Feeding Habits of Blacktip Sharks, Carcharhinus Limbatus, and Atlantic

Total Page:16

File Type:pdf, Size:1020Kb

Feeding Habits of Blacktip Sharks, Carcharhinus Limbatus, and Atlantic Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2002 Feeding habits of blacktip sharks, Carcharhinus limbatus, and Atlantic sharpnose sharks, Rhizoprionodon terraenovae, in Louisiana coastal waters Kevin Patrick Barry Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Barry, Kevin Patrick, "Feeding habits of blacktip sharks, Carcharhinus limbatus, and Atlantic sharpnose sharks, Rhizoprionodon terraenovae, in Louisiana coastal waters" (2002). LSU Master's Theses. 66. https://digitalcommons.lsu.edu/gradschool_theses/66 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. FEEDING HABITS OF BLACKTIP SHARKS, CARCHARHINUS LIMBATUS, AND ATLANTIC SHARPNOSE SHARKS, RHIZOPRIONODON TERRAENOVAE, IN LOUISIANA COASTAL WATERS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College In partial fulfillment of the Requirements for the degree of Master of Science in The Department of Oceanography and Coastal Sciences by Kevin P. Barry B.S., University of South Alabama, 1996 August 2002 AKNOWLEDGEMENTS I would like to first and foremost thank my major professor, Dr. Richard Condrey, for giving me the opportunity to pursue this graduate degree. His willingness to accompany me during sampling trips, his enthusiasm and interest in my research topic, and his guidance throughout my time here has forged more than a major professor/graduate student relationship; it has formed a friendship as well. I would also like to thank the members of my committee, Dr. Bruce Thompson, Dr. Charles Wilson, and Dr. Oscar Huh. Special thanks go to Dr. Thompson for help regarding laboratory analysis. Thanks also go to Dr. James Geaghan for his assistance on selecting appropriate analyses for my data. This project was funded by Coypu Trust foundation. On behalf of the entire shark “team”, I would like to extend my thanks for providing the financial assistance for a study that we consider to be meaningful for habitat and fisheries management purposes. I would like to extend a special thanks to everyone who assisted in the field work: Gary Peterson, Jason Blackburn, Julie Neer, John Plunket, Brett Blackmon, Chrissy Bush, and anyone who I may have unintentionally overlooked. A special thanks to Gary for use of his fishing tackle and for being as enthusiastic (although not quite as good) a fisherman as me. Additional thanks are needed for Jason, as well, for supplying me with maps that I used for presentations and my thesis. Thanks to Marty Bourgeois of Louisiana Wildlife and Fisheries for reviewing my summary regarding the abundance of organisms in my sampling area. Thanks go to Charles Sasser, Guerry Holm, Jr., and associated staff of the Coastal Ecology Institute for use of the vegetation laboratory for processing many of my samples. ii Even though shark stomach contents are not the most pleasant smelling things, I never heard a complaint from them for using the lab. Thank you to Carol Fleeger, who always made sure I was following the correct university procedures, and who always had an answer for no matter what kind of question I threw at her. Thank you to Sean Keenan for putting up with my endless questions on deadlines and feeding study analysis techniques. He was always able to put things in a way that I could understand them. Thanks to Brian Milan for making me feel welcome when I arrived here, and for all the cook-outs at his house that gave me a chance to relax and an escape from the endless grind that is graduate school. Huge thanks go to my parents, Wilfred and Sharon Barry, for giving me the support, encouragement, and freedom to pursue my dreams. Special thanks go to Dad for sharing with me his love of the water at an early age, which has ultimately brought me to where I am today. Final thanks must go to my fiancée, Carrie Sinclair, who shares my passion for marine biology, and who gave me motivation to complete this degree so that we may start the next phase of our life together. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ………………………………………………………………..…ii LIST OF TABLES …..………………………………………………………………………..v LIST OF FIGURES ………….………………………………………………….