Report of the 2003 Meeting of the ICCAT Working Group On

Total Page:16

File Type:pdf, Size:1020Kb

Report of the 2003 Meeting of the ICCAT Working Group On SCRS/2008/024 Collect. Vol. Sci. Pap. ICCAT, 64(7):2617-2640 (2009) DESCRIPTION OF THE ICCAT TAGGING INFORMATION SYSTEM C. Palma 1 and P. Kebe1 SUMMARY This document describes the major elements of the ICCAT tagging information system, namely the data collection process, the relational database management system, the coding system and standard rules adopted, and, the revision policy behind the tagging information received by the various ICCAT parties. RÉSUMÉ Le présent document décrit les principaux éléments du système d’information de marquage de l’ICCAT, à savoir le processus de collecte de données, le système de gestion des bases de données relationnelles, le système de codage et les règles standard adoptées ainsi que la politique de révision faisant suite à la réception des informations de marquage émanant des diverses Parties de l’ICCAT. RESUMEN En este documento se describen los principales elementos del sistema ICCAT de información sobre marcado, es decir, los procesos de recopilación de datos, el sistema de gestión de la base de datos relacional, el sistema de codificación y las normas estándar adoptadas, así como la política de revisión de la información sobre marcado recibida de varias Partes de ICCAT. KEYWORDS Tagging, tag codes, tag recoveries 1. Introduction ICCAT has collected all over the years tagging information on tuna, tuna like species and sharks, made available by various contracting parties (or related Scientific Institutions) being United States one of the most important providers of tagging data. Up to 2001, the information was processed, validated and stored in structured ASCII files. Since then, the Secretariat started the migration process to a relational database system (MS-SQL Server 2000). During that period, various improvements were made the central tagging database system, in particular the inclusion of components to manage the ICCAT conventional tag inventory, code normalization, automatic data assimilation, validation procedures, multi-tier data management programs, and, the migration to the MS-SQL Server 2005 platform. During last year, the Secretariat started a complex revision/adjustment of the ICCAT tagging database system, in order to incorporate the recommendations proposed by the Ad Hoc Working Group on Tagging Coordination (Madrid, March 15-16 2007) and adopted by the Sub-Committee on Statistics (Anon 2007). Nowadays, the ICCAT tagging database system has integrated a much of the recommendation proposals, but this work still under way. Around 5 full additional weeks will be needed to finalize this ongoing task. Two new modules are under the prototyping phase (Survey manager and Electronic Tagging manager). Moreover, several auxiliary tables newly created (or under normalization) have a preliminary coding system. Guidance was requested to experts (as stated in Appendix 6 of Anon, 2007) to implement those coding systems. Although, the description of the ICCAT tagging database system here presented is focused on its current state, several explanations were included foreseeing its definitive development status. In addition, it’s slightly 1 ICCAT Secretariat, c/ Corazón de María, 8 (6th fl.), 28002 Madrid, Spain. 2617 technical content, aims to contribute to the development of the ICCAT-USA tagging data exchange protocol, and must not be viewed as a complete reference manual. 2. Data collection and processing Despite the existence of official reporting forms (www.iccat.int/Documents/Stats/tag-lottery-ENG.pdf ), tagging information is reported to ICCAT with heterogeneous structures and in a multitude of formats. Since 2002, each dataset received by ICCAT Secretariat is inventoried and the source information (electronic files, emails, and “pdf” copies of data received on paper) is stored in a proper file server location. The inventory process consists of registering the dataset with a unique ICCAT internal registry number in conjunction with various attributes of the source files received (reporting person/Institution, date reported, date registered, storage location links, etc.). In a primary (after inventory) phase the information is verified, recoded and transformed into an uniform structure easily