC4, 5, 6, 7, 9, 10), class III (sirtuins) and class IV (HDAC11). The various classes differ in protein structure, substrate specificity, subcellular localization and tissue expression patterns [3]. All classes except class III are known to use Zn2+ as a catalysing agent to facilitate the deacetylation reaction. Class III HDACs use nicotinamide adenine dinucleotide (NAD+) to hydrolyse the acetyl-moiety [4]. Observation of the disruption of HAT/HDAC homeostasis in several malignancies led to the identification of HDAC as a drug target. However, because of the high similarity between different HDACs, e.g. HDAC1 and 2 have 85% sequence homology, pan-inhibition of HDACs can lead to serious adverse effects. Consequently, research has focussed on developing isoform- selective inhibitors. For HDAC3, 6 and 8, selective inhibitors have already been reported [5]. Inhibitors of Zn2+-dependent HDACs typically, contain (1) a ‘cap’ group, which interacts with the surface of the catalytic pocket of the HDAC enzyme, (2) a linker, which can contain different aromatic rings and/or alkyl chains, connected to (3) the Zn2+-binding moiety. Chelation of the Zn2+-ion can be accomplished with multiple functional groups, such as carboxylic acids, benzamides, thiol groups or hydroxamates [6]. FDA approved HDAC inhibitors, depicted in Fig. ® 1A include panACCEPTED-HDAC inhibitors Vorinostat MANUSCRIPT (Zolinza also known as suberoylanilide hydroxamic acid (SAHA)) [7] and Romidepsin, (Istodax®) [8] both used for the treatment of cutaneous T-cell lymphoma (CTCL). In addition, Belinostat (Beleodaq®) [9], applied for the treatment of peripheral T-cell lymphoma (PTCL) and Panobinostat (Farydak®) [7] used to combat multiple myeloma (MM) are available on the market. IC50 values are given in Table 1. 3 ACCEPTED MANUSCRIPT HDAC6 is a unique HDAC isoform as it contains two homologous catalytic deacetylase domains. Both domains function individually and participate in the global deacetylase activity of the enzyme. Contrary to class I HDACs, HDAC6 is predominantly localized in the cytoplasm and subsequently targets cytosolic acetylated proteins. Mainly α-tubulin, heat shock protein 90 (Hsp90) and cortactin are targeted and deacetylated by HDAC6. Deacetylation of α-tubulin and cortactin is implied in cytoskeleton dynamics and cell motility and deacetylation of the molecular chaperone Hsp90 is necessary to activate a cellular response to misfolded proteins and stress [10,11]. Expression of HDAC6 was reported in several organs, including: heart, liver, kidney, brain and pancreas [12]. HDAC6 is a key regulator of multiple cellular signalling and downstream transduction pathways. The regulation of different cellular processes including cell migration and the degradation of misfolded proteins, are not solely attributed to the deacetylation process, as HDAC6 also contains a C-terminal, zinc finger containing, ubiquitin binding domain (BUZ-domain) that is equally important in the control of these processes [13]. The BUZ-domain is able to bind free ubiquitin or ubiquitinated proteins destined for proteasomal degradation [14]. Misfolded or damaged proteins will be marked with a poly-ubiquitin tag after which different degradation pathways can be followed. The most prominent degradation route is the transport of misfolded proteins to the proteasome. However, if the proteasome becomes oversaturated or inhibited, anotherACCEPTED process is required to remove MANUSCRIPT the cytotoxic, misfolded or damaged proteins. This process, known as the aggresome-autophagy pathway, is initially cytoprotective and induces accelerated degradation of mutant proteins. The pathway is initiated and regulated by high affinity binding of HDAC6 to poly-ubiquitinated proteins [15,16]. HDAC6 was found to play a role in cancer and neurodegenerative diseases [12,17]. HDAC6 is overexpressed in a variety of human cancers and is required for oncogenic cell transformation 4 ACCEPTED MANUSCRIPT [12,18]. The HDAC6-gene is estrogen-regulated and increased HDAC6 mRNA and protein expression was observed in estrogen receptor α-positive breast cancer MCF-7 cells treated with estradiol. In the same study, a fourfold increase in cell motility and cellular morphological changes caused by the deacetylation of α-tubulin was observed [19]. Expression levels of HDAC6 were also increased in ovarian cancer, specifically in non-benign tumours, where HDAC6 potentially can be used as prognostic marker [20]. In prostate and kidney cancer, upregulation of HDAC6 was mediated by oncogenic retrovirus-associated DNA sequences (Ras) [21]. Overexpression was also found in oral squamous cell carcinoma, melanoma and several hematopoietic cancers [22–24]. Importantly, it has been observed that HDAC6 inhibition sensitises cancerous cells to chemotherapeutics, but not normal untransformed cells [25]. Deletion or
