Purine Acquisition and Synthesis by Human Fungal Pathogens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
35 Disorders of Purine and Pyrimidine Metabolism
35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP). -
Generated by SRI International Pathway Tools Version 25.0, Authors S
An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000238675-HmpCyc: Bacillus smithii 7_3_47FAA Cellular Overview Connections between pathways are omitted for legibility. -
Dreams and Nightmares of Latin American Ascomycete Taxonomists
DREAMS AND NIGHTMARES OF NEOTROPICAL ASCOMYCETE TAXONOMISTS Richard P. Korf Emeritus Professor of Mycology at Cornell University & Emeritus Curator of the Cornell Plant Pathology Herbarium, Ithaca, New York A talk presented at the VII Congress of Latin American Mycology, San José, Costa Rica, July 20, 2011 ABSTRACT Is taxonomic inquiry outdated, or cutting edge? A reassessment is made of the goals, successes, and failures of taxonomists who study the fungi of the Neotropics, with a view toward what we should do in the future if we are to have maximum scientific and societal impact. Ten questions are posed, including: Do we really need names? Who is likely to be funding our future research? Is the collapse of the Ivory Tower of Academia a dream or a nightmare? I have been invited here to present a talk on my views on what taxonomists working on Ascomycetes in the Neotropics should be doing. Why me? Perhaps just because I am one of the oldest ascomycete taxonomists, who just might have some shreds of wisdom to impart. I take the challenge seriously, and somewhat to my surprise I have come to some conclusions that shock me, as well they may shock you. OUR HISTORY Let's take a brief view of the time frame I want to talk about. It's really not that old. Most of us think of Elias Magnus Fries as the "father of mycology," a starting point for fungal names as the sanctioning author for most of the fungi. In 1825 Fries was halfway through his Systema Mycologicum, describing and illustrating fungi on what he could see without the aid of a microscope. -
Discovery of an Alternate Metabolic Pathway for Urea Synthesis in Adult Aedes Aegypti Mosquitoes
Discovery of an alternate metabolic pathway for urea synthesis in adult Aedes aegypti mosquitoes Patricia Y. Scaraffia*†‡, Guanhong Tan§, Jun Isoe*†, Vicki H. Wysocki*§, Michael A. Wells*†, and Roger L. Miesfeld*† Departments of §Chemistry and *Biochemistry and Molecular Biophysics and †Center for Insect Science, University of Arizona, Tucson, AZ 85721-0088 Edited by Anthony A. James, University of California, Irvine, CA, and approved December 4, 2007 (received for review August 27, 2007) We demonstrate the presence of an alternate metabolic pathway We previously reported that mosquitoes dispose of toxic for urea synthesis in Aedes aegypti mosquitoes that converts uric ammonia through glutamine (Gln) and proline (Pro) synthesis, acid to urea via an amphibian-like uricolytic pathway. For these along with excretion of ammonia, uric acid, and urea (20). By studies, female mosquitoes were fed a sucrose solution containing using labeled isotopes and mass spectrometry techniques (21), 15 15 15 15 15 NH4Cl, [5- N]-glutamine, [ N]-proline, allantoin, or allantoic we have recently determined how the N from NH4Cl is acid. At 24 h after feeding, the feces were collected and analyzed incorporated into the amide side chain of Gln, and then into Pro, in a mass spectrometer. Specific enzyme inhibitors confirmed that in Ae. aegypti (22). In the present article we demonstrate that the 15 15 15 mosquitoes incorporate N from NH4Cl into [5- N]-glutamine nitrogen of the amide group of Gln contributes to uric acid and use the 15N of the amide group of glutamine to produce synthesis in mosquitoes and, surprisingly, that uric acid can be 15 labeled uric acid. -
Yeast Genome Gazetteer P35-65
gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal -
I Carl Von Linnés Fotspår
I CARL VON LINNÉS FOTSPÅR I Carl von Linnés fotspår Svenska Linnésällskapet 100 år erik hamberg Svenska Linnésällskapet Uppsala 2018 © Erik Hamberg och Svenska Linnésällskapet 2018 Omslaget visar den Linnémedaljong som tillverkades av Wedgwood till Linnéjubileet 1907. I privat ägo. Foto: Magnus Hjalmarsson, UUB. Produktion: Grafisk service, Uppsala universitet Utformning: Martin Högvall Texten satt med Adobe Garamond Pro ISBN 978-91-85601-43-1 Tryckt i Sverige av DanagårdLiTHO AB, Ödeshög 2018 Innehåll Förord ...................................................................................................... 7 Linnébilden tar form .............................................................................. 11 Tidiga Linnésällskap i Sverige ................................................................ 