assimilated by the Tagging database system. The time spent during this process can vary from around 1 hour (for the simplest and normalized cases) to more than one month (entire database revisions). On a second phase, the normalized data (already transformed into ICCAT standard codes) is dumped to a temporary table set (inside the main database) for posterior validation. A unique data input process number ( “InProcID”) is given to the dataset (database dependent identifier). During the validation process, the corresponding release and recovery data is cross-checked with the available data in the main table set, and classified in two different subsets: “new info” (if none of the key fields matches; “updated info” (if some of the key fields matches). All the “new info” subset is added to the main database. Each tuple (record) of the “updated info” passes through a second fine grain analysis (field based). At the end, a new record is generated combining the unchanged fields (current record of the main database tables) with the updated fields (temporary record from temporary tables set), which will replace the current record. When needed, the three records (current, temporary, new) are visualized side-by-side before replacing the information. Currently, the record that has been replaced is dropped from the database (not and effective historical track change system right now) but the update event is recorded in special fields. The secretariat has also under development a module that fulfills this requirement. 3. Data base management system The tagging relational database management system (RDBMS) is composed of various parts. A MS-SQL Server 2005 database (about 50 tables in total), one main application (VBA Projects in MS_ACCESS 2007) used as a direct interface to tagging information, and a MS-SQL Server Managements Studio Solution (contains various projects) which manages in a centralized way all the batch scripting development. The administrative system (security tasks, server roles, credentials, backup system, maintenance plans, etc.) is embedded in the server infrastructure. 3.1 Design principles As all the databases developed by the Secretariat within the ICCAT database system (ICCAT.DB), the tagging database (DB.TAG) adopted a number of standard design concepts. For the objectives of this document he most important ones are: ‐ “CamelCase” naming convention (en.wikipedia.org/wiki/CamelCase): used for persistent objects like tables, fields, indexes, functions, stored procedures, etc. (Uppercase is for reserved word only) ‐ Normalization principle: a balanced database normalization form (compromise between flexibility and strictness) was adopted in design. Tables were, at least, normalized to the 3NF standard (Third normal form). Note that, higher normalization degrees typically involve more tables and a larger number of joins, which can reduce performance, while lower normalized degrees are more flexible but more sensible to errors (en.wikipedia.org/wiki/Database_normalization#Normal_forms). ‐ Unicode support: all system was designed to fully support Unicode character set. ‐ Uniqueness of names: every name identifying a distinct object is unique across the entire ICCAT-DB (yet, the same object can exist in two distinct databases: e.g. Species table is shared across various databases) ‐ Object naming rules: only these characters are allowed in the names: [A…Z; a…z; 0…9; “_”]. Spaces or other special characters are not allowed in name composition. 2618 ‐ Table/Fields naming rules: Plural for naming Table objects. Singular for naming field object (e.g. “Species” will store species data, with their respective attributes – fields – being: SpeciesID, SpeciesCode, SpecScientificName, etc.) ‐ Reserved suffixes: “ID” for the primary key (mostly integer type) unique identifier field; “Code” for a secondary (alfa-numeric type) unique identifier field. 