Recommended publications
  • Final Program
    1 General Information SCOPE OF THE CONFERENCE The 12th Joint MMM/Intermag Conference is sponsored jointly by the American Institute of Physics (through Physics Conferences Incorporated) and the Magnetics Society of IEEE. The Conference will be held at the Hyatt Regency Chicago in the heart of Chicago, Illinois, easily accessible from O'Hare and Midway Airports. Members of the international scientific and engineering communities interested in recent developments in funda- mental and applied magnetism are invited to attend the Conference and con- tribute to its technical sessions. Sessions will include invited and contributed papers in oral and poster sessions, invited symposia, a plenary session, and two evening sessions, one of which will be in a tutorial format. The Confer- ence provides an outstanding opportunity for participants to meet their col- leagues and discuss the latest advances in magnetism. Please note that all of the conference details, including web links for registration and hotel reser- vations, are available at the conference website: http://www.magnetism.org CHICAGO Few cities in the world can match the character and culture of Chicago. Here you can find world-class dining, museums and entertainment. Chicago is the largest and most visited city in the Midwest of the United States. The Chicago Convention & Tourism Bureau is dedicated to helping you enjoy your stay in Chicago. On its web site, http://www.choosechicago.com you can experience the city like a local by obtaining the latest information on Chicago attractions such as the Navy Pier and Millennium Park, as well as the numerous outstanding museums and galleries.
    [Show full text]
  • ESRR16 Final Programme 1.Pdf
    Downloaded from orbit.dtu.dk on: Oct 05, 2021 Development of an experimental method using Cs-131 to evaluate radiobiological effects of internalized Auger-electron emitters. Fredericia, Pil; Severin, Gregory; Groesser, Torsten; Köster, Ulli; Jensen, Mikael Published in: 18th European Symposium on Radiopharmacy and Radiopharmaceuticals Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Fredericia, P., Severin, G., Groesser, T., Köster, U., & Jensen, M. (2016). Development of an experimental method using Cs-131 to evaluate radiobiological effects of internalized Auger-electron emitters. In 18th European Symposium on Radiopharmacy and Radiopharmaceuticals: Final programme (pp. 114-114). [PP52] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 18th European Symposium on Radiopharmacy and Radiopharmaceuticals FINAL PROGRAMME April 07-10, 2016 Salzburg, Austria 18th European Symposium on Radiopharmacy and Radiopharmaceuticals April 07-10, 2016 Salzburg, Austria TABLE OF CONTENTS Welcome Address .....................................................................................................................................
    [Show full text]
  • Using Remote Labs.Indd
    Javier García Zubía and Gustavo R. Alves (eds.) Using Remote Labs in Education Two Little Ducks in Remote Experimentation Prize for Best Research UD – Grupo Santander DeustoDigital Using Remote Labs in Education Two Little Ducks in Remote Experimentation © University of Deusto - ISBN 978-84-9830-398-8 Using Remote Labs in Education Two Little Ducks in Remote Experimentation Javier García Zubía and Gustavo R. Alves (eds.) Juan Vélez S.J. Diego Gracia Carlos M.ª Romeo Javier Gafo S.J. Marciano Vidal José C. Bermejo 2011 University of Deusto Bilbao © University of Deusto - ISBN 978-84-9830-398-8 Engineering, no. 8 Edition revised by Anselmo del Moral Bueno Any form of reproduction, distribution, public communi- cation or transformation of the work can only be performed following authorisation by its owners, unless legally es- tablished otherwise. If you wish to photocopy or scan any part of this work please contact CEDRO (Centro Español de Derechos Reprográfi cos / Spanish Copyrights Centre) at www.cedro.org. © University of Deusto P.O. box 1 - 48080 Bilbao e-mail: [email protected] ISBN: 978-84-9830-398-8 Legal Deposit: BI - 3.409-2011 Impreso en España/Printed in Spain © University of Deusto - ISBN 978-84-9830-398-8 Contents Preface, Susan M. Zvacek . 11 Introduction, Javier García Zubía, Gustavo R. Alves . 17 SECTION 1 Pioneers Chapter 1. Second Best to Being There: An Historical Perspective, Molly H. Shor, Carisa Bohus, Burçin Atkan . 27 Chapter 2. Engineering Controls Labs Operated Remotely, Jim Henry, Murat Ozkaya . 53 SECTION 2 iLabs around the Globe Chapter 3.
