A Baited Remote Underwater Video System (BRUVS)

Total Page:16

File Type:pdf, Size:1020Kb

A Baited Remote Underwater Video System (BRUVS) Environ Biol Fish https://doi.org/10.1007/s10641-020-01004-4 A baited remote underwater video system (BRUVS) assessment of elasmobranch diversity and abundance on the eastern Caicos Bank (Turks and Caicos Islands); an environment in transition Stephan Bruns & Aaron C. Henderson Received: 26 January 2020 /Accepted: 5 July 2020 # Springer Nature B.V. 2020 Abstract The present study was undertaken to assess efforts in the Turks and Caicos Islands should continue the diversity and abundance of elasmobranch fishes in to focus on coral reef areas, less dramatic environments coral reef and sand flat environments on the eastern such as sand flats should not be ignored. Caicos Bank, with a view to informing marine spatial planning as the island of South Caicos and its environs Keywords Caribbean region . Chondrichthyes . transition to a tourism-based economy. Using baited Biodiversity . BRUVS . Coral reef remote underwater video systems (BRUVS), the nurse shark Ginglymostoma cirratum, Caribbean reef shark Carcharhinus perezi, spotted eagle ray Aetobatus Introduction narinari, southern stingray Hypanus americanus, lemon shark Negaprion brevirostris, tiger shark Galeocerdo Populations of elasmobranch fishes (sharks, skates, cuvier, blacknose shark Carcharhinus acronotus,and rays) have undergone dramatic declines on a global great hammerhead shark Sphyrna mokarran were ob- scale in recent decades (Dulvy et al. 2014). While in- served to use these waters, with G. cirratum and dustrial longline fleets are responsible for the largest C. perezi being particularly abundant. Species diversity component of elasmobranch landings worldwide and overall abundance was greater in the reef environ- (Worm et al. 2013), landings from artisanal fishers can ment than on the sand flats, but G. cirratum was equally also be considerable, especially in developing countries abundant in both environments. Furthermore, even reef- (Walker 1998). However, although the impacts of fish- associated species such as C. perezi were occasionally ing on elasmobranch stocks, both targeted and non- encountered on the flats a considerable distance from the targeted, remain a major concern, habitat loss/ reef. This indicates that although marine conservation degradation and climate change also pose notable S. Bruns : A. C. Henderson (*) S. Bruns The School for Field Studies, Center for Marine Resource Studies, Marine and Freshwater Research Centre, Galway-Mayo Institute South Caicos, Turks and Caicos Islands of Technology, Galway, Ireland e-mail: [email protected] A. C. Henderson Biology Department, UAE University, Al Ain, United Arab Emirates Environ Biol Fish threats. This is particularly true of species that use Brooks et al. 2011;Bondetal.2012;Goetzeand shallow, coastal environments (Knip et al. 2010). Fullwood 2013;Espinozaetal.2014). Historically, information on the biology and ecology of The present study was undertaken to assess the elas- elasmobranch species has typically been gleaned from a mobranch fauna of the eastern Caicos Bank (Turks and combination of fishery-dependent and fishery-independent Caicos Islands) in the Tropical Northwestern Atlantic sources. Their potentially negative impacts notwithstand- (Fig. 1), using a BRUVS approach. Although this region ing, commercial fisheries have provided researchers with of the Caicos Bank supports the bulk of the country’s access to the large numbers of specimens required for commercial fishing activity, most fishing effort is con- fundamental life-history assessments (age and growth char- cerned with spiny lobster Panulirus argus and queen acteristics, size at maturity, annual reproductive cycle etc.) conch Lobatus gigas, with finfish forming a relatively (e.g. Henderson et al. 2002), as well as providing important minor component of the landings (Vaughan 2004). information on species’ occurrences and distributions (e.g. While sharks are opportunistically captured by fishers Henderson et al. 2005). Fishery-independent approaches on occasion (A. Henderson, pers. obs.), there is current- can, and have been, employed in regions were relevant ly no directed fishery for any elasmobranch species. commercial fishing activities do not exist, or when the live However, South Caicos, the island at the epicentre of release of study animals is desirable - for conservation the fishing industry is currently undergoing a transition reasons, or because the research question at hand requires toward a tourism economy (Zuidema et al. 2011), with it (e.g. Morrissey and Gruber 1993). the recent completion of the island’s first major hotel Unfortunately, even when the utmost care is taken, the and the transfer of most coastal public land to a private, capture, work-up and release of live animals tends to be at overseas developer. This will likely lead to a dramatic least somewhat invasive (e.g. Whitney et al. 2017). In the shift in the island’s demographics, coastal development, case of sharks and other elasmobranchs, the most common and increased pressure on marine resources (Davenport capture techniques are with baited hooks or demersal trawl. and Davenport 2006). Both approaches are known to induce capture stress (Dodd Relatively little is known about the elasmobranch and Duggan 1982; Skomal 2007; Brooks et al. 2012), and fauna of the Caicos Bank or the roles these species play hooks necessarily puncture the skin causing additional in the country’s coastal ecosystems. Previous elasmo- localised tissue trauma. Therefore, it is unsurprising that branch studies have investigated nearshore habitat post-release mortality has been highlighted as a matter of utilisation by juvenile lemon sharks Negaprion considerable concern (Heberer et al. 2010). Nevertheless, brevirostris (Henderson et al. 2010; Henderson et al. the physical capture of study animals is currently unavoid- 2016), but information on the presence of other species able when the collection of certain tissue samples is re- beyond the nearshore environment is lacking. Given the quired (e.g. blood), or when particular types of tags or other potential disturbance to local elasmobranch populations equipment must be attached to the study animal (see through increased fishing activity, water-based recrea- Hammerschlag et al. 2011). tion, and coastal development associated with the tran- Baited Remote Underwater Video Systems sition to a tourism economy (Juhel et al. 2018), the (BRUVS) offer an alternative, non-invasive and non- present study was established to assess elasmobranch destructive, approach to data collection in cases where diversity and abundance in areas that are likely to see specimen capture is not absolutely necessary (Cappo dramatic increases in human activity in the coming et al. 2003; Cappo et al. 2004; Santana-Garcon et al. years. The utilisation of BRUVS to address this goal 2014; Whitmarsh et al. 2017), e.g. when the research is has the added advantages of (a) providing a baseline primarily concerned with species occurrence and rela- visual record of the study sites that could be utilised in tive abundance (Espinoza et al. 2014). These systems future research, and (b) allowing species’ behaviours to use bait to attract nearby animals to a video camera, the be observed. footage from which is analysed post-deployment. This design is well suited to elasmobranch studies given the mobile, predatory nature of this taxon, and their highly- Materials and methods developed sense of smell. Indeed, BRUVS have been successfully utilised in a number of elasmobranch stud- This study was undertaken adjacent to South Caicos in ies, particularly in shallow, tropical environments (e.g. the Turks and Caicos Islands. The waters surrounding Environ Biol Fish Fig. 1 Elasmobranch species encounters on BRUVS deployed off South Caicos. The sampling site outlined on the left is referred to herein as ‘the Flats’ while the sampling site outlined on the right is ‘the Reef’ this island encompass a variety of environments includ- Park (ACLSNP), a circa 4 km2 Marine Protected Area ing coral reef, mangrove and seagrass ecosystems, as (MPA) in which all fishing activity is currently well sand flats and open ocean. The nearshore environ- prohibited, but which is open to boating and water- ment (mangrove forests, seagrass meadows, shallow based recreation. This MPA contains a number of dive sand flats) has been surveyed for elasmobranchs previ- sites with permanent moorings, which currently see only ously (Henderson et al. 2010; Henderson et al. 2016), so periodic use; however, as tourism on the island in- the present study focused on coral reef and deeper sand creases, it seems likely that boat traffic and diving flat environments. The study area was divided into two activity will increase dramatically