The Crustacea of China: a Palaeobiogeographical Perspective

Total Page:16

File Type:pdf, Size:1020Kb

The Crustacea of China: a Palaeobiogeographical Perspective UvA-DARE (Digital Academic Repository) The fossil Crustacea of China: their taxonomy, palaeobiology, biogeography and phylogenetic relationships Taylor, R.S. Publication date 1999 Link to publication Citation for published version (APA): Taylor, R. S. (1999). The fossil Crustacea of China: their taxonomy, palaeobiology, biogeography and phylogenetic relationships. Fac. der Biologie. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:29 Sep 2021 Fossil Crustacea of China Chapter 5 The Crustacea of China: a Palaeobiogeographical Perspective Abstract The fossil record in China has been much discussed in the scientific literature of late with the recent discovery of new localities there with many new and informative fossil taxa. One group in particular has received attention, the Crustacea (and the Arthropoda in general). The known Crustacean fossil record of China is summarized and discussed in this paper. These Chinese fossils are compared to related taxa worldwide, in an attempt to piece together local and global biogeographic trends for these groups. The importance of the fossil record in understanding the evolutionary history of any group is a prevalent theme. Introduction Consideration as to the true nature of fossils is a practice that has been ongoing since the early days of human civilization. The first recorded commentary on the organic origins of fossils dates back to Xanthos of Sardis in about 500 B.C.; 150 years later, Aristotle discussed how fossil fish were the remains of once living animals that had swum into cracks in rocks and had been stranded there. Palaeontology as we think of it today, however, did not truly com­ mence until the 19th century. At this time, the ichthyosaurian, plesiosaurian and pterosaurian fossil remains discovered by Mary Arming and the description of the first known dinosaur, Iguanodon, by Mantell in the early 1800s captured the attention of the media in Britain and ini­ tiated what would eventually become the modern-day worldwide fascination with fossils (McGowan, 1991). The palaeontological situation in China is perhaps one of the most exciting right now, with the recent discovery of such palaeontological treasures as the Lower Cambrian Chengjiang fauna in Yunnan, southwestern China, and new birds and dinosaurs in Liaoning province, northeastern China. Palaeontological research, however, has been slower to develop in China than in the 'western world'. Even now, much of the palaeontological work done in China is published in Chinese language journals (only sometimes with an English abstract and/or summary) that are not carried by most non-Chinese libraries. Because of this, it is often difficult for non-Chinese palaeontologists to get a true feeling for the extensive palaeon­ tological research being done there today. The intentions of this paper are twofold. One is to present a relatively up-to-date pic­ ture of China's fossil crustacean record, incorporating where possible information published in less-well-known Chinese journals. The second goal of this paper is to put the Chinese crus­ tacean fossil record in a more global framework, thus allowing for a better understanding of the palaeobiological history of China with respect to the related faunas around the world. Palaeontological Research in China The palaeontological record in China is rich and diverse, as reflected by the enormous numbers of published studies focussing on fossils from China. Some examples demonstrating 85 Chapter 5 this diversity are the trilobite studies of Yang Jialu (e.g., Yang, 1978; Yang et al., 1984), Lin Bayou's work on corals (e.g., Lin and Chou, 1977; Lin and Wang, 1985), Wang Keliang's foraminiferan studies (e.g., Wang, 1984; Wang, 1985), Huang Wanpo's publications regarding China's mammal faunas (e.g., Huang, 1980; Huang, 1986), and the works on China's palaeoflo- ras by Xu Ren (e.g., Xu, 1982). This is hardly a comprehensive list of the studies emerging from China's palaeobiological community It does give some idea of the broad range of work occurring there today, however [for more information, see the recent volumes 'The Palaeobiogeography of China' (Yin, 1994) and The Geology of China (Yang et al., 1986)]. A good example of the depth of the long-term studies taking place in China is the Chinese literature regarding graptolites, a group of colonial hemichordates that dominated the plankton of the world's oceans during the Ordovician and Silurian. The database regarding these animals from Chinese strata is nothing short of enormous. Several