    [Show full text]
  • HDAC Neuroimaging Enabled by [18F]-Fluorination Methodology
    Impacting Neuroscience With Chemistry: HDAC Neuroimaging Enabled by [18F]-Fluorination Methodology The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Strebl, Martin Georg. 2017. Impacting Neuroscience With Chemistry: HDAC Neuroimaging Enabled by [18F]-Fluorination Methodology. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42061502 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Impacting Neuroscience With Chemistry: HDAC Neuroimaging Enabled by [18F]-Fluorination Methodology A thesis presented by Martin Georg Strebl to The Department of Chemistry and Chemical Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemistry and Chemical Biology Harvard University Cambridge, Massachusetts June 2017 ©2017 - Martin Georg Strebl All rights reserved. Thesis advisor Author Jacob Hooker and Tobias Ritter Martin Georg Strebl Impacting Neuroscience With Chemistry: HDAC Neuroimaging Enabled by [18F]-Fluorination Methodology Abstract In this dissertation, innovative radiochemical methodology was leveraged to systemat- ically advance radiotracer development. A novel organometallic radiofluorination was established, as
    [Show full text]
  • Advances in the Development of PET Ligands Targeting Histone Deacetylases for the Assessment of Neurodegenerative Diseases
    molecules Review Advances in the Development of PET Ligands Targeting Histone Deacetylases for the Assessment of Neurodegenerative Diseases Tetsuro Tago and Jun Toyohara * ID Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-3964-3241; Fax: +81-3-3964-1148 Received: 1 January 2018; Accepted: 29 January 2018; Published: 31 January 2018 Abstract: Epigenetic alterations of gene expression have emerged as a key factor in several neurodegenerative diseases. In particular, inhibitors targeting histone deacetylases (HDACs), which are enzymes responsible for deacetylation of histones and other proteins, show therapeutic effects in animal neurodegenerative disease models. However, the details of the interaction between changes in HDAC levels in the brain and disease progression remain unknown. In this review, we focus on recent advances in development of radioligands for HDAC imaging in the brain with positron emission tomography (PET). We summarize the results of radiosynthesis and biological evaluation of the HDAC ligands to identify their successful results and challenges. Since 2006, several small molecules that are radiolabeled with a radioisotope such as carbon-11 or fluorine-18 have been developed and evaluated using various assays including in vitro HDAC binding assays and PET imaging in rodents and non-human primates. Although most compounds do not readily cross the blood-brain barrier, adamantane-conjugated radioligands tend to show good brain uptake. Until now, only one HDAC radioligand has been tested clinically in a brain PET study. Further PET imaging studies to clarify age-related and disease-related changes in HDACs in disease models and humans will increase our understanding of the roles of HDACs in neurodegenerative diseases.
    [Show full text]
  • Development of Novel Radiotracers for Pet Imaging of Hdac-Mediated Epigenetic Regulation Robin Edwards Bonomi Wayne State University
    Wayne State University Wayne State University Dissertations 1-1-2016 Development Of Novel Radiotracers For Pet Imaging Of Hdac-Mediated Epigenetic Regulation Robin Edwards Bonomi Wayne State University, Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Bonomi, Robin Edwards, "Development Of Novel Radiotracers For Pet Imaging Of Hdac-Mediated Epigenetic Regulation" (2016). Wayne State University Dissertations. 1519. https://digitalcommons.wayne.edu/oa_dissertations/1519 This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. DEVELOPMENT OF NOVEL RADIOTRACERS FOR PET IMAGING OF HDAC- MEDIATED EPIGENETIC REGULATION by ROBIN E. BONOMI DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2016 MAJOR: BIOMEDICAL ENGINEERING Approved By: Advisor: Juri G. Gelovani, M.D., Ph.D. Date Zhifeng Kou, Ph.D. Date Anthony Shields, M.D. Ph.D, Date Matthew Allen, Ph.D. Date ACKNOWLEDGEMENTS I would like to express immense gratitude and appreciation to my advisor, Dr. Juri Gelovani, for his mentorship and continuous commitment to helping me become a better scientist. I would like to thank my committee members, Dr. Anthony Shields, Dr. Zhifeng Kou, and Dr. Matthew Allen for their insights and opinions in imaging and chemistry. I would also like to thank the entire Gelovani Group for their support and participation in this work, including Dr. Aleksandr Shavrin, Dr.