throughout the sampling sites, namely a section of continuous fringing MPA. It is also possible that the boundary of the reef (‘the Reef’) to the south of the island, and a sand flat MPA, or its status, could be changed to facilitate eco- site (‘the Flats’) to the southwest (Fig. 1). nomic interests, as has already happened with the nearby The Reef is characterised by a variety of hexacorals, Bell Sound Nature Reserve. octocorals and sponges, interspersed with sandy patches The Flats are characterised by a predominantly sandy (Fig. 2a), ranging from a depth of approximately 2 m substrate with sparse seagrass, macroalgae and close to shore down to approximately 40 m at the drop- octocorals (Fig. 2b), and a depth range of approximately off. The boundary of this sampling site mostly follows 2–8
Recommended publications
  • Florida, Caribbean, Bahamas by Paul Humann and Ned Deloach
    Changes in the 4th Edition of Reef Fish Identification - Florida, Caribbean, Bahamas by Paul Humann and Ned DeLoach Prepared by Paul Humann for members of Reef Environmental Education Foundation (REEF) This document summarizes the changes, updates, and new species presented in the 4th edition of Reef Fish Identification- Florida, Caribbean, and Bahamas by Paul Humann and Ned DeLoach (1st printing, released June 2014). This document was created as reference for REEF volunteer surveyors. Chapter 1 – no significant changes Chapter 2 - Silvery pg 64-5t – Redfin Needlefish – new species pg 68-9m – Ladyfish – new species pg 72-3m – Harvestfish – new species pg 72-3b – Longspine Porgy – new species pg74-5 – Silver Porgy & Spottail Pinfish – 2 additional pictures of young and more information on distinguishing between the two species pg 84-5b – Bigeye Mojarra – new species pgs 90-1 & 92-3t – Chubs new species – there are now 4 species of chub in the book – Topsail Chub and Brassy Chub are easily distinguishable. Brassy Chub is the updated ID of Yellow Chub. Bermuda Chub and Gray Chub are lumped due to difficulties in underwater ID (Gray Chub, K biggibus, replaced Yellow Chub in this lumping). Chapter 3 – Grunts & Snappers pg 106-7b and 108-9t – Boga and Bonnetmouth are both now in the Grunt Family (Haemulidae), the Bonnetmouth Family, Inermiidae, is no longer valid. Chapter 4 – Damselfish & Hamlets pgs 132-3 & 134-5 – Cocoa Damselfish and Beaugregory, new pictures and tips for distinguishing between the species pg 142m – Yellowtail Reeffish - new picture of older adult brown variation has been added, which looks of strikingly different from the younger adult pg 147-8b – Florida Barred Hamlet – new species (distinctive from regular Barred Hamlet) pg 153-4t – Tan Hamlet – official species has now been described (Hypoplectrus randallorum), differs from previously included “Tan Hypoplectrus sp.”.
    [Show full text]
  • 1 a Petition to List the Oceanic Whitetip Shark
    A Petition to List the Oceanic Whitetip Shark (Carcharhinus longimanus) as an Endangered, or Alternatively as a Threatened, Species Pursuant to the Endangered Species Act and for the Concurrent Designation of Critical Habitat Oceanic whitetip shark (used with permission from Andy Murch/Elasmodiver.com). Submitted to the U.S. Secretary of Commerce acting through the National Oceanic and Atmospheric Administration and the National Marine Fisheries Service September 21, 2015 By: Defenders of Wildlife1 535 16th Street, Suite 310 Denver, CO 80202 Phone: (720) 943-0471 (720) 942-0457 [email protected] [email protected] 1 Defenders of Wildlife would like to thank Courtney McVean, a law student at the University of Denver, Sturm college of Law, for her substantial research and work preparing this Petition. 1 TABLE OF CONTENTS I. INTRODUCTION ............................................................................................................................... 4 II. GOVERNING PROVISIONS OF THE ENDANGERED SPECIES ACT ............................................. 5 A. Species and Distinct Population Segments ....................................................................... 5 B. Significant Portion of the Species’ Range ......................................................................... 6 C. Listing Factors ....................................................................................................................... 7 D. 90-Day and 12-Month Findings ........................................................................................