13 Linnéjubileer 1807–1907 ........................................................................ 15 Forskare och samlare med Linnéintressen .............................................. 19 Svenska Linnésällskapet bildas ............................................................... 23 Insamling av Linnéminnen .................................................................... 29 Linnémuseet .......................................................................................... 33 Linnéträdgården .................................................................................... 47 Elof Förbergs bibliotek ........................................................................... 63 Linnés Hammarby ................................................................................ -
Mycology from the Library of Nils Fries
CENTRALANTIKVARIATET catalogue 82 MYCOLOGY from the library of nils fries CENTRALANTIKVARIATET catalogue 82 MYCOLOGY from the library of nils fries stockholm mmxvi 15 centralantikvariatet österlånggatan 53 111 31 stockholm +46 8 411 91 36 www.centralantikvariatet.se e-mail: [email protected] bankgiro 585-2389 medlem i svenska antikvariatföreningen member of ilab grafisk form och foto: lars paulsrud tryck: eo grafiska 2016 Vignette on title page from 194 PREFACE It is with great pleasure we are now able to present our Mycology catalogue, with old and rare books, many of them beautifully illustrated, about mushrooms. In addition to being fine mycological books in their own right, they have a great provenance, coming from the libraries of several members of the Fries family – the leading botanist and mycologist family in Sweden. All of the books are from the library of Nils Fries (1912–94), many from that of his grandfather Theodor (Thore) M. Fries (1832–1913), and a few from the library of Nils’ great grandfather Elias M. Fries (1794–1878), “fa- ther of Swedish mycology”. All three were botanists and professors at Uppsala University, as were many other members of the family, often with an orientation towards mycology. Nils Fries field of study was the procreation of mushrooms. Furthermore, Nils Fries has had a partiality for interesting provenances in his purchases – and many international mycologists are found among the former owners of the books in the catalogue. Four of the books are inscribed to Elias M. Fries, and it is probable that more of them come from his collection. Thore M. -
Forms of Hypoxanthine Or, Through Interconversions, Guanine Or Adenine
826 GENETICS: GOTS AND GOLLUB PROC. N. A. S. Summary.-The ribonucleic acids of isolated thymus nuclei can be separated into two distinct fractions, one of which probably represents ribonucleic acid of the nu- cleolus. Studies of the incorporation of orotic acid-6-C"4 and adenosine-8-C'4 into these RNA fractions in vitro show great differences in their metabolic activity and different susceptibilities to an inhibitor of RNA synthesis, the "nucleolar" RNA being by far the more active. It is a pleasure to acknowledge our indebtedness to Mr. Rudolf Meudt for his careful and expert technical assistance. * This research was supported in part by a grant (RG-4919 M&G) from the United States Public Health Service. I V. G. Allfrey, A. E. Mirsky, and S. Osawa, Nature, 176, 1042, 1955. 2 V. G. Allfrey, A. E. Mirsky, and S. Osawa, J. Gen. Physiol., 40, 451, 1957. 3 R. Logan and J. N. Davidson, Biochim. et Biophys. Acta, 24, 196, 1957. 4 S. Osawa, K. Takata, and Y. Hotta (in press). 6 J. M. Webb, J. Biol. Chem., 221, 635, 1956. 6 M. Bessis, in Traite de cytologie sanguine (Paris: Masson & Cie, 1954), p. 83. J. N. Davidson and R. M. S. Smellie. Biochem. J.. 52, 594, 1952. SEQUENTIAL BLOCKADE IN ADENINE BIOSYNTHESIS BY GENETIC LOSS OF AN APPARENT BIFUNCTIONAL DEACYLASE* By JOSEPH S. GOTS AND EDITH G. GOLLUB DEPARTMENT OF MICROBIOLOGY, SCHOOL OF MEDICINE, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYLVANIA Communicated by D. Wright Wilson, July 3, 1957 Along the biosynthetic pathway to the purines of nucleic acids, inosinic acid occurs as a pivotal point in a bifurcation which leads to adenylic acid along one branch and to guanylic acid along the other: (B) r- Adenylic acid (AMP) (A) Inosinic acid (IMP) (C) L|_ * Guanylic acid (GMP) Bacterial mutations may result in genetic impairments at three locations with respect to the pivotal inosinic acid, thus yielding auxotrophs with three broad classes of nutritional response. -
Nfletffillfl Sm of Nuelieotfl Dles