……………vi ABSTRACT ..…………………………………………………………………………..…...viii INTRODUCTION ………..….………………………………………….…………………….1 MATERIALS AND METHODS .………………………………………….…………………5 Study Site ….………………………………………………………………….………5 Field Procedure ……………….………….…………………………………...………8 Laboratory Procedure ………………………………………….…………………….14 Statistical Analysis …………………………………………………………………..16 RESULTS……………………………………………………………………………………19 Stomach Content Analysis ………………………………………….……………….22 Scale of Degradation Derivation …………………………………………………….36 Diel Feeding Determination …………………………………………………………38 Gastric Evacuation Rate Calculation…………………………………………………47 Growth Rate Calculation……………………………………………………………..54 Growth Efficiency Estimation ……………………………………………………….56 DISCUSSION ………………………………………………………………………………..62 BIBLIOGRAPHY…...………………………………………………………………………..69 VITA ……………………………………………...………………………………………….72 iv LIST OF TABLES 1. Idealized general gillnet sampling schedule for May and September 2001 in Timbalier Bay, Louisiana….…………………………………………………10 2. Idealized general gillnet sampling schedule for June-August 2001 in Timbalier Bay, Louisiana……………………………………………….…………….11 3. Date, general area, coordinates, time interval, total set time, and the number of blacktips captured for each set of the gillnet for the year 2000…………………………………………………………………….………..20 4. Date, general area, coordinates, time interval, total set time, and the number of blacktips captured for each set of the gillnet for the year 2001……………………………………………………………………………...21 5. Summary statistics by time interval for blacktips caught in Timbalier Bay, Louisiana, in 2000-2001…...……………………………………………………23 6. Summary statistics by month for blacktips caught in Timbalier Bay, Louisiana, in 2000-2001…..………………………………………………………….24 7. Summary statistics by time interval for Atlantic sharpnose caught in Timbalier Bay, Louisiana, in 2000-2001...…………………………………………...25 8. Summary statistics by month for Atlantic sharpnose caught in Timbalier Bay, Louisiana, in 2000-2001.…………………………………………….26 9. Diet composition of blacktips caught in Timbalier Bay, Louisiana, in 2000-2001……………………………………………………………………….....27 10. Diet composition of Atlantic sharpnose in Timbalier Bay, Louisiana, in 2000-2001…………………...……………………………………………………..31 11. Description of each category in the Scale of Degradation for menhaden found in the stomachs of blacktip sharks caught in Timbalier Bay, Louisiana, in 2000-2001……………………………………………….……………..37 v LIST OF FIGURES 1. Gillnet sampling locations (denoted by an S) in Timbalier and Terrebone Bay, Louisiana, in 2000……….……………………………………………6 2. Gillnet sampling locations (denoted by an S) in Timbalier Bay, Louisiana, in 2001……………..……………………………………………………….7 3. Graphical representation of prey items from the stomachs of blacktips caught in Timbalier Bay, Louisiana in 2000-2001……………..…………..30 4. Graphical representation of prey items from the stomachs of Atlantic sharpnose caught in Timbalier Bay, Louisiana, in 2000-2001…………………………………………………………………………….34 5. Comparison of the diet composition of blacktips and Atlantic sharpnose in Timbalier Bay, Louisiana, in 2000-2001 according to prey family………………………………………………………………………....35 6. Plot of log (shark weight) versus log (shark length) with an overlay of the predicted regression line for blacktips caught in Timbalier Bay, Louisiana, in 2000-2001……………………………………………………………...39 7. Plot of shark weight in grams (skw) versus shark length combined with a plot of the weight of the stomach contents in grams multiplied by 10 (ttpw) versus shark length for blacktips caught in Timbalier Bay, Louisiana, in 2000-2001………………………………………………………...40 8. Plot of the Index of Relative Fullness (Irf) versus shark length for blacktips caught in Timbalier Bay, Louisiana, in 2000-20001…………………….…42 9. Plot of the estimates of the Index of Relative Fullness (Irf) versus time interval for blacktips caught in Timbalier Bay, Louisiana, in 2000-2001…………………………………………………………………….……43 10. Plot of the actual values of the Index of Relative Fullness (Irf) versus time of capture (Tc) for blacktips with partially open umbilical scars overlayed with a plot of the predicted values of Irf for blacktips caught in Timbalier Bay, Louisiana, in 2000-2001…..……….