3.2 Field types standard formats There were also adopted a set of standard generic formats for certain field types. Table 1 describes the most important ones: 3.3 Database structures Figure 1 gives a simplified perspective (table names and relationships) of the entire Tagging database structure (detailed Table definitions are presented in Appendix 1). The internal database structure has various functional modules (groups of tables and other objects serving a specific purpose) each one taking care of a specific job. The modules are: ‐ Release/recovery data: manages all the tagging information (releases/recoveries) received in the Secretariat by the ICCAT parties. Figure 2 shows its structure. ‐ ICCAT tags inventory: manages all the conventional tags series assembled for ICCAT over time (production, distribution of set, etc.). The corresponding table structures and relationships are detailed in Figure 3. ‐ Tagging surveys (ongoing task): manages Tag Surveys information reported to the Secretariat. A preliminary structure of this module is shown in Figure 4. ‐ Historical updates (ongoing task): stores all the changes (records updated/replaced) made to main tables. This module shall only take care of the changes made to the Releases/recovery main tables. ‐ Lottery (ongoing task): manages the ICCAT tag lottery system. Each module interact each other (sharing data, virtual linkage) in a transparent way to the user (trigger automation). For example, when a
Recommended publications
  • 1 a Petition to List the Oceanic Whitetip Shark
    A Petition to List the Oceanic Whitetip Shark (Carcharhinus longimanus) as an Endangered, or Alternatively as a Threatened, Species Pursuant to the Endangered Species Act and for the Concurrent Designation of Critical Habitat Oceanic whitetip shark (used with permission from Andy Murch/Elasmodiver.com). Submitted to the U.S. Secretary of Commerce acting through the National Oceanic and Atmospheric Administration and the National Marine Fisheries Service September 21, 2015 By: Defenders of Wildlife1 535 16th Street, Suite 310 Denver, CO 80202 Phone: (720) 943-0471 (720) 942-0457 [email protected] [email protected] 1 Defenders of Wildlife would like to thank Courtney McVean, a law student at the University of Denver, Sturm college of Law, for her substantial research and work preparing this Petition. 1 TABLE OF CONTENTS I. INTRODUCTION ............................................................................................................................... 4 II. GOVERNING PROVISIONS OF THE ENDANGERED SPECIES ACT ............................................. 5 A. Species and Distinct Population Segments ....................................................................... 5 B. Significant Portion of the Species’ Range ......................................................................... 6 C. Listing Factors ....................................................................................................................... 7 D. 90-Day and 12-Month Findings ........................................................................................
    [Show full text]
  • Empire and Architecture at 16Th-Century Puerto Real, Hispaniola: an Archeological Perspective
    EMPIRE AND ARCHITECTURE AT 16th -CENTURY PUERTO REAL, HISPANIOLA: AN ARCHEOLOGICAL PERSPECTIVE BY RAYMOND F. WILLIS DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1984 Copyright 1984 by Raymond F. Willis t; ACKNOWLEDGEMENTS The research for this dissertation was funded by the Organization of American States, University of Florida, and Wentworth Foundation. I would first like to thank four individuals whose support and guidance made possible the accomplishment of successful, large-scale archeological research in Haiti: Albert Mangones, director of Haiti's Institute de Sauvegarde du Patrimoine National (ISPAN) ; Ragnar Arnesen, director of Haiti's Organization of American States (OAS) delegation; Dr. William Hodges, director of the Hopital le Bon Samaritain at Limbe , Haiti; and, Paul Hodges, a good friend and the best site manager and most competent field photographer I will ever have the pleasure to work with. Without the guidance of these four men I could not have come near to accomplishing my goals; all four have the deepest concern for the welfare and upward progression of the Haitian people. I can only hope that this dissertation will illustrate that the support and trust they gave me were not wasted. Many individuals at the University of Florida aided me and supported this project over the past six years. First is my original committee chairman (now retired) Dr. Charles H. Fairbanks, Distinguished Service iii . Professor m Anthropology. Dr. Fairbanks was the original principal investigator and prime mover for the initiation of the Puerto Real project.