    [Show full text]
  • Empire and Architecture at 16Th-Century Puerto Real, Hispaniola: an Archeological Perspective
    EMPIRE AND ARCHITECTURE AT 16th -CENTURY PUERTO REAL, HISPANIOLA: AN ARCHEOLOGICAL PERSPECTIVE BY RAYMOND F. WILLIS DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1984 Copyright 1984 by Raymond F. Willis t; ACKNOWLEDGEMENTS The research for this dissertation was funded by the Organization of American States, University of Florida, and Wentworth Foundation. I would first like to thank four individuals whose support and guidance made possible the accomplishment of successful, large-scale archeological research in Haiti: Albert Mangones, director of Haiti's Institute de Sauvegarde du Patrimoine National (ISPAN) ; Ragnar Arnesen, director of Haiti's Organization of American States (OAS) delegation; Dr. William Hodges, director of the Hopital le Bon Samaritain at Limbe , Haiti; and, Paul Hodges, a good friend and the best site manager and most competent field photographer I will ever have the pleasure to work with. Without the guidance of these four men I could not have come near to accomplishing my goals; all four have the deepest concern for the welfare and upward progression of the Haitian people. I can only hope that this dissertation will illustrate that the support and trust they gave me were not wasted. Many individuals at the University of Florida aided me and supported this project over the past six years. First is my original committee chairman (now retired) Dr. Charles H. Fairbanks, Distinguished Service iii . Professor m Anthropology. Dr. Fairbanks was the original principal investigator and prime mover for the initiation of the Puerto Real project.
    [Show full text]
  • Insight Into Shark Magnetic Field Perception from Empirical
    www.nature.com/scientificreports OPEN Insight into shark magnetic feld perception from empirical observations Received: 13 February 2017 James M. Anderson 1,2, Tamrynn M. Clegg1, Luisa V. M. V. Q. Véras3 & Kim N. Holland1,4 Accepted: 24 August 2017 Elasmobranch fshes are among a broad range of taxa believed to gain positional information and Published: xx xx xxxx navigate using the earth’s magnetic feld, yet in sharks, much remains uncertain regarding the sensory receptors and pathways involved, or the exact nature of perceived stimuli. Captive sandbar sharks, Carcharhinus plumbeus were conditioned to respond to presentation of a magnetic stimulus by seeking out a target in anticipation of reward (food). Sharks in the study demonstrated strong responses to magnetic stimuli, making signifcantly more approaches to the target (p = < 0.01) during stimulus activation (S+) than before or after activation (S−). Sharks exposed to reversible magnetosensory impairment were less capable of discriminating changes to the local magnetic feld, with no diference seen in approaches to the target under the S+ and S− conditions (p = 0.375). We provide quantifed detection and discrimination thresholds of magnetic stimuli presented, and quantify associated transient electrical artefacts. We show that the likelihood of such artefacts serving as the stimulus for observed behavioural responses was low. These impairment experiments support hypotheses that magnetic feld perception in sharks is not solely performed via the electrosensory system, and that putative magnetoreceptor structures may be located in the naso-olfactory capsules of sharks. Many animals from several taxa are able to perceive the earth’s magnetic feld and discriminate changes in that feld1.
    [Show full text]
  • Species Diversity of Rhinebothrium Linton, 1890 (Eucestoda
    Zootaxa 4300 (1): 421–437 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4300.3.5 http://zoobank.org/urn:lsid:zoobank.org:pub:EE5688F1-3235-486C-B981-CBABE462E8A2 Species diversity of Rhinebothrium Linton, 1890 (Eucestoda: Rhinebothriidea) from Styracura (Myliobatiformes: Potamotrygonidae), including the description of a new species BRUNA TREVISAN1,2 & FERNANDO P. L. MARQUES1 1Laboratório de Helmintologia Evolutiva, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 101, travessa 14, Cidade Universitária, São Paulo, SP, 05508-090 2Corresponding author. E-mail: [email protected] Abstract The present study contributes to the knowledge of the cestode fauna of species of Styracura de Carvalho, Loboda & da Silva, which is the putative sister taxon of freshwater potamotrygonids—a unique group of batoids restricted to Neotro- pical freshwater systems. We document species of Rhinebothrium Linton, 1890 as a result of the examination of newly collected specimens of Styracura from five different localities representing the eastern Pacific Ocean and the Caribbean Sea. Overall, we examined 33 spiral intestines, 11 from the eastern Pacific species Styracura pacifica (Beebe & Tee-Van) and 22 from the Caribbean species S. schmardae (Werner). However, only samples from the Caribbean were infected with members of Rhinebothrium. Rhinebothrium tetralobatum Brooks, 1977, originally described from S. schmardae—as Hi- mantura schmardae (Werner)—off the Caribbean coast of Colombia based on six specimens is redescribed. This rede- scription provides the first data on the microthriches pattern, more details of internal anatomy (i.e., inclusion of histological sections) and expands the ranges for the counts and measurements of several features.