Nfletffillflsm of Nuelieotfl dles ucleotides \f consistof a nitrogenousbase, a | \ pentose and a phosphate. The pentose sugaris D-ribosein ribonucleotidesof RNAwhile in deoxyribonucleotides(deoxynucleotides) of i Aspariaie--'N.,,,t .J . DNA, the sugaris 2-deoxyD-ribose. Nucleotides t participate in almost all the biochemical processes/either directly or indirectly.They are the structuralcomponents of nucleicacids (DNA, Y RNA), coenzymes, and are involved in tne Glutamine regulationof severalmetabolic reactions. Fig. 17.1 : The sources of individuat atoms in purine ring. (Note : Same colours are used in the syntheticpathway Fig. lZ.2). n T. C4, C5 and N7 are contributedby glycine. Many compoundscontribute to the purine ring of the nucleotides(Fig.t7.l). 5. C6 directly comes from COr. 1. purine N1 of is derivedfrom amino group It should be rememberedthat purine bases of aspartate. are not synthesizedas such,but they are formed as ribonucleotides. The purines 2. C2 and Cs arise from formate of N10- are built upon a formyl THF. pre-existing ribose S-phosphate. Liver is the major site for purine nucleotide synthesis. 3. N3 and N9 are obtainedfrom amide group Erythrocytes,polymorphonuclear leukocytes and of glutamine. brain cannot producepurines. 388 BIOCHEMISTF|Y m-gg-o-=_ |l Formylglycinamide ribosyl S-phosphate Kn H) Glutam H \-Y OH +ATt OH OH Glutame cl-D-Ribose-S-phosphate + ADP orr-l t'1 PRPPsYnthetase ,N o"t*'] \cH + Hrcl-itl HN:C-- O EO-qn2-O.- H -NH l./ \l KH H) I u \.]_j^/ r,\-iEl-/^\-td Ribose5-P II Formylglycinamidineribosyl-s-phosphate -
Arginase Specific Activity and Nitrogenous Excretion of Penaeus Japonicus Exposed to Elevated Ambient Ammonia
MARINE ECOLOGY PROGRESS SERIES Published July 10 Mar Ecol Prog Ser Arginase specific activity and nitrogenous excretion of Penaeus japonicus exposed to elevated ambient ammonia Jiann-Chu Chen*,Jiann-Min Chen Department of Aquaculture. National Taiwan Ocean University. Keelung, Taiwan 20224, Republic of China ABSTRACT: Mass-specific activity of arginase and nitrogenous excretion of Penaeus japonicus Bate (10.3 * 3.7 g) were measured for shrimps exposed to 0.029 (control), 1.007 and 10.054 mg 1-' ammonia- N at 32%, S for 24 h. Arginase specific activity of gill, hepatopancreas and midgut increased directly with ambient ammonia-N, whereas arginase specific activity of muscle was inversely related to ambient ammonia-N. Excretion of total-N (total nitrogen), organic-N and urea-N increased, whereas excretion of ammonia-N, nitrate-N and nitrite-N decreased significantly with an increase of ambient ammonia- N. In the control solution, japonlcus excreted 68.94% ammonia-N, 25.39% organic-N and 2.87% urea-N. For the shrimps exposed to 10 mg 1" ammonia-N, ammonia-N uptake occurred, and t.he con- tribution of organic-N and urea-N excretion increased to 90.57 and 8.78%, respectively, of total-N. High levels of arginase specific activity in the gill, midgut and hepatopancreas suggest that there is an alternative route of nitrogenous waste for P. japonicus under ammonia exposure. KEY WORDS: Penaeus japonicus - Ammonia . Arginase activity . Nitrogenous excretion . Metabolism INTRODUCTION processes. Therefore, accumulation of ammonia and its toxicity are of primary concern. Kuruma shrimp Penaeus japonicus Bate, which is Ammonia has been reported to increase molting fre- distributed in Pacific rim countries, is also found in the quency, reduce growth, and even cause mortality of Mediterranean. -
Generated by SRI International Pathway Tools Version 25.0, Authors S
Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000725805Cyc: Streptomyces xanthophaeus Cellular Overview Connections between pathways are omitted for legibility. -
1 T CELL ACTIVATION TRIGGERS REVERSIBLE INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE ASSEMBLY Krisna C. Duong-Ly 1, Yin-Ming Kuo 2
bioRxiv preprint doi: https://doi.org/10.1101/315929; this version posted May 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. T CELL ACTIVATION TRIGGERS REVERSIBLE INOSINE-5’-MONOPHOSPHATE DEHYDROGENASE ASSEMBLY Krisna C. Duong-Ly1, Yin-Ming Kuo2, Matthew C. Johnson3, Justin M. Kollman3, Jonathan Soboloff4, Glenn F. Rall5, Andrew J. Andrews2, and Jeffrey R. Peterson1 1Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 2Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 3Department of Biochemistry, University of Washington, Seattle, WA 4Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 5Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA Correspondence to Jeffrey R. Peterson: [email protected], Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, ORCID: 0000-0002-0604-718X; Yin-Ming Kuo’s present address is Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA Short running title: IMPDH FILAMENT ASSEMBLY IN T CELLS Abbreviations used: IMP: inosine-5’-monophosphate IMPDH: inosine-5’-monophosphate dehydrogenase 1 bioRxiv preprint doi: https://doi.org/10.1101/315929; this version posted May 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.