authors have pub­ lished extensively on Chinese graptolites, including Mu En-zhi in the 1960s - 1980s (e.g., Mu and Chen Xu, 1962; Mu et al, 1974; Mu and Lin, 1984; and as Mu A.T. in the 1940s - 1960s), Lin Yao-kun in the 1980s (e.g., Lin Yao-kun, 1980; Lin Yao-kun and Zho Zhao-ling, 1989) and Chen Xu in the 1980s and 1990s (e.g., Chen et al., 1981; Chen, 1994). Thanks to the work of these and other authors, the biostratigraphic and palaeobiogeographic history of the Graptolithina is well understood in a global context. The appearance of recent volumes in English, such as the won­ derful book 'Graptolite Research Today' edited by Chen et al. (1994), has greatly improved the international understanding and interpretation of these Chinese graptolites (e.g., Cooper et al., 1991). The past few years in particular have seen China emerge as the source of some of the world's most significant fossil finds. Issues that have long been sources of contention within the palaeontological community (and, increasingly, the general public) have been influenced by recent finds from China. Perhaps the most widely publicized of these has been the issue of bird-dinosaur relationships and bird evolution, which has been greatly bolstered by the discov­ ery of dinosaurs with feathers (Ji Qiang et al., 1998) and early therapod dinosaurs that possess many morphological features shared with birds (Chen et al., 1998). Another widely publicized palaeontological find from China recently has been the dis­ covery of a Lower Cambrian Lagerstätte in Moatian, Yunnan Province, southwestern China. This locality has produced extensive amounts of fossiliferous material comparable in quality to (perhaps even better than) the Burgess Shale Lagerstätte fossils of western Canada. The fossils from this locality are revealing much about the early nature of life, the evolution of arthropods, the origins of major phyla, and the relationships between these phyla (e.g., Chen et ah, 1996; Chen and Zhou, 1997; Hou and Bergström, 1997; Conway Morris, 1998). Fossil Crustacea in China and their global 'relatives' Several crustacean groups are represented in the fossil record of China, some extensive­ ly. Others are known from China through only a few occurrences (or even a single specimen in a few cases). Several factors may be responsible for the seeming irregularities in the distrib­ utions of fossil Crustacea in China. Among them are true variability in the distributions of dif­ ferent animal groups, which would naturally be reflected in their fossil record, and/or incom­ pleteness of the fossil record itself. Another reason, and perhaps the most important with 86 Fossil Crustacea of China respect to this discussion, is our relative ignorance of the geological and palaeontological sequences of China. Nevertheless, our knowledge of the palaeobiological history of China has increased tremendously in recent decades. While we are now filling in the numerous gaps in our knowledge of Chinese paleobiology, there are still considerable questions that remain to be answered. In this paper, I will briefly summarize the current state of knowledge pertaining to the fossil Crustacea of China and how they compare to related forms, both fossil and recent, around the globe. This effort cannot be a comprehensive summary of the subject - such a par­ taking would unfortunately be far beyond the scope of this paper. It is intended rather to serve as an introduction to the research occurring there today and to serve as a stimulus to delve deeper into the wealth of palaeontological information that is today emerging from Chinese strata. Class Phyllopoda The Phyllopoda Latreille, 1825 are one of the four major crustacean classes and are characterized by the possession of leaf-shaped, polyramous limbs. They are known both from Recent taxa and the fossil record, and include both the subclass Phyllocarida Packard, 1879 and the subclass Calmanostraca Tasch, 1969. Among the calmanostracan orders of particular interest to this paper are the Kazacharthra Nozohilov, 1957 and Conchostraca Sars, 1867. Subclass Phyllocarida A major component of the crustacean fossil record in China is the Class Phyllopoda (in the sense of Schram, 1986), which includes the subclass Phyllocarida Packard, 1879 (Figure la). Phyllocarida have long been problematic taxa in regards to their classification, and their taxonomy is currently seriously in need of revision (Dahl, in Schram, 1986). The fossil taxa (including the orders Archaeostraca, Canadaspidida, Hoplostraca, and Hymenostraca) share the same taxonomie problems, largely because many fossil forms are known from limited material such as tailfan elements or isolated carapaces.
