1 a Petition to List the Oceanic Whitetip Shark

Total Page:16

File Type:pdf, Size:1020Kb

1 a Petition to List the Oceanic Whitetip Shark A Petition to List the Oceanic Whitetip Shark (Carcharhinus longimanus) as an Endangered, or Alternatively as a Threatened, Species Pursuant to the Endangered Species Act and for the Concurrent Designation of Critical Habitat Oceanic whitetip shark (used with permission from Andy Murch/Elasmodiver.com). Submitted to the U.S. Secretary of Commerce acting through the National Oceanic and Atmospheric Administration and the National Marine Fisheries Service September 21, 2015 By: Defenders of Wildlife1 535 16th Street, Suite 310 Denver, CO 80202 Phone: (720) 943-0471 (720) 942-0457 [email protected] [email protected] 1 Defenders of Wildlife would like to thank Courtney McVean, a law student at the University of Denver, Sturm college of Law, for her substantial research and work preparing this Petition. 1 TABLE OF CONTENTS I. INTRODUCTION ............................................................................................................................... 4 II. GOVERNING PROVISIONS OF THE ENDANGERED SPECIES ACT ............................................. 5 A. Species and Distinct Population Segments ....................................................................... 5 B. Significant Portion of the Species’ Range ......................................................................... 6 C. Listing Factors ....................................................................................................................... 7 D. 90-Day and 12-Month Findings ......................................................................................... 7 E. Reasonable Person Standard ............................................................................................... 8 F. Best Available Scientific and Commercial Data ............................................................... 9 1. The International Union for the Conservation of Nature ....................................... 9 2. IUCN’s Assessment of the Oceanic Whitetip ........................................................... 11 III. SPECIES DESCRIPTION .................................................................................................................... 11 A. Common Name .................................................................................................................... 11 B. Taxonomy .............................................................................................................................. 12 C. Physical Characteristics ........................................................................................................ 12 D. Habitat and Range ................................................................................................................ 13 E. Feeding ................................................................................................................................... 14 F. Reproduction and Lifespan ................................................................................................. 14 G. Population Trend .................................................................................................................. 15 1. Atlantic Ocean ................................................................................................................ 17 a. Northwest Atlantic and Gulf of Mexico ............................................................. 17 i. Northwest Atlantic ........................................................................................... 21 ii. Gulf of Mexico ................................................................................................. 22 iii. Northwest Atlantic and Gulf of Mexico Conclusion.................................. 23 b. Southwest and Equatorial Atlantic ....................................................................... 23 2. Pacific Ocean .................................................................................................................. 25 a. Western and Central Pacific .................................................................................. 25 i. CPUE ................................................................................................................. 26 ii. Biomass .............................................................................................................. 31 iii. Individual Size ................................................................................................... 35 b. Hawaiian Islands ..................................................................................................... 37 c. Eastern Pacific ......................................................................................................... 39 3. Indian Ocean .................................................................................................................. 40 IV. IDENTIFIED THREATS TO THE PETITIONED SPECIES: FACTORS FOR LISTING ...................... 45 A. The present or threatened destruction, modification, or curtailment of its habitat or Range ...................................................................................................................................... 45 B. Overutilization for Commercial, Recreational, Scientific or Educational Purposes ... 48 1. Atlantic Ocean ................................................................................................................ 56 a. Northwest Atlantic and Gulf of Mexico ............................................................. 57 b. Southwest and Equatorial Atlantic ....................................................................... 60 2. Pacific Ocean .................................................................................................................. 61 a. Western and Central Pacific .................................................................................. 61 b. Hawaiian Islands ..................................................................................................... 67 c. Eastern Pacific ......................................................................................................... 69 3. Indian Ocean .................................................................................................................. 72 C. Disease or Predation ............................................................................................................ 76 D. The Inadequacy of Existing Regulatory Mechanisms ..................................................... 76 2 1. Shark Finning Bans ........................................................................................................ 77 2. Other National and Local Measures ........................................................................... 78 a. Columbia .................................................................................................................. 81 b. United States ............................................................................................................ 82 c. State and Pacific Island Territory Shark Fin Trade Bans .................................. 84 3. International Regulation................................................................................................ 84 a. United Nations Convention on the Law of the Sea .......................................... 85 b. CITES ....................................................................................................................... 