    [Show full text]
  • Sharks in the Seas Around Us: How the Sea Around Us Project Is Working to Shape Our Collective Understanding of Global Shark Fisheries
    Sharks in the seas around us: How the Sea Around Us Project is working to shape our collective understanding of global shark fisheries Leah Biery1*, Maria Lourdes D. Palomares1, Lyne Morissette2, William Cheung1, Reg Watson1, Sarah Harper1, Jennifer Jacquet1, Dirk Zeller1, Daniel Pauly1 1Sea Around Us Project, Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada 2UNESCO Chair in Integrated Analysis of Marine Systems. Université du Québec à Rimouski, Institut des sciences de la mer; 310, Allée des Ursulines, C.P. 3300, Rimouski, QC, G5L 3A1, Canada Report prepared for The Pew Charitable Trusts by the Sea Around Us project December 9, 2011 *Corresponding author: [email protected] Sharks in the seas around us Table of Contents FOREWORD........................................................................................................................................ 3 EXECUTIVE SUMMARY ................................................................................................................. 5 INTRODUCTION ............................................................................................................................... 7 SHARK BIODIVERSITY IS THREATENED ............................................................................. 10 SHARK-RELATED LEGISLATION ............................................................................................. 13 SHARK FIN TO BODY WEIGHT RATIOS ................................................................................ 14
    [Show full text]
  • Fish Assemblages of Caribbean Coral Reefs: Effects of Overfishing on Coral Communities Under Climate Change
    FISH ASSEMBLAGES OF CARIBBEAN CORAL REEFS: EFFECTS OF OVERFISHING ON CORAL COMMUNITIES UNDER CLIMATE CHANGE Abel Valdivia-Acosta A Dissertation Submitted to the Faculty of University of North Carolina at Chapel Hill In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Sciences in the Department of Biology, College of Art and Sciences. Chapel Hill 2014 Approved by: John Bruno Charles Peterson Allen Hurlbert Julia Baum Craig Layman © 2014 Abel Valdivia-Acosta ALL RIGHTS RESERVED ii ABSTRACT Abel Valdivia-Acosta: Fish assemblages of Caribbean coral reefs: Effects of overfishing on coral communities under climate change (Under the direction of John Bruno) Coral reefs are threatened worldwide due to local stressors such as overfishing, pollution, and diseases outbreaks, as well as global impacts such as ocean warming. The persistence of this ecosystem will depend, in part, on addressing local impacts since humanity is failing to control climate change. However, we need a better understanding of how protection from local stressors decreases the susceptibility of reef corals to the effects of climate change across large-spatial scales. My dissertation research evaluates the effects of overfishing on coral reefs under local and global impacts to determine changes in ecological processes across geographical scales. First, as large predatory reef fishes have drastically declined due to fishing, I reconstructed natural baselines of predatory reef fish biomass in the absence of human activities accounting for environmental variability across Caribbean reefs. I found that baselines were variable and site specific; but that contemporary predatory fish biomass was 80-95% lower than the potential carrying capacity of most reef areas, even within marine reserves.
    [Show full text]
  • Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U
    Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Jorge R. García Sais SEDAR26-RD-02 FINAL REPORT Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Submitted to the: Caribbean Fishery Management Council San Juan, Puerto Rico By: Dr. Jorge R. García Sais dba Reef Surveys P. O. Box 3015;Lajas, P. R. 00667 [email protected] December, 2005 i Table of Contents Page I. Executive Summary 1 II. Introduction 4 III. Study Objectives 7 IV. Methods 8 A. Recuperation of Historical Data 8 B. Atlas map of deep reefs of PR and the USVI 11 C. Field Study at Isla Desecheo, PR 12 1. Sessile-Benthic Communities 12 2. Fishes and Motile Megabenthic Invertebrates 13 3. Statistical Analyses 15 V. Results and Discussion 15 A. Literature Review 15 1. Historical Overview 15 2. Recent Investigations 22 B. Geographical Distribution and Physical Characteristics 36 of Deep Reef Systems of Puerto Rico and the U. S. Virgin Islands C. Taxonomic Characterization of Sessile-Benthic 49 Communities Associated With Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Benthic Algae 49 2. Sponges (Phylum Porifera) 53 3. Corals (Phylum Cnidaria: Scleractinia 57 and Antipatharia) 4. Gorgonians (Sub-Class Octocorallia 65 D. Taxonomic Characterization of Sessile-Benthic Communities 68 Associated with Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Echinoderms 68 2. Decapod Crustaceans 72 3. Mollusks 78 E.