Recommended publications
  • Relationships Within Eumalacostracan Crustacea Frederick R
    •J'' • TRANSACTIONS OF THE SAN DIEGO SOCIETY OF NATURAL HISTORY CRUSTACEA LIBRARY SMITHSONIAN INST« RETURN TO VT-119 Volume 20 Number 16 pp. 301-312 20 November 1984 Relationships within Eumalacostracan Crustacea Frederick R. Schram San Diego Natural History Museum, P.O. Box 1390, San Diego, CA 92112 USA Abstract. A cladistic analysis was performed on 20 constituent higher taxa within the Eumala- costraca based on 31 characters of external anatomy. Variants of the most parsimonious scheme are presented, and the effects of tolerating different levels of uncertainty are evaluated. It is concluded that: 1) while the basic outline of Caiman's (1904) taxonomy of Eumalacostraca might be utilized, the arrangement within peracarids postulated by Siewing (1956) cannot be maintained; 2) the Bauplane approach of Schram (1981) has some merit and some of the controversial higher taxonomic groupings of eumalacostracan "orders" originally indicated by that method are vindicated; 3) the idea that the carapace is a derived feature within eumalacostracans, advanced by Dahl (1983), can be maintained only if a high level of homoplasy is tolerated; 4) the concept of a taxon Mysidacea seems best abandoned. INTRODUCTION The basic modern classification of eumalacostracan crustaceans was outlined by Caiman (1904, 1909) with little reference at that time to what the details of phyletic relationships between and within groups might have been. However, it was Siewing (1951, 1956) who presented a phylogenetic tree for eumalacostracans widely subscribed to by subsequent authorities (e.g., Fryer 1964, Hessler 1969). Recently, however, the Calman/Siewing scheme for Eumalacostraca sensu stricto has been questioned. Schram (1981) recognized basic structural plans within the Eu- malacostraca, but the methodology he employed was limited by the number of char- acters that could be handled essentially by pencil and paper.
    [Show full text]
  • Mysida and Lophogastrida of Greece: a Preliminary Checklist
    Biodiversity Data Journal 4: e9288 doi: 10.3897/BDJ.4.e9288 Taxonomic Paper Mysida and Lophogastrida of Greece: a preliminary checklist Panayota Koulouri‡, Vasilis Gerovasileiou‡‡, Nicolas Bailly ‡ Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece Corresponding author: Panayota Koulouri ([email protected]) Academic editor: Christos Arvanitidis Received: 20 May 2016 | Accepted: 17 Jul 2016 | Published: 01 Nov 2016 Citation: Koulouri P, Gerovasileiou V, Bailly N (2016) Mysida and Lophogastrida of Greece: a preliminary checklist. Biodiversity Data Journal 4: e9288. https://doi.org/10.3897/BDJ.4.e9288 Abstract Background The checklist of Mysida and Lophogastrida of Greece was created within the framework of the Greek Taxon Information System (GTIS), which is one of the applications of the LifeWatchGreece Research Infrastructure (ESFRI) resuming efforts to develop a complete checklist of species recorded and reported from Greek waters. The objectives of the present study were to update and cross-check taxonomically all records of Mysida and Lophogastrida species known to occur in Greek waters in order to search for inaccuracies and omissions. New information The up-to-date checklist of Mysida and Lophogastrida of Greece comprises 49 species, classified to 25 genera. © Koulouri P et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Koulouri P et al. Keywords Mysida, Lophogastrida, Greece, Aegean Sea, Sea of Crete, Ionian Sea, Eastern Mediterranean, checklist Introduction The peracarid crustaceans Lophogastrida, Stygiomysida and Mysida were formerly grouped under the order "Mysidacea".