………..45 vi 11. Plot of the actual values of the Index of Relative Fullness (Irf) versus time of capture (Tc) for blacktips with healed umbilical scars overlayed with a plot of the predicted values of Irf for blacktips caught in Timbalier Bay, Louisiana, in 2000-2001….……………………………….46 12. Plot of the number of total stomachs and empty stomachs versus time interval for blacktips caught in Timbalier Bay, Louisiana, in 2000-2001…..………………………………………………………………………...48 13. Plot of the percentage of empty stomachs versus time interval for blacktips caught in Timbalier Bay, Louisiana, in 2000-2001………………………...49 14. Plot of the Index of Relative Fullness values (Irf) versus Scale of Degradation for blacktips caught in Timbalier Bay, Louisiana, in 2000-2001…………………………………………………………………………….50 15. Three-dimensional plot
Recommended publications
  • NOAA Technical Memorandum NMFS-SEFSC-626
    NOAA Technical Memorandum NMFS-SEFSC-626 RELATIVE ABUNDANCE OF SMALLTOOTH SAWFISH (Pristis pectinata) BASED ON THE EVERGLADES NATIONAL PARK CREEL SURVEY BY JOHN K. CARLSON and JASON OSBORNE U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Southeast Fisheries Science Center Panama City Laboratory 3500 Delwood Beach Rd. Panama City, FL 32408 February 2012 NOAA Technical Memorandum NMFS-SEFSC-626 RELATIVE ABUNDANCE OF SMALLTOOTH SAWFISH (Pristis pectinata) BASED ON THE EVERGLADES NATIONAL PARK CREEL SURVEY BY JOHN K. CARLSONa, and JASON OSBORNEb aNational Marine Fisheries Service Southeast Fisheries Science Center 3500 Delwood Beach Road Panama City, FL 32408 bNational Park Service South Florida Natural Resource Center 40001 State Road 9336 Homestead, FL, 33034 U. S. DEPARTMENT OF COMMERCE Rebecca M. Blank, Acting Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Jane Lubchenco, Under Secretary for Oceans and Atmosphere NATIONAL MARINE FISHERIES SERVICE Eric Schwaab, Assistant Administrator for Fisheries February 2012 This Technical Memorandum series is used for documentation and timely communication of preliminary results, interim reports, or similar special-purpose information. Although the memoranda are not subject to complete formal review, editorial control, or detailed editing, they are expected to reflect sound professional work. NOTICE The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or material mentioned in this publication. No reference shall be made to NMFS or to this publication furnished by NMFS in any advertising or sales promotion which would imply that NMFS approves, recommends, or endorses any proprietary product or proprietary material mentioned herein which has as its purpose any intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication.
    [Show full text]
  • Bycatch Assessment in the Gambian Sole Bottom Gillnet Fishery
    Bycatch Assessment in the Gambian Sole Bottom Gillnet Fishery Gambia-Senegal Sustainable Fisheries Project (USAID/BaNafaa) 2010-2011 This publication is available electronically on the Coastal Resources Center’s website at http://www.crc.uri.edu. For more information contact: Coastal Resources Center, University of Rhode Island, Narragansett Bay Campus, South Ferry Road, Narragansett, Rhode Island 02882, USA. Tel: 401) 874-6224; Fax: 401) 789-4670; Email: [email protected] The USAID/BaNafaa project is implemented by the Coastal Resources Center of the University of Rhode Island and the World Wide Fund for Nature-West Africa Marine Program Office (WWF-WAMPO) in partnership with the Department of Fisheries and the Ministry of Fisheries and Water Resources. Citation: Gabis, G., Drammeh, O., Nichols, E., Kelpsite, L., Castro, K., Parkins, C., Mendy, A., Ceesay, S. and F. Joof. 2012. Bycatch Assessment in the Gambian Sole Bottom Gillnet Fishery. Gambia-Senegal Sustainable Fisheries Project (USAID/Ba Nafaa). Coastal Resources Center, University of Rhode Island, pp. 20 Disclaimer: This report was made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government. Cooperative Agreement # 624-A-00-09-00033-00. Cover Photo: Gambia gillnet fishery Photo Credit: Christopher Parkins, USAID/BaNafaa project/World Wide Fund for Nature-West Africa Marine Program Office (WWF-WAMPO). 2 Acknowledgements There is little doubt that involving stakeholders as partners in developing management plans will assist in the progress towards improved management of the fishery resources.