    [Show full text]
  • An Annotated Checklist of the Chondrichthyan Fishes Inhabiting the Northern Gulf of Mexico Part 1: Batoidea
    Zootaxa 4803 (2): 281–315 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4803.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:325DB7EF-94F7-4726-BC18-7B074D3CB886 An annotated checklist of the chondrichthyan fishes inhabiting the northern Gulf of Mexico Part 1: Batoidea CHRISTIAN M. JONES1,*, WILLIAM B. DRIGGERS III1,4, KRISTIN M. HANNAN2, ERIC R. HOFFMAYER1,5, LISA M. JONES1,6 & SANDRA J. RAREDON3 1National Marine Fisheries Service, Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Mississippi, U.S.A. 2Riverside Technologies Inc., Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Missis- sippi, U.S.A. [email protected]; https://orcid.org/0000-0002-2687-3331 3Smithsonian Institution, Division of Fishes, Museum Support Center, 4210 Silver Hill Road, Suitland, Maryland, U.S.A. [email protected]; https://orcid.org/0000-0002-8295-6000 4 [email protected]; https://orcid.org/0000-0001-8577-968X 5 [email protected]; https://orcid.org/0000-0001-5297-9546 6 [email protected]; https://orcid.org/0000-0003-2228-7156 *Corresponding author. [email protected]; https://orcid.org/0000-0001-5093-1127 Abstract Herein we consolidate the information available concerning the biodiversity of batoid fishes in the northern Gulf of Mexico, including nearly 70 years of survey data collected by the National Marine Fisheries Service, Mississippi Laboratories and their predecessors. We document 41 species proposed to occur in the northern Gulf of Mexico.
    [Show full text]
  • Sharks and Rays
    SHARKS AND RAYS Photo by: © Jim Abernethy Transboundary Species - Content ... 31 32 33 34 35 ... Overview As stated in the previous section, the establishment of the Yarari fishing for sharks in the Netherlands and places new pressure on Marine Mammal and Shark Sanctuary was an important step fishermen to implement new techniques and updated fishing gear in protecting the shark and ray species of the Dutch Caribbean. to avoid accidentally catching sharks and rays as bycatch. Overall, there is a significant lack of information concerning these vital species within Dutch Caribbean waters. Fortunately, this There are several different international treaties and legisla- trend is changing and in the last few years there has been a push tion which offer protection to these species. This includes the to increase research, filling in the historic knowledge gap. Sharks Convention on International Trade in Endangered Species (CITES), and rays are difficult species to protect as they tend to have long the Specially Protected Areas and Wildlife (SPAW) protocol and reproduction cycles, varying between 3 and 30 years, small litters, the Convention on Migratory Species (CMS). Scientists are just which means they do not recover quickly when overfished and can beginning to uncover the complexities of managing conservation travel over great distances which makes them difficult to track. efforts for these species, as they often have long migration routes which put them in danger if international waters are not managed Early in 2019, the Ministry of Agriculture, Nature and Food Quality and protected equally. (LNV) published a strategy document to manage and protect sharks and rays within waters the Netherlands influences (this There are more than thirty different species of sharks and includes the North Sea, Dutch Caribbean and other international rays which are known to inhabit the waters around the Dutch waters).