    [Show full text]
  • Elasmobranchs in the Dutch Caribbean: Current Population Status, Fisheries, and Conservation
    Elasmobranchs in the Dutch Caribbean: Current Population Status, Fisheries, and Conservation El Estado de Elasmobranquios y Medidas de la Pesca y Conservación en el Caribe Holandés Le Statut des Élasmobranches et Les Mesures de Peche et Conservation dans les AntillesNéerlandaises I.J.M. VAN BEEK*, A.O. DEBROT, and M. DE GRAAF IMARES, Wageningen University Research, P.O. Box 57, 1780 AB, Den Helder, The Netherlands. *[email protected]. ABSTRACT In the Dutch Caribbean EEZ, at least 27 elasmobranch species have been documented. Of these, nine are listed as “critically endangered” and eight as “near threatened” by the IUCN. Elasmobranchs are not a target fishery in the Dutch Caribbean, but do occur as bycatch in artisanal fisheries. Sharks are considered nuisance species by fishermen. Most sharks caught are not discarded, but consumed locally, used as bait, or (reportedly) killed and discarded at sea on the two islands where landing of sharks is illegal (Bonaire and St. Maarten). Based on recent data, published sport diver accounts, and anecdotal accounts, it is clear that shark populations in most areas of the Dutch Caribbean have been strongly depleted in the last half century. Two of the six islands have implemented regulation to protect sharks due to their ecological importance and economic value. Two other islands have implemented fish- and fisheries monitoring programmes. The fisheries monitoring includes port sampling with low numbers of shark landings, and on-board sampling with bycatch of sharks on each fishing trip. The fish monitoring has introduced the use of stereo-Baited Remote Underwater Video, a new method for long-term monitoring of fish species composition and relative abundance of sharks.
    [Show full text]
  • Cayman Islands Based on These Data and Survey Data from the Reef Environmental Education Foundation Database
    STATUS OF CORAL REEFS OF LITTLE CAYMAN AND GRAND CAYMAN, BRITISH WEST INDIES, IN 1999 (PART 2: FISHES) BY CHRISTY V. PATTENGILL-SEMMENS,1 and BRICE X. SEMMENS2 ABSTRACT The fish assemblages at 33 sites around the islands of Grand Cayman and Little Cayman were assessed in June 1999 for the Atlantic and Gulf Rapid Reef Assessment initiative using belt transects and Roving Diver Technique surveys. A comprehensive species list, with 58 new records, was compiled for the Cayman Islands based on these data and survey data from the Reef Environmental Education Foundation database. In general, the reefs on Little Cayman appeared to support larger and more individual fishes than those of Grand Cayman. A multidimensional scaling ordination plot showed no clear island pattern but did reveal that the windward or leeward location of each site was an important factor affecting fish community composition. All but two sites followed a pattern of distinct windward and leeward clusters, and these clusters also correlated to macroalgal abundance. The relationship between macroalgal abundance and herbivore density was analyzed and significant correlations were found with surgeonfishes (Acanthuridae) and parrotfishes (Scaridae) using multiple regression. INTRODUCTION Fishes have the potential to provide sensitive indices of reef health. Certain predatory fish species dominate the top of coral reef food webs, hence their density reflects a vast number of human and natural disturbances from habitat alteration to direct exploitation (Ferreira et al., 1998). Similarly, the presence and abundance of herbivorous fishes affect algal composition and cover (Ogden and Lobel, 1978). In response to concerns about the widespread deterioration of reef condition in the Caribbean basin, the Atlantic and Gulf Rapid Reef Assessment (AGRRA) initiative was designed to provide a regional perspective using a standardized methodology.
    [Show full text]
  • Historical Extent of Decline
    NMFS / Interagency Working Group Evaluation of CITES Criteria and Guidelines Pamela M. Mace (Chair) Andy W. Bruckner Nancy K. Daves John D. Field John R. Hunter Nancy E. Kohler Robert G. Kope Susan S. Lieberman Margaret W. Miller James W. Orr Robert S. Otto Tim D. Smith Nancy B. Thompson with contributions from Julie Lyke and Arthur G. Blundell U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS-F/SPO-58 October 2002 -1- NMFS / Interagency Working Group Evaluation of CITES Criteria and Guidelines Pamela M. Mace (Chair) Andy W. Bruckner Nancy K. Daves John D. Field John R. Hunter Nancy E. Kohler Robert G. Kope Susan S. Lieberman Margaret W. Miller James W. Orr Robert S. Otto Tim D. Smith Nancy B. Thompson with contributions from Julie Lyke and Arthur G. Blundell NOAA Technical Memorandum NMFS-F/SPO-58 October 2002 U.S. Department of Commerce Donald L. Evans, Secretary National Oceanic and Atmospheric Administration Vice Admiral Conrad C. Lautenbacher, Jr., USN (Ret.) Under Secretary for Oceans and Atmosphere National Marine Fisheries Service William T. Hogarth, Assistant Administrator for Fisheries -2- This document is the result of several meetings and teleconferences of the NMFS / Interagency Working Group to evaluate CITES criteria and guidelines, held over a two-year period beginning in October 2000. The purposes were to evaluate existing CITES criteria and guidelines, to suggest improvements, and to evaluate the pro- posed improvements for a variety of marine and other taxa. Suggested citation: Mace, P.M., A.W. Bruckner, N.K.