    [Show full text]
  • LET LET12382.Pdf (13.79Mb)
    After 100 years: a detailed view of an eumalacostracan crustacean from the Upper Jurassic Solnhofen Lagerstätte with raptorial appendages unique to Euarthropoda PAULA G. PAZINATO , CLÉMENT JAUVION , GÜNTER SCHWEIGERT, JOACHIM T. HAUG AND CAROLIN HAUG Pazinato, P. G., Jauvion, C., Schweigert, G., Haug, J. T., & Haug, C. 2020: After 100 years: a detailed view of an eumalacostracan crustacean from the Upper Jurassic Solnhofen Lagerstätte with raptorial appendages unique to Euarthropoda. Lethaia, https://doi.org/10.1111/let.12382. The Solnhofen Konservat‐Lagerstätte yields a great number of remarkably preserved fossils of eumalacostracan crustaceans that help us understand the early radiation of several groups with modern representatives. One fossil from there, Francocaris grimmi Broili, 1917 is a small shrimp‐like crustacean originally described about 100 years ago as a mysidacean crustacean (opossum shrimps and relatives) from latest Kimmeridgian – early Tithonian (Upper Jurassic) of the Solnhofen Lithographic Limestones of South- ern Germany. New material with exceptionally preserved specimens, allied with mod- ern imaging techniques (mostly composite fluorescence microscopy), allows us to provide a detailed re‐description of this species. The most striking feature of Franco- caris grimmi is an extremely elongated thoracopod 7 with its distal elements forming a spiny sub‐chela. This character supports a sister group relationship of Francocaris grimmi with Eucopiidae, an ingroup of Lophogastrida, pelagic peracaridans common in marine environments throughout the world. We also discuss other supposed fossil representatives of Lophogastrida, identifying all of them as problematic at best. The structure of the sub‐chela in F. grimmi indicates an original use in raptorial behaviour. Francocaris grimmi appears to be unique in possessing such a far posterior sub‐chelate appendage as a major raptorial structure.
    [Show full text]
  • And Peracarida
    Contributions to Zoology, 75 (1/2) 1-21 (2006) The urosome of the Pan- and Peracarida Franziska Knopf1, Stefan Koenemann2, Frederick R. Schram3, Carsten Wolff1 (authors in alphabetical order) 1Institute of Biology, Section Comparative Zoology, Humboldt University, Philippstrasse 13, 10115 Berlin, Germany, e-mail: [email protected]; 2Institute for Animal Ecology and Cell Biology, University of Veterinary Medicine Hannover, Buenteweg 17d, D-30559 Hannover, Germany; 3Dept. of Biology, University of Washington, Seattle WA 98195, USA. Key words: anus, Pancarida, Peracarida, pleomeres, proctodaeum, teloblasts, telson, urosome Abstract Introduction We have examined the caudal regions of diverse peracarid and The variation encountered in the caudal tagma, or pancarid malacostracans using light and scanning electronic posterior-most body region, within crustaceans is microscopy. The traditional view of malacostracan posterior striking such that Makarov (1978), so taken by it, anatomy is not sustainable, viz., that the free telson, when present, bears the anus near the base. The anus either can oc- suggested that this region be given its own descrip- cupy a terminal, sub-terminal, or mid-ventral position on the tor, the urosome. In the classic interpretation, the telson; or can be located on the sixth pleomere – even when a so-called telson of arthropods is homologized with free telson is present. Furthermore, there is information that the last body unit in Annelida, the pygidium (West- might be interpreted to suggest that in some cases a telson can heide and Rieger, 1996; Grüner, 1993; Hennig, 1986). be absent. Embryologic data indicates that the condition of the body terminus in amphipods cannot be easily characterized, Within that view, the telson and pygidium are said though there does appear to be at least a transient seventh seg- to not be true segments because both structures sup- ment that seems to fuse with the sixth segment.