    [Show full text]
  • Code-Switching Between Structural and Sociolinguistic Perspectives Linguae & Litterae
    Code-switching Between Structural and Sociolinguistic Perspectives linguae & litterae Publications of the School of Language & Literature Freiburg Institute for Advanced Studies Edited by Peter Auer, Gesa von Essen and Frick Werner Editorial Board Michel Espagne (Paris), Marino Freschi (Rom), Ekkehard König (Berlin), Michael Lackner (Erlangen-Nürnberg), Per Linell (Linköping), Angelika Linke (Zürich), Christine Maillard (Strasbourg), Lorenza Mondada (Basel), Pieter Muysken (Nijmegen), Wolfgang Raible (Freiburg), Monika Schmitz-Emans (Bochum) Volume 43 Code-switching Between Structural and Sociolinguistic Perspectives Edited by Gerald Stell and Kofi Yakpo DE GRUYTER ISBN 978-3-11-034354-0 e-ISBN (PDF) 978-3-11-034687-9 e-ISBN (EPUB) 978-3-11-038394-2 ISSN 1869-7054 Library of Congress Cataloging-in-Publication Data A CIP catalog record for this book has been applied for at the Library of Congress. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de. © 2015 Walter de Gruyter GmbH, Berlin/Munich/Boston Typesetting: Meta Systems Publishing & Printservices GmbH, Wustermark Printing and binding: Hubert & Co. GmbH & Co. KG, Göttingen ♾ Printed on acid-free paper Printed in Germany www.degruyter.com Contents Acknowledgements VII Gerald Stell, Kofi Yakpo Elusive or self-evident? Looking for common ground in approaches to code-switching 1 Part 1: Code-switching
    [Show full text]
  • The Therapeutic Potential of Epigenetic Modifications in Alzheimer’S Disease
    9 The Therapeutic Potential of Epigenetic Modifications in Alzheimer’s Disease Enric Bufill1 • Roser Ribosa-Nogué2 • Rafael Blesa2 1Neurology Department, Vic University Hospital, Vic, Spain; 2Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain Author for correspondence: Enric Bufill, Neurology Department, Vic University Hospital, Vic, Spain. Email: [email protected] Doi: https://doi.org/10.36255/exonpublications.alzheimersdisease.2020.ch9 Abstract: Alzheimer’s disease is characterized by the formation and deposit of abnormal peptides such as amyloid plaques and neurofibrillary tangles in the brain. Therapeutic strategies aimed at preventing the formation of such deposits have not been successful. Currently, there are no effective treatments for the disease. Since numerous epigenetic changes have been detected in Alzheimer’s disease, treatments aimed at reversing these changes by intervening in DNA meth- ylation, histone acetylation, and microRNA expression may constitute promising lines of research in the future. This chapter provides an overview of the epigenetic changes and the potential epigenetic therapies in Alzheimer’s disease. Keywords: Alzheimer’s disease; DNA methyltransferase; epigenetic changes; histone acetylation; noncoding RNA In: Alzheimer’s Disease: Drug Discovery. Huang X (Editor). Exon Publications, Brisbane, Australia. ISBN: 978-0-6450017-0-9; Doi: https://doi.org/10.36255/exonpublications.alzheimersdisease.2020 Copyright: The Authors. License: This open access article is licenced under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ 151 152 Bufill E et al. INTRODUCTION Alzheimer’s disease (AD) is the most common cause of dementia.
    [Show full text]
  • Novel Biomarkers in Alzheimer's Disease
    Novel Biomarkers Novel in Alzheimer’s Disease • Chiara Villa Novel Biomarkers in Alzheimer’s Disease Edited by Chiara Villa Printed Edition of the Special Issue Published in Journal of Personalized Medicine www.mdpi.com/journal/jpm Novel Biomarkers in Alzheimer’s Disease Novel Biomarkers in Alzheimer’s Disease Editor Chiara Villa MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Chiara Villa University of Milano-Bicocca Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Journal of Personalized Medicine (ISSN 2075-4426) (available at: https://www.mdpi.com/journal/ jpm/special issues/Biomarkers Alzheimer). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-03943-903-4 (Hbk) ISBN 978-3-03943-904-1 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. ix Chiara Villa Biomarkers for Alzheimer’s Disease: Where Do We Stand and Where Are We Going? Reprinted from: J.