    [Show full text]
  • Sharks in the Seas Around Us: How the Sea Around Us Project Is Working to Shape Our Collective Understanding of Global Shark Fisheries
    Sharks in the seas around us: How the Sea Around Us Project is working to shape our collective understanding of global shark fisheries Leah Biery1*, Maria Lourdes D. Palomares1, Lyne Morissette2, William Cheung1, Reg Watson1, Sarah Harper1, Jennifer Jacquet1, Dirk Zeller1, Daniel Pauly1 1Sea Around Us Project, Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada 2UNESCO Chair in Integrated Analysis of Marine Systems. Université du Québec à Rimouski, Institut des sciences de la mer; 310, Allée des Ursulines, C.P. 3300, Rimouski, QC, G5L 3A1, Canada Report prepared for The Pew Charitable Trusts by the Sea Around Us project December 9, 2011 *Corresponding author: [email protected] Sharks in the seas around us Table of Contents FOREWORD........................................................................................................................................ 3 EXECUTIVE SUMMARY ................................................................................................................. 5 INTRODUCTION ............................................................................................................................... 7 SHARK BIODIVERSITY IS THREATENED ............................................................................. 10 SHARK-RELATED LEGISLATION ............................................................................................. 13 SHARK FIN TO BODY WEIGHT RATIOS ................................................................................ 14
    [Show full text]
  • Coelho Phd Lantern S
    UNIVERSIDADEdo ALGARVE FaculdadedeCiênciasdoMaredo Ambiente Biology,populationdynamics,managementandconservation ofdeepwaterlanternsharks,Etmopterusspinax and Etmopteruspusillus (Chondrichthyes:Etmopteridae)insouthernPortugal(northeastAtlantic). (DoutoramentoemCiênciaseTecnologiasdasPescas,especialidadedeBiologiaPesqueira) (ThesisforthedegreeinDoctorofPhilosophyinFisheriesSciencesandTechnologies,specialtyinFisheriesBiology) RUIPEDROANDRADECOELHO Faro (2007) UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS DO MAR E DO AMBIENTE Biology, population dynamics, management and conservation of deep water lantern sharks, Etmopterus spinax and Etmopterus pusillus (Chondrichthyes: Etmopteridae) in southern Portugal (northeast Atlantic). (Doutoramento em Ciências e Tecnologias das Pescas, especialidade de Biologia Pesqueira) (Thesis for the degree in Doctor of Philosophy in Fisheries Sciences and Technologies, specialty in Fisheries Biology) RUI PEDRO ANDRADE COELHO Orientador / Supervisor: Prof. Doutor Karim Erzini Júri / Jury: - Prof. Doutor José Pedro Andrade, Professor Catedrático da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve; - Prof. Doutor Karim Erzini, Professor Associado com Agregação da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve; - Prof. Doutor Leonel Paulo Sul de Serrano Gordo, Professor Auxiliar com Agregação da Faculdade de Ciências, Universidade de Lisboa; - Prof. Doutor Manuel Seixas Afonso Dias, Professor Auxiliar da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve;
    [Show full text]
  • NOAA NOS Technical Memorandum CCFHR 1
    Characterization of Navassa National Wildlife Refuge: A preliminary report for NF-06-05 (NOAA ship "Nancy Foster", April 18-30, 2006) Item Type monograph Authors Piniak, Gregory A.; Addison, Christine M.; Degan, Brian P.; Uhrin, Amy V.; Viehman, T. Shay Publisher NOAA/National Ocean Service/National Centers for Coastal Ocean Science Download date 24/09/2021 19:38:17 Link to Item http://hdl.handle.net/1834/19919 Characterization of Navassa National Wildlife Refuge: A preliminary report for NF-06-05 (NOAA ship Nancy Foster, April 18-30, 2006) NOAA Technical Memorandum NOS NCCOS #38 This report has been reviewed by the National Ocean Service of the National Oceanic and Atmospheric Administration (NOAA) and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States government. Citation for this Report Piniak G. A., C. M. Addison, B. P. Degan, A. V. Uhrin and T. S. Viehman. 2006. Characterization of Navassa National Wildlife Refuge: A preliminary report for NF-06- 05 (NOAA ship Nancy Foster, April 18-30, 2006). NOAA Technical Memorandum NOS NCCOS #38. 48 p. Characterization of Navassa National Wildlife Refuge: A preliminary report for NF-06-05 (NOAA ship Nancy Foster, April 18-30, 2006) Gregory A. Piniak Christine M. Addison Brian P. Degan Amy V. Uhrin T. Shay Viehman Center for Coastal Fisheries and Habitat Research NOAA/NOS/NCCOS 101 Pivers Island Road Beaufort, NC 28516 NOAA Technical Memorandum NOS NCCOS #38 September 2006 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Carlos M.