    [Show full text]
  • Spinner Shark, Carcharhinus Brevipinna
    Published Date: 1 March 2019 Spinner Shark, Carcharhinus brevipinna Report Card Sustainable assessment IUCN Red List IUCN Red List Australian Least Concern Global Near Threatened Assessment Assessment Assessors Burgess, G.H. & Smart, J.J. Report Card Remarks In Australia, fishing pressure is currently well managed Summary The Spinner Shark is a common, coastal pelagic shark found in warm- temperate and tropical waters across the globe. It frequents nearshore waters and is often captured in commercial and recreational fisheries. It is sensitive to fishing pressure and habitat degradation of coastal nursery Source: CSIRO national Fish Collection. License: CC By Attribution. habitats. Little information is known on the status of Spinner Sharks throughout its distribution. Within Australia, fishing pressure is currently well managed. The Spinner Shark is assessed globally as Near Threatened (IUCN) and in Australia as Least Concern (IUCN), while Australian stocks are classified as Sustainable (SAFS). Distribution Within Australia, the Spinner Shark is found across northern Australia, from Walpole (Western Australia), throughout the Northern Territory, Queensland and to southern New South Wales (Last and Stevens 2009). It is distributed throughout the world, including the east coast of the United States, Brazil, Mediterranean Sea, west coast of Central Africa, South Africa, Madagascar and throughout the Indo-Pacific. A recent genetic study detected evidence suggesting there may be multiple, genetically- distinct stocks throughout its Australian range (Geraghty et al. 2013). Stock structure and status There is currently very little information on population size and stock status for the Spinner Shark in Australian waters. A suite of management measures introduced from 2009 have led to a substantial reduction in fishing effort targeting adults in New South Wales waters.
    [Show full text]
  • First Inland Record of Bull Shark Carcharhinus Leucas (Müller & Henle, 1839) (Carcharhiniformes: Carcharhinidae) in Celebes, Indonesia
    Ecologica Montenegrina 38: 12-17 (2020) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2020.38.3 First inland record of Bull shark Carcharhinus leucas (Müller & Henle, 1839) (Carcharhiniformes: Carcharhinidae) in Celebes, Indonesia VERYL HASAN1,* & IZZUL ISLAM2 1Universitas Airlangga, Fisheries and Marine Faculty, Fish Health Management and Aquaculture Department, Dr. Ir. H. Soekarno street, Surabaya, East Java 60115, Indonesia. 2Universitas Teknologi Sumbawa, Biotechnology Faculty, Biotechnology Department, Olat Maras Street, Sumbawa, West Nusa Tenggara 84371, Indonesia *Corresponding author [[email protected]] Received 25 October 2020 │ Accepted by V. Pešić: 24 November 2020 │ Published online 26 November 2020. Abstract A single specimen (c. 86.2 cm) juvenile of Bull shark Carcharhinus leucas (Müller & Henle, 1839) was captured and photographed by local fisherman using a casting net on 13 February 2018 in Pangkajene River, about 16 km inland, Pangkajene District, South Celebes, Indonesia. This finding is considered as a first inland record of C. leucas in Celebes, and fourth inland records in Indonesia after Papua, Sumatra and Borneo. Monitoring is needed to asses the possibility of Celebes as a migration route and breeding ground of C. leucas. Key words: Biogeography, distribution, elasmobranch, freshwaters, requiem sharks. Introduction The Bull shark Carcharhinus leucas (Müller & Henle, 1839) is one of the few sharks that are truly euryhaline and is a common species that occurs in marine and coastal riverine environments and is wide- spread along the continental coast of all tropical and subtropical seas as well as numerous rivers, lakes, and estuaries (Compagno et al.