    [Show full text]
  • From the Anisian Luoping Biota, Yunnan Province, China
    Journal of Paleontology, 91(1), 2017, p. 100–115 Copyright © 2016, The Paleontological Society 0022-3360/16/0088-0906 doi: 10.1017/jpa.2016.121 Earliest occurrence of lophogastrid mysidacean arthropods (Crustacea, Eucopiidae) from the Anisian Luoping Biota, Yunnan Province, China Rodney M. Feldmann,1 Carrie E. Schweitzer,2 Shixue Hu,3,4 Jinyuan Huang,3,4 Changyong Zhou,3,4 Qiyue Zhang,3,4 Wen Wen,3,4 Tao Xie,3,4 Frederick R. Schram,5 and Wade T. Jones1 1Department of Geology, Kent State University, Kent, OH 44240 USA 〈[email protected]〉 2Department of Geology, Kent State University at Stark, 6000 Frank Avenue NW, North Canton, OH 44720, USA 〈[email protected]〉 3Chengdu Institute of Geology and Mineral Resources, Chengdu, 610081, China 〈[email protected]〉 4Chengdu Center of China Geological Survey, No. 2, N-3-Section, First Ring, Chengdu 61008, China 5Department of Invertebrate Paleontology, Burke Museum of Natural History, University of Washington, Seattle WA 98195 USA 〈[email protected]〉 Abstract.—Tiny, pelagic arthropods from the Anisian Luoping Biota exposed in two quarries near Luoping, Yunnan Province, China, represent the numerically most abundant organisms in the assemblage. They form the basis for definition of two, and possibly three, species referred to the order Lophogastrida, family Eucopiidae. Yunnanocopia grandis new genus new species and Y. longicauda n. gen. new species represent the oldest occurrence of mysida- ceans in the fossil record. Their anatomy allies them with the Ladinian species Schimperella acanthocercus Taylor, Schram, and Shen, 2001, from Guizhou Province, China, which previously was thought to be the oldest lophogastrid, and with extant species of Eucopiidae.
    [Show full text]
  • Paleoentomofauna Del Pérmico Temprano En Uruguay
    UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE CIENCIAS - PEDECIBA ÁREA BIOLOGÍA- SUBÁREA ZOOLOGÍA TESIS DE MAESTRÍA Paleoentomofauna del Pérmico temprano en Uruguay Viviana Calisto Directora de tesis: Dra. Graciela Piñeiro Co-director de tesis: Dr. Enrique Morelli TRIBUNAL Presidente: Dr. Claudio Gaucher Vocales: Dra. Ana Verdi y Dra. Patricia González Vainer Diciembre, 2018 1 ÍNDICE RESUMEN ………………………………………………………..………………………….……………………………..…… 4 ABSTRACT……………………………………………………………………………….…………………………….…………. 5 ÍNDICE DE FIGURAS…………………………………………….……….…………………………………..…………… 7 CAPÍTULO 1………………………………………..………………………………..………………………………..….…. 11 INTRODUCCIÓN……………………………………………………………….……………….………………….……..…. 11 a. Los primeros insectos fósiles……………………………….………………..………………..…………….…..11 b. Preservación de los insectos fósiles………………………….…………………..……….……………..…..12 c. Caracterización de la Formación Mangrullo ……………….………………………...………………..…14 d. Registros de insectos fósiles en Uruguay …………………….……………….………………..…….…...16 HIPÓTESIS…………………………………………….……………………………………………………………………….….18 OBJETIVO GENERAL………………………………….…………..…………………..…………………………………..…18 OBJETIVOS ESPECÍFICOS…….…………………………………..………………..………………………….…….……. 18 MATERIALES Y METODOLOGÍAS……………..………….……………………………………………………………. 19 a. Materiales……………………………………………………………………………..…………………………..……... 19 b. Área de estudio y colecta……………………………………………………..…………………..………….…... 19 c. Fotografías y diagramación………………………………………………..………………….....….…………… 22 CAPÍTULO 2 - BLATTARIA ………………………………….…………..…………..……………………….…..… 23 Antecedentes de Blattaria………………………………….………………….…………….………………………..…
    [Show full text]
  • Fossil Calibrations for the Arthropod Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/044859; this version posted June 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. FOSSIL CALIBRATIONS FOR THE ARTHROPOD TREE OF LIFE AUTHORS Joanna M. Wolfe1*, Allison C. Daley2,3, David A. Legg3, Gregory D. Edgecombe4 1 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 3 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PZ, UK 4 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author: [email protected] ABSTRACT Fossil age data and molecular sequences are increasingly combined to establish a timescale for the Tree of Life. Arthropods, as the most species-rich and morphologically disparate animal phylum, have received substantial attention, particularly with regard to questions such as the timing of habitat shifts (e.g. terrestrialisation), genome evolution (e.g. gene family duplication and functional evolution), origins of novel characters and behaviours (e.g. wings and flight, venom, silk), biogeography, rate of diversification (e.g. Cambrian explosion, insect coevolution with angiosperms, evolution of crab body plans), and the evolution of arthropod microbiomes. We present herein a series of rigorously vetted calibration fossils for arthropod evolutionary history, taking into account recently published guidelines for best practice in fossil calibration.