    [Show full text]
  • Fish Assemblages of Caribbean Coral Reefs: Effects of Overfishing on Coral Communities Under Climate Change
    FISH ASSEMBLAGES OF CARIBBEAN CORAL REEFS: EFFECTS OF OVERFISHING ON CORAL COMMUNITIES UNDER CLIMATE CHANGE Abel Valdivia-Acosta A Dissertation Submitted to the Faculty of University of North Carolina at Chapel Hill In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Sciences in the Department of Biology, College of Art and Sciences. Chapel Hill 2014 Approved by: John Bruno Charles Peterson Allen Hurlbert Julia Baum Craig Layman © 2014 Abel Valdivia-Acosta ALL RIGHTS RESERVED ii ABSTRACT Abel Valdivia-Acosta: Fish assemblages of Caribbean coral reefs: Effects of overfishing on coral communities under climate change (Under the direction of John Bruno) Coral reefs are threatened worldwide due to local stressors such as overfishing, pollution, and diseases outbreaks, as well as global impacts such as ocean warming. The persistence of this ecosystem will depend, in part, on addressing local impacts since humanity is failing to control climate change. However, we need a better understanding of how protection from local stressors decreases the susceptibility of reef corals to the effects of climate change across large-spatial scales. My dissertation research evaluates the effects of overfishing on coral reefs under local and global impacts to determine changes in ecological processes across geographical scales. First, as large predatory reef fishes have drastically declined due to fishing, I reconstructed natural baselines of predatory reef fish biomass in the absence of human activities accounting for environmental variability across Caribbean reefs. I found that baselines were variable and site specific; but that contemporary predatory fish biomass was 80-95% lower than the potential carrying capacity of most reef areas, even within marine reserves.
    [Show full text]
  • New York Talk and Speed Talk Abstracts
    Student Conference on Conservation Science - New York Talk and Speed Talk Abstracts October 9-12, 2012 SCCS-NY 2012 Talk Abstracts Rico Ancog University of the Philippines Los Baños, Los Baños, Laguna, Philippines Plant diversity and vulnerability analysis of philippine indigenous upland ecosystems This study provides an integrated vulnerability assessment of the traditional land-use systems of indigenous communities living at the lowland-to-upland environs of Mt. Halcon, a critical protected area in the island-province of Oriental Mindoro, Philippines. With the limited studies in Asia that analyze potential impacts of climate change on marginal sector, this study explores the utility of Principal Component Analysis and canonical correspondence analysis in understanding the socio-economic and biophysical determinants of vulnerability—defined as a function of exposure, sensitivity and adaptive capacity, while also aiming at providing empirical bases for specific policy options for adaptation. It is shown that degree of vulnerability is differentiated between and among the commonly perceived homogenous indigenous communities. With the projected increase of weather extremes such as typhoons and droughts in the coming years, the value of traditional peoples’ vast yet untapped indigenous knowledge systems (IKS) is indispensible in explaining their seemingly inherent high adaptive capacity. Central to this are the utilization of plant resources derived from their maintained agro-ecosystems totaling to about 130 species of about 1,255 individuals belonging to a total of 44 families and are providing various services such as food, medicine, infrastructure, weaving and adornments purposes. In contrast to implementing purely externally determined adaptation programs, there is a need to capitalize on indigenous peoples’ knowledge systems particularly on plant resources to reduce their vulnerability to weather extremes and other hazards related to climate change.
    [Show full text]