    [Show full text]
  • The Conservation Status of North American, Central American, and Caribbean Chondrichthyans the Conservation Status Of
    The Conservation Status of North American, Central American, and Caribbean Chondrichthyans The Conservation Status of Edited by The Conservation Status of North American, Central and Caribbean Chondrichthyans North American, Central American, Peter M. Kyne, John K. Carlson, David A. Ebert, Sonja V. Fordham, Joseph J. Bizzarro, Rachel T. Graham, David W. Kulka, Emily E. Tewes, Lucy R. Harrison and Nicholas K. Dulvy L.R. Harrison and N.K. Dulvy E.E. Tewes, Kulka, D.W. Graham, R.T. Bizzarro, J.J. Fordham, Ebert, S.V. Carlson, D.A. J.K. Kyne, P.M. Edited by and Caribbean Chondrichthyans Executive Summary This report from the IUCN Shark Specialist Group includes the first compilation of conservation status assessments for the 282 chondrichthyan species (sharks, rays, and chimaeras) recorded from North American, Central American, and Caribbean waters. The status and needs of those species assessed against the IUCN Red List of Threatened Species criteria as threatened (Critically Endangered, Endangered, and Vulnerable) are highlighted. An overview of regional issues and a discussion of current and future management measures are also presented. A primary aim of the report is to inform the development of chondrichthyan research, conservation, and management priorities for the North American, Central American, and Caribbean region. Results show that 13.5% of chondrichthyans occurring in the region qualify for one of the three threatened categories. These species face an extremely high risk of extinction in the wild (Critically Endangered; 1.4%), a very high risk of extinction in the wild (Endangered; 1.8%), or a high risk of extinction in the wild (Vulnerable; 10.3%).
    [Show full text]
  • Download The
    ISSN 1198-6727 Fisheries Centre Research Reports 2004 Volume 12 Number 7 WEST AFRICAN MARINE ECOSYSTEMS: MODELS AND FISHERIES IMPACTS Fisheries Centre, University of British Columbia, Canada West African Marine Ecosystems: models and fisheries impacts edited by Maria Lourdes D. Palomares and Daniel Pauly Fisheries Centre Research Reports 12(7) 221 pages © published 2004 by The Fisheries Centre, University of British Columbia 2259 Lower Mall Vancouver, B.C., Canada, V6T 1Z4 ISSN 1198-6727 FISHERIES CENTRE RESEARCH REPORTS 12(7) 2004 WEST AFRICAN MARINE ECOSYSTEMS: MODELS AND FISHERIES IMPACTS edited by MARIA LOURDES D. PALOMARES AND DANIEL PAULY CONTENTS Page DIRECTOR’S FOREWORD ........................................................................................................................ 1 INTRODUCTION........................................................................................................................................ 2 Ecosystem-based fisheries management: the role of the SIAP project Daniel Pauly.................................................................................................................................. 2 WEST AFRICAN ECOSYSTEMS................................................................................................................. 4 Modèle écotrophique du Banc d’Arguin (Mauritanie) dans la période 1988 à 1998 Mahfoudh Ould Taleb Ould Sidi and Diop Mika Samba............................................................. 4 Modèle écotrophique de la ZEE mauritanienne: comparaison
    [Show full text]
  • Stegostoma Fasciatum (Hermann, 1783) Fig