    [Show full text]
  • Chemical Neurobiology of Progranulin- Deficient Frontotemporal Dementia
    Chemical Neurobiology of Progranulin- Deficient Frontotemporal Dementia The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation She, Angela A. 2017. Chemical Neurobiology of Progranulin- Deficient Frontotemporal Dementia. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41140292 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Chemical Neurobiology of Progranulin-Deficient Frontotemporal Dementia A dissertation presented by Angela A She to The Committee on Higher Degrees in Chemical Biology In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemical Biology Harvard University Cambridge, Massachusetts April 2017 © 2017 Angela A She -- All rights reserved. Advisor: Dr. Stephen J. Haggarty Angela She Chemical Neurobiology of Progranulin-Deficient Frontotemporal Dementia Abstract Frontotemporal dementia (FTD) is a presenile dementia presenting with a variety of clinical phenotypes arising from Frontotemporal Lobar Degeneration (FTLD), a family of neurodegenrative pathologies with a predeliction for the frontal, insular, and anterior temporal lobes. Known autosomal dominant causes of FTLD include heterozygous mutations in the GRN gene causing haploinsufficiency of progranulin (PGRN) protein. As mRNA from the mutated allele of GRN is degraded via nonsense-mediated mRNA decay mechanisms, one therapeutic avenue for PGRN-deficient FTD is to increase mRNA, and subsequently protein expression, of the ‘wild-type’ (non-mutated) copy of GRN.
    [Show full text]
  • NMS-E973 As a PET Tracer for in Vivo Visualisation of HSP90
    Theranostics 2019, Vol. 9, Issue 2 554 Ivyspring International Publisher Theranostics 2019; 9(2): 554-572. doi: 10.7150/thno.27213 Research Paper Evaluation of [11C]NMS-E973 as a PET tracer for in vivo visualisation of HSP90 Koen Vermeulen1*, Evelyne Naus2*, Muneer Ahamed3, Bala Attili1, Maxime Siemons1, 2, Kaat Luyten1, 2, Sofie Celen1, Joost Schymkowitz2, Frederic Rousseau2, Guy Bormans1 1. Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, KU Leuven, Leuven, Belgium 2. Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven, Belgium 3. College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia *These authors contributed equally to this manuscript Corresponding author: Dr. Guy Bormans. Email: [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.05.11; Accepted: 2018.11.30; Published: 2019.01.01 Abstract Heat shock protein 90 is an ATP-dependent molecular chaperone important for folding, maturation and clearance of aberrantly expressed proteins and is abundantly expressed (1-2% of all proteins) in the cytosol of all normal cells. In some tumour cells, however, strong expression of HSP90 is also observed on the cell membrane and in the extracellular matrix and the affinity of tumoural HSP90 for ATP domain inhibitors was reported to increase over 100-fold compared to that of HSP90 in normal cells. Here, we explore [11C]NMS-E973 as a PET tracer for in vivo visualisation of HSP90 and as a potential tool for in vivo quantification of occupancy of HSP90 inhibitors.
    [Show full text]
  • Stronger Through
    QUARTERLY NEWSLETTER OF VIB. VIBTIMES SEPTEMBER 2017 STRONGER THROUGH DIVERSITY STRONGER THROUGH DIVERSITY The different nationalities at VIB today 4 When you speak the language of science, making friends is a breeze 5 Hiring foreign directors and PIs: on track, but challenging 9 PhD season has arrived: a glimpse of the top-shelf selection 10 Alumni in the picture: Diego Forero 11 Damya Laoui’s triumph tour: innovating to inspire 13 VIB alumni return to their roots with an international collaboration 14 Our international schools: welcoming foreign families since 2012 16 A visit from our American counterparts to deepen our plant science collaboration 18 How a panoply of international programs safeguards our research budget 19 Turning the linguistic tables for lunch learning 20 SCIENCE MEETS SCIENCE Philip Van Damme and Sander Beel introduce their prolific research on brain disorders 21 Beginning with the patient: Dirk Elewaut shares his research inspiration 23 Novel perspectives on anti-amyloid treatment for the prevention of Alzheimer’s disease 25 Researchers gain new insights into the formation of non-pathological amyloids 26 Researchers discover mechanism behind rapid smell source localization 27 Navigation and spatial memory: new brain region identified to be involved 28 Quickscan 30 To have world-class creative scientific minds, VIB and achievements! It may evolve naturally as local needs to fish for colleagues from a bigger pool than and international VIB trainees go out into the world the relatively small region of Flanders. International as alumni. I had not met anyone who had trained SCIENCE MEETS TECHNOLOGY recruiting is also key to bringing new expertise to the at VIB to tell me how great this research institute How expanding VIB cores set the wheels of science in motion 34 institute.
    [Show full text]