85 4. RFMO Regulation ......................................................................................................... 86 a. IOTC ......................................................................................................................... 88 b. ICCAT ...................................................................................................................... 89 c. WCPFC..................................................................................................................... 90 d. IATTC ...................................................................................................................... 92 E. Other Natural or Manmade Factors Affecting its Continued Existence ..................... 92 1. K-Selected ....................................................................................................................... 92 2. Synergistic Effects .......................................................................................................... 94 V. DISTINCT POPULATION SEGMENTS ............................................................................................. 95 A. Discreteness .............................................................................................................................. 95 B. Significance ................................................................................................................................ 102 VI. CRITICAL HABITAT .......................................................................................................................... 103 VII. CONCLUSION .................................................................................................................................. 103 VIII. REFERENCES................................................................................................................................. 105 3 I. INTRODUCTION Petitioner, Defenders of Wildlife (“Defenders”) is dedicated to the protection of all native animals and plants in their natural communities. With more than 1.2 million members, supporters, and activists, Defenders is a leading advocate
Recommended publications
  • Red Tail Barracuda (Acestrorhynchus Falcatus) Ecological Risk Screening Summary
    Red Tail Barracuda (Acestrorhynchus falcatus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, March 2014 Revised, January 2018 and June 2018 Web Version, 6/7/2018 Photo: S. Brosse. Licensed under Creative Commons (CC BY-NC). Available: http://www.fishbase.org/photos/PicturesSummary.php?StartRow=0&ID=23498&what=species& TotRec=2 (January 2018). 1 1 Native Range, and Status in the United States Native Range From Froese and Pauly (2017): “South America: Amazon and Orinoco River basins and rivers of Guyana, Suriname and French Guiana.” Status in the United States This species has not been reported as introduced or established in the United States. This species is in trade in the United States. For example: From Pet Zone Tropical Fish (2018): “Red Tail Barracuda […] Your Price: $29.99 […] Product Description Red Tail Barracuda (Acestrorhynchus falcatus)” Pet Zone Tropical Fish is based in San Diego, California. From Arizona Aquatic Gardens (2018): “Yellow Tail Barracuda Acestrorhynchus falcatus List: $129.00 - $149.00 $68.00 – $88.00” Arizona Aquatic Gardens is based in Tucson, Arizona. Means of Introductions in the United States This species has not been reported as introduced or established in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii 2 Subclass Neopterygii Infraclass Teleostei Superorder Ostariophysi
    [Show full text]
  • Chapter 11 the Biology and Ecology of the Oceanic Whitetip Shark, Carcharhinus Longimanus
    Chapter 11 The Biology and Ecology of the Oceanic Whitetip Shark, Carcharhinus longimanus Ramón Bonfi l, Shelley Clarke and Hideki Nakano Abstract The oceanic whitetip shark (Carcharhinus longimanus) is a common circumtropical preda- tor and is taken as bycatch in many oceanic fi sheries. This summary of its life history, dis- tribution and abundance, and fi shery-related information is supplemented with unpublished data taken during Japanese tuna research operations in the Pacifi c Ocean. Oceanic whitetips are moderately slow-growing sharks that do not appear to have differential growth rates by sex, and individuals in the Atlantic and Pacifi c Oceans seem to grow at similar rates. They reach sexual maturity at approximately 170–200 cm total length (TL), or 4–7 years of age, and have a 9- to 12-month embryonic development period. Pupping and nursery areas are thought to exist in the central Pacifi c, between 0ºN and 15ºN. According to two demographic metrics, the resilience of C. longimanus to fi shery exploitation is similar to that of blue and shortfi n mako sharks. Nevertheless, reported oceanic whitetip shark catches in several major longline fi sheries represent only a small fraction of total shark catches, and studies in the Northwest Atlantic and Gulf of Mexico suggest that this species has suffered signifi cant declines in abundance. Stock assessment has been severely hampered by the lack of species-specifi c catch data in most fi sheries, but recent implementation of species-based reporting by the International Commission for the Conservation of Atlantic Tunas (ICCAT) and some of its member countries will provide better data for quantitative assessment.
    [Show full text]
  • Sharks in Crisis: a Call to Action for the Mediterranean
    REPORT 2019 SHARKS IN CRISIS: A CALL TO ACTION FOR THE MEDITERRANEAN WWF Sharks in the Mediterranean 2019 | 1 fp SECTION 1 ACKNOWLEDGEMENTS Written and edited by WWF Mediterranean Marine Initiative / Evan Jeffries (www.swim2birds.co.uk), based on data contained in: Bartolí, A., Polti, S., Niedermüller, S.K. & García, R. 2018. Sharks in the Mediterranean: A review of the literature on the current state of scientific knowledge, conservation measures and management policies and instruments. Design by Catherine Perry (www.swim2birds.co.uk) Front cover photo: Blue shark (Prionace glauca) © Joost van Uffelen / WWF References and sources are available online at www.wwfmmi.org Published in July 2019 by WWF – World Wide Fund For Nature Any reproduction in full or in part must mention the title and credit the WWF Mediterranean Marine Initiative as the copyright owner. © Text 2019 WWF. All rights reserved. Our thanks go to the following people for their invaluable comments and contributions to this report: Fabrizio Serena, Monica Barone, Adi Barash (M.E.C.O.), Ioannis Giovos (iSea), Pamela Mason (SharkLab Malta), Ali Hood (Sharktrust), Matthieu Lapinksi (AILERONS association), Sandrine Polti, Alex Bartoli, Raul Garcia, Alessandro Buzzi, Giulia Prato, Jose Luis Garcia Varas, Ayse Oruc, Danijel Kanski, Antigoni Foutsi, Théa Jacob, Sofiane Mahjoub, Sarah Fagnani, Heike Zidowitz, Philipp Kanstinger, Andy Cornish and Marco Costantini. Special acknowledgements go to WWF-Spain for funding this report. KEY CONTACTS Giuseppe Di Carlo Director WWF Mediterranean Marine Initiative Email: [email protected] Simone Niedermueller Mediterranean Shark expert Email: [email protected] Stefania Campogianni Communications manager WWF Mediterranean Marine Initiative Email: [email protected] WWF is one of the world’s largest and most respected independent conservation organizations, with more than 5 million supporters and a global network active in over 100 countries.