    [Show full text]
  • Earliest Occurrence of Lophogastrid Mysidacean Arthropods (Crustacea, Eucopiidae) from the Anisian Luoping Biota, Yunnan Province, China
    Journal of Paleontology, 91(1), 2017, p. 100–115 Copyright © 2016, The Paleontological Society 0022-3360/16/0088-0906 doi: 10.1017/jpa.2016.121 Earliest occurrence of lophogastrid mysidacean arthropods (Crustacea, Eucopiidae) from the Anisian Luoping Biota, Yunnan Province, China Rodney M. Feldmann,1 Carrie E. Schweitzer,2 Shixue Hu,3,4 Jinyuan Huang,3,4 Changyong Zhou,3,4 Qiyue Zhang,3,4 Wen Wen,3,4 Tao Xie,3,4 Frederick R. Schram,5 and Wade T. Jones1 1Department of Geology, Kent State University, Kent, OH 44240 USA 〈[email protected]〉 2Department of Geology, Kent State University at Stark, 6000 Frank Avenue NW, North Canton, OH 44720, USA 〈[email protected]〉 3Chengdu Institute of Geology and Mineral Resources, Chengdu, 610081, China 〈[email protected]〉 4Chengdu Center of China Geological Survey, No. 2, N-3-Section, First Ring, Chengdu 61008, China 5Department of Invertebrate Paleontology, Burke Museum of Natural History, University of Washington, Seattle WA 98195 USA 〈[email protected]〉 Abstract.—Tiny, pelagic arthropods from the Anisian Luoping Biota exposed in two quarries near Luoping, Yunnan Province, China, represent the numerically most abundant organisms in the assemblage. They form the basis for definition of two, and possibly three, species referred to the order Lophogastrida, family Eucopiidae. Yunnanocopia grandis new genus new species and Y. longicauda n. gen. new species represent the oldest occurrence of mysida- ceans in the fossil record. Their anatomy allies them with the Ladinian species Schimperella acanthocercus Taylor, Schram, and Shen, 2001, from Guizhou Province, China, which previously was thought to be the oldest lophogastrid, and with extant species of Eucopiidae.
    [Show full text]
  • Acta Palaeontologica Polonica, Polskiej Akademii Nauk, Instytut Paleobiologii, 2010, 55 (1), Pp.111-132
    Ecological significance of the arthropod fauna from the Jurassic (Callovian) La Voulte Lagerstätte. Sylvain Charbonnier, Jean Vannier, Pierre Hantzpergue, Christian Gaillard To cite this version: Sylvain Charbonnier, Jean Vannier, Pierre Hantzpergue, Christian Gaillard. Ecological signif- icance of the arthropod fauna from the Jurassic (Callovian) La Voulte Lagerstätte.. Acta Palaeontologica Polonica, Polskiej Akademii Nauk, Instytut Paleobiologii, 2010, 55 (1), pp.111-132. 10.4202/app.2009.0036. hal-00551274 HAL Id: hal-00551274 https://hal.archives-ouvertes.fr/hal-00551274 Submitted on 26 Jan 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecological Significance of the Arthropod Fauna from the Jurassic (Callovian) La Voulte Lagerstätte Author(s) :Sylvain Charbonnier, Jean Vannier, Pierre Hantzpergue and Christian Gaillard Source: Acta Palaeontologica Polonica, 55(1):111-132. 2010. Published By: Institute of Paleobiology, Polish Academy of Sciences DOI: URL: http://www.bioone.org/doi/full/10.4202/app.2009.0036 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses.