    click for previous page 186 FAO Species Catalogue for Fishery Purposes No. 1 Stegostoma fasciatum (Hermann, 1783) Fig. 156 Squalus fasciatus Hermann, 1783, Tab. Affin.: 302. Based on Squalus varius Seba, 1758. A senior homonym of Squalus fasciatus Bonnaterre, 1788 = Poroderma africanum (Gmelin, 1788). No types according to Eschmeyer (1998, Cat. Fish.: CD-ROM). Also, Squalus fasciatus Bloch, 1785, Naturg. Ausl. Fische, 1: 19, pl. 113. Holotype: Zoologisches Museum, Museum für Naturkunde der Humboldt-Universität, Berlin, ZMB-4449, 355 mm total length male, Indian Ocean from Tranquebar, according to Paepke and Schmidt (1988, Mitt. Zool. Mus. Berlin, 64(1): 163). Synonyms: Squalus varius Seba, 1758: 105, pl. 34, fig. 1. No type locality or specimens. Name not available because Seba’s usage of nomenclature was not consistently binomial (see remarks above). Squalus tigrinus Pennant, 1769: 24; (nomen nudum?). Squalus tygrinus Bonnaterre, 1788: 8, pl. 8, fig. 23. Type material uncertain. Type locality: “La mer des Indes”. Squalus tigrinus Gmelin, in Linnaeus and Gmelin, 1788: 1493. Type material uncertain. Type locality: “Oceano indico”. Squalus varius Seba, 1758 included in synonymy. This species was probably based on juveniles with a striped colour pattern. Squalus longicaudatus Gmelin, in Linnaeus and Gmelin, 1788: 1496. Type material uncertain, no locality given. Squalus varius Seba, 1758 included in synonymy. This was not strongly distinguished from S. tigrinus, but may have been based on post-juveniles with a spotted colour pattern. Scyllia quinquecornuatum van Hasselt, 1823: 15. Reference to Squalus varius Seba, 1758, and presumably a replacement name for it. No types listed in Eschmeyer (1998: CD-ROM).
    [Show full text]
  • DNA-Based Identification Reveals Illegal Trade of Threatened Shark
    www.nature.com/scientificreports OPEN DNA-based identifcation reveals illegal trade of threatened shark species in a global elasmobranch Received: 3 October 2017 Accepted: 1 February 2018 conservation hotspot Published: xx xx xxxx Leonardo Manir Feitosa1, Ana Paula Barbosa Martins2,3, Tommaso Giarrizzo4, Wagner Macedo5, Iann Leonardo Monteiro6, Romário Gemaque6, Jorge Luiz Silva Nunes7, Fernanda Gomes8, Horácio Schneider8, Iracilda Sampaio8, Rosália Souza9, João Bráullio Sales10,11, Luís Fernando Rodrigues-Filho12, Lígia Tchaicka5 & Luís Fernando Carvalho-Costa13 Here, we report trading of endangered shark species in a world hotspot for elasmobranch conservation in Brazil. Data on shark fsheries are scarce in Brazil, although the northern and northeastern regions have the highest indices of shark bycatch. Harvest is made primarily with processed carcasses lacking head and fns, which hampers reliable species identifcation and law enforcement on illegal catches. We used partial sequences of two mitochondrial genes (COI and/or NADH2) to identify 17 shark species from 427 samples being harvested and marketed on the northern coast of Brazil. Nine species (53%) are listed under some extinction threat category according to Brazilian law and international authorities (IUCN – International Union for Conservation of Nature; CITES – Convention on International Trade of Endangered Species of Wild Fauna and Flora). The number increases to 13 (76%) if we also consider the Near Threatened category. Hammerhead sharks are under threat worldwide, and composed 18.7% of samples, with Sphyrna mokarran being the fourth most common species among samples. As illegal trade of threatened shark species is a worldwide conservation problem, molecular identifcation of processed meat or specimens lacking diagnostic body parts is a highly efective tool for species identifcation and law enforcement.
    [Show full text]