    [Show full text]
  • Mercury in Sharks of Belize, 2008
    Elevated mercury levels in sharks of Belize David C. Evers 1, Rachel T. Graham 2, Neil Hammerschlag 3, Christopher Perkins 4, Robert Michener 5, and Tim Divoll 1 BioDiversity Research Institute 1, Wildlife Conservation Society 2, University of Miami 3, University of Connecticut 4, and Boston University 5. Abstract: Mercury (Hg) loading in global aquatic ecosystems is a growing concern. 1. Mercury exposure profile by shark species - Highest Hg levels were recorded in the bull, blacktip, great Study Area : A total of 14 distinct locations were sampled in the Gulf of Honduras along Compelling evidence of widespread adverse effects in fish and wildlife populations indicates hammerhead, scalloped hammerhead, and nurse sharks. Lowest Hg levels were recorded in the bonnethead, the coast of southern Belize (red circle). Comparison shark muscle Hg concentrations sharpnose, lemon and sandbar sharks. the rate of transformation to methylmercury is problematic. Long-lived, apex predators such from the U.S. are from southern Florida (white circle). 2.5 as sharks are at high risk to Hg toxicity. We investigated the occurrence of Hg in sharks from USEPA Advisory = 0.3 ug/g, ww coastal waters of southern Belize. In our pilot study, 101 sharks representing 9 species were FDA & WHO Advisory = 1.0 ug/g, ww 2.0 analyzed for muscle Hg levels. Highest Hg levels were recorded in bull, blacktip, hammerhead, and nurse sharks. Lowest Hg levels were recorded in bonnethead, sharpnose, 1.5 and lemon sharks. Over 88% of the sharks sampled exceeded USEPA human health 1.0 consumption standards. Muscle Hg strongly correlated with size for blacktip and nurse sharks.
    [Show full text]
  • Coelho Phd Lantern S
    UNIVERSIDADEdo ALGARVE FaculdadedeCiênciasdoMaredo Ambiente Biology,populationdynamics,managementandconservation ofdeepwaterlanternsharks,Etmopterusspinax and Etmopteruspusillus (Chondrichthyes:Etmopteridae)insouthernPortugal(northeastAtlantic). (DoutoramentoemCiênciaseTecnologiasdasPescas,especialidadedeBiologiaPesqueira) (ThesisforthedegreeinDoctorofPhilosophyinFisheriesSciencesandTechnologies,specialtyinFisheriesBiology) RUIPEDROANDRADECOELHO Faro (2007) UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS DO MAR E DO AMBIENTE Biology, population dynamics, management and conservation of deep water lantern sharks, Etmopterus spinax and Etmopterus pusillus (Chondrichthyes: Etmopteridae) in southern Portugal (northeast Atlantic). (Doutoramento em Ciências e Tecnologias das Pescas, especialidade de Biologia Pesqueira) (Thesis for the degree in Doctor of Philosophy in Fisheries Sciences and Technologies, specialty in Fisheries Biology) RUI PEDRO ANDRADE COELHO Orientador / Supervisor: Prof. Doutor Karim Erzini Júri / Jury: - Prof. Doutor José Pedro Andrade, Professor Catedrático da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve; - Prof. Doutor Karim Erzini, Professor Associado com Agregação da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve; - Prof. Doutor Leonel Paulo Sul de Serrano Gordo, Professor Auxiliar com Agregação da Faculdade de Ciências, Universidade de Lisboa; - Prof. Doutor Manuel Seixas Afonso Dias, Professor Auxiliar da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve;
    [Show full text]
  • Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
    The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation.