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]
  • The Place of the Hoplocarida in the Malacostracan Pantheon
    The University of Maine DigitalCommons@UMaine Marine Sciences Faculty Scholarship School of Marine Sciences 6-1-2009 The lP ace of the Hoplocarida in the Malacostracan Pantheon Les Watling University of Maine - Main, [email protected] C. H.J. Hof F. R. Schram Follow this and additional works at: https://digitalcommons.library.umaine.edu/sms_facpub Repository Citation Watling, Les; Hof, C. H.J.; and Schram, F. R., "The lP ace of the Hoplocarida in the Malacostracan Pantheon" (2009). Marine Sciences Faculty Scholarship. 134. https://digitalcommons.library.umaine.edu/sms_facpub/134 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Marine Sciences Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. JOURNALOF CRUSTACEANBIOLOGY, 20, SPECIALNUMBER 2: 1-11, 2000 THE PLACE OF THE HOPLOCARIDA IN THE MALACOSTRACAN PANTHEON Les Watling, Cees H. J. Hof, and Frederick R. Schram (LW,corresponding) Darling MarineCenter, University of Maine, Walpole, Maine 04573, U.S.A. (e-mail: [email protected]);(CHJH) Department of EarthSciences, University of Bristol, Wills MemorialBuilding, Queens Road, Bristol BS8 1RJ, United Kingdom (e-mail: [email protected]); (FRS) Zoological Museum, University of Amsterdam,Post Box 94766, NL-1090 GT Amsterdam, The Netherlands(e-mail: [email protected]) ABSTRACT The stomatopodbody plan is highly specializedfor predation,yet the SuperorderHoplocarida originatedfrom something other than the "lean,mean, killing machine" seen today.The fossil record of the groupindicates that it originatedearly on froma non-raptorialancestor, with the specialized predatorymorphology developing much later.
    [Show full text]
  • Pygocephalomorph Crustaceans from the Early Permian of Uruguay: Constraints on Taxonomy
    Rev. bras. paleontol. 15(1):33-48, Janeiro/Abril 2012 © 2012 by the Sociedade Brasileira de Paleontologia doi:10.4072/rbp.2012.1.03 PYGOCEPHALOMORPH CRUSTACEANS FROM THE EARLY PERMIAN OF URUGUAY: CONSTRAINTS ON TAXONOMY GRACIELA PIÑEIRO, ELIZABETH MOROSI, ALEJANDRO RAMOS Departamento de Evolución de Cuencas, Facultad de Ciencias, Iguá, 4225, 11400, Montevideo, Uruguay. [email protected], [email protected], [email protected] FABRIZIO SCARABINO Museo Nacional de Historia Natural, 25 de Mayo, 582, 11000, Montevideo, Uruguay. [email protected] ABSTRACT – Hoplita ginsburgi comb. nov. (Fabre & Huard) is described from the Early Permian Mangrullo Formation of Uruguay. It is a large to very large pygocephalomorph characterized by a combination of characters that includes the presence of a round carapace bearing short, anterolateral, spine-like processes and a posteriorly extended, V-shaped cervical groove. Other traits include well-developed angular or round pleomeral pleurae bearing terminal spine-like processes, a tail fan with large and rounded uropod exopod, lacking diaresis, a roughly trapezoidal telson that gives support to small lateral spines and a relatively large triangular caudal spine. This species is also distinguished by the presence of a putative, simplified endophragmal skeleton, a structure not previously described in pygocephalomorphs, but present in fossil and extant higher crustaceans, where its function, although not so well understood, has been related to support for the limb musculature. Sexual dimorphism appears in Hoplita with the recognition of gonopods in males and seminal receptacles in the females. The studied specimens include moulting exuvia distinct from live individuals. The status of Notocarididae, the only currently recognized Gondwanan family, was examined, as well as the strength of the characters previously recognized as diagnostic.
    [Show full text]