    [Show full text]
  • Serum Protein Variation in the Bull Shark, Carcharhinus Leucas Müller and Henle, 1841
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Investigations of the Ichthyofauna of Nicaraguan Lakes Papers in the Biological Sciences 1976 Serum Protein Variation in the Bull Shark, Carcharhinus Leucas Müller and Henle, 1841 C. Michael Cowan Associated Environmental Services Corp. Follow this and additional works at: https://digitalcommons.unl.edu/ichthynicar Part of the Aquaculture and Fisheries Commons Cowan, C. Michael, "Serum Protein Variation in the Bull Shark, Carcharhinus Leucas Müller and Henle, 1841" (1976). Investigations of the Ichthyofauna of Nicaraguan Lakes. 45. https://digitalcommons.unl.edu/ichthynicar/45 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Investigations of the Ichthyofauna of Nicaraguan Lakes by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in INVESTIGATIONS OF THE ICHTHYOFAUNA OF NICARAGUAN LAKES, ed. Thomas B. Thorson (University of Nebraska-Lincoln, 1976). Copyright © 1976 School of Life Sciences, University of Nebraska-Lincoln. Int. J. Biochem., 1971,2,691-696. [Scientechnica (Publishers) Ltd.] 69 1 SERUM PROTEIN VARIATION IN THE BULL SHARK, CARCHARHINUS LEUCAS MULLER AND HENLE, 1841* C. MICHAEL COWAN Nebraska Wesleyan University, Lincoln, Nebraska, U.S.A. (Received 23 June, 1971) ABSTRACT I. A detailed electrophoretic study was made of different developmental stages of the bull shark, Carcharhinus leucas Milller and Henle, 1841. 2. Both qualitative and quantitative variations were found to exist between newborn and adult bull sharks. 3. Variations in the globulin portion may be related to the development of immuno­ globulins.
    [Show full text]
  • An Overview of Shark Utilisation in the Coral Triangle Region (PDF, 550
    WORKING TOGETHER FOR SUSTAINABLE SHARK FISHERIES AN OVERVIEW OF SHARK UTILISATION IN THE CORAL TRIANGLE REGION Written by Mary Lack Director, Shellack Pty Ltd Glenn Sant Fisheries Programme Leader, TRAFFIC & Senior Fellow, ANCORS Published in September 2012 This report can be downloaded from wwf.panda.org/coraltriangle Citation Lack M. and Sant G. (2012). An overview of shark utilisation in the Coral Triangle region. TRAFFIC &WWF. Photo cover © naturepl.com / Jeff Rotman / WWF-Canon Thanks to the Rufford Lang Foundation for supporting the development of this publication 2 An Overview Of Shark Utilisation In The Coral Triangle Region ACRONYMS ASEAN Association of Southeast Asian Nations BFAR Bureau of Fisheries and Aquatic Resources (the Philippines) CCSBT Commission for the Conservation of Southern Bluefin Tuna CITES Convention on International Trade in Endangered Species of Wild Fauna and Flora CMM Conservation and Management Measure CMS Convention on Migratory Species of Wild Animals CNP Co-operating Non-Contracting party COFI Committee on Fisheries (of FAO) CoP Conference of the Parties (to CITES) EEZ Exclusive Economic Zone EU European Union FAO Food and Agriculture Organization of the United Nations IOTC Indian Ocean Tuna Commission IPOA-Sharks International Plan of Action for the Conservation and Management of Sharks IUU Illegal, Unreported and Unregulated (fishing) MoU Memorandum of Understanding on the Conservation of Migratory Sharks (CMS) nei Not elsewhere included NPOA-Sharks National Plan of Action for the Conservation and
    [Show full text]
  • Polydactylus Macrophthalmus (Bleeker, 1858), with Designation of a Lectotype and Notes on Distributional Implications
    Redescription of a rare threadfin (Perciformes: Polynemidae), Polydactylus macrophthalmus (Bleeker, 1858), with designation of a lectotype and notes on distributional implications Hiroyuki Motomura1*, Martien J. P. van Oijen2, Isaäc J. H. Isbrücker3, and Yukio Iwatsuki4 1 Miyazaki University, The United Graduate School of Agricultural Sciences, Kagoshima University, 1-1 Gakuen-kibanadai-nishi, Miyazaki 889-2192, Japan (e-mail: [email protected]) 2 National Museum of Natural History, P.O. Box 9517, 2300 RA Leiden, The Netherlands (e-mail: [email protected]) 3 Zoölogisch Museum Amsterdam, Universiteit van Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands (e-mail: [email protected]) 4 Division of Fisheries Sciences, Faculty of Agriculture, Miyazaki University, 1-1 Gakuen-kibanadai-nishi, Miyazaki 889-2192, Japan (e-mail: [email protected]) Received: November 1, 2000 / Revised: March 2, 2001 / Accepted: March 15, 2001 Abstract A rare threadfin, Polydactylus macrophthalmus (Bleeker, 1858), having long Ichthyological been included in the genus Polynemus, is redescribed on the basis of 9 specimens and a lectotype designated. Polydactylus macrophthalmus is characterized by the following com- Research bination of characters: 7 pectoral filaments, upper 3 filaments extending beyond posterior ©The Ichthyological Society of Japan 2001 margin of hypural; 13 or 14 pectoral fin rays; 87–94 pored lateral line scales; 11 scales above lateral line, 15 or 16 below; 10–12 upper series gill rakers, 15 or 16 lower, 26 or 27 total; Ichthyol Res (2001) 48: 289–294 occipital profile concave in adults; second spine of first dorsal fin very strong; pectoral fin rays long (mean 24% [range 24–26%] of SL).
    [Show full text]
  • Fish I.D. Guide
    mississippi department of wildlife, fisheries, and parks FRESHWATER FISHES COMMON TO MISSISSIPPI a fish identification guide MDWFP • 1505 EASTOVER DRIVE • JACKSON, MS 39211 • WWW.MDWFP.COM Table of Contents Contents Page Number • White Crappie . 4 • Black Crappie. 5 • Magnolia Crappie . 6 • Largemouth Bass. 7 • Spotted Bass . 8 • Smallmouth Bass. 9 • Redear. 10 • Bluegill . 11 • Warmouth . 12 • Green sunfish. 13 • Longear sunfish . 14 • White Bass . 15 • Striped Bass. 16 • Hybrid Striped Bass . 17 • Yellow Bass. 18 • Walleye . 19 • Pickerel . 20 • Channel Catfish . 21 • Blue Catfish. 22 • Flathead Catfish . 23 • Black Bullhead. 24 • Yellow Bullhead . 25 • Shortnose Gar . 26 • Spotted Gar. 27 • Longnose Gar . 28 • Alligator Gar. 29 • Paddlefish. 30 • Bowfin. 31 • Freshwater Drum . 32 • Common Carp. 33 • Bigmouth Buffalo . 34 • Smallmouth Buffalo. 35 • Gizzard Shad. 36 • Threadfin Shad. 37 • Shovelnose Sturgeon. 38 • American Eel. 39 • Grass Carp . 40 • Bighead Carp. 41 • Silver Carp . 42 White Crappie (Pomoxis annularis) Other Names including reservoirs, oxbow lakes, and rivers. Like other White perch, Sac-a-lait, Slab, and Papermouth. members of the sunfish family, white crappie are nest builders. They produce many eggs, which can cause Description overpopulation, slow growth, and small sizes in small White crappie are deep-bodied and silvery in color, lakes and ponds. White crappie spawn from March ranging from silvery-white on the belly to a silvery-green through May when water temperatures are between or dark green on the back with possible blue reflections. 58ºF and 65ºF. White crappie can tolerate muddier There are several dark vertical bars on the sides. Males water than black crappie. develop dark coloration on the throat and head during the spring spawning season, which can cause them to be State Record mistaken for black crappie.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]