    [Show full text]
  • Mediterranean Fishes 2000 a Modern Taxonomic Checklist
    This document replaces and supercedes all previous Mediterranean taxonomic checklists issued in the MediterraneanMediterranean Calypso series. FishesFishes This document is also available on disk in several formats 20002000 Calypso have been aided in this project by A Modern Taxonomic many eminent researchers whose Checklist contributions are recognised in the Preface A Listing of all species recorded on the Calypso Ichthyological Database for the Mediterranean Area (010) including all Lessepsian migrants. ISBN: 0 906301 82 3 Mediterranean Fishes 2000 A Modern Taxonomic Checklist This document replaces and supercedes all previous Mediterranean taxonomic checklists issued in the Calypso series. ISBN: 0 906301 82 3 . Year 2000 A Listing of all species recorded on the Calypso Ichthyological Database for the Mediterranean Area (010) including all Lessepsian migrants. Calypso have been aided in this project by many eminent researchers whose contributions are recognised in the Preface Copyright.Calypso Publications.London British Library Cataloguing in Publication Data A catalogue record for this title is available from the British Library This title is also available on Interactive disk or by Internet Subscription Contact the publishers by Email: [email protected] INDEX Please note: This Index has been designed for use with the Adobe PDF file of which it is a component. Page numbers on the viewed enlarged pages may differ or not be shown, as these have been transferred from the printed texts 2. Bibliographic data 3. Preface 4. Bibliography of Lessepsian Migrants 8. A Word Regarding the Calypso Taxonomic System 11. Database Area Codings 13. The Calypso Database Numbering System 15. Mediterranean Recorded Species 151 Some additions to the record 152 Professor Golani’s data on Lessepsian migrants 154 – 306 Mediterranean Fishes.
    [Show full text]
  • Sea Monsters in Antiquity: a Classical and Zoological Investigation
    Sea Monsters in Antiquity: A Classical and Zoological Investigation Alexander L. Jaffe Harvard University Dept. of Organismic and Evolutionary Biology Class of 2015 Abstract: Sea monsters inspired both fascination and fear in the minds of the ancients. In this paper, I aim to examine several traditional monsters of antiquity with a multi-faceted approach that couples classical background with modern day zoological knowledge. Looking at the examples of the ketos and the sea serpent in Roman and Greek societies, I evaluate the scientific bases for representations of these monsters across of variety of media, from poetry to ceramics. Through the juxtaposition of the classical material and modern science, I seek to gain a greater understanding of the ancient conception of sea monsters and explain the way in which they were rationalized and depicted by ancient cultures. A closer look at extant literature, historical accounts, and artwork also helps to reveal a human sentiment towards the ocean and its denizens penetrating through time even into the modern day. “The Sea-monsters, mighty of limb and huge, the wonders of the sea, heavy with strength invincible, a terror for the eyes to behold and ever armed with deadly rage—many of these there be that roam the spacious seas...”1 Oppian, Halieutica 1 As the Greek poet Oppian so eloquently reveals, sea monsters inspired both fascination and fear in the minds of the ancients. From the Old Testament to Ovid, sources from throughout the ancient world show authors exercising both imagination and observation in the description of these creatures. Mythology as well played a large role in the creation of these beliefs, with such classic examples as Perseus and Andromeda or Herakles and Hesione.
    [Show full text]
  • Status and Demographic Analysis of the Dusky Shark, Carcharhinus Obscurus, in the Northwest Atlantic
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2004 Status and Demographic Analysis of the Dusky Shark, Carcharhinus obscurus, in the Northwest Atlantic Jason G. Romine College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Biostatistics Commons, Fresh Water Studies Commons, and the Oceanography Commons Recommended Citation Romine, Jason G., "Status and Demographic Analysis of the Dusky Shark, Carcharhinus obscurus, in the Northwest Atlantic" (2004). Dissertations, Theses, and Masters Projects. Paper 1539617821. https://dx.doi.org/doi:10.25773/v5-zm7f-h314 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Status and demographic analysis of the Dusky shark, Carcharhinus obscurus, in the Northwest Atlantic A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial fulfillment Of the Requirements for the Degree of Master of Science by Jason G. Romine 2004 APPROVAL SHEET This thesis is submitted in partial fulfillment of The requirements for the degree of Master of Science Jason G. KOmine Approved, August 2004 NloW A. Musick, Ph.D. Committee Chairman/Advisor Kim N. Holland, Ph.D Hawaii Institute of Marine Biology University of Hawaii Kaneohe, Hawaii onn E. Olney, Ph.D. TABLE OF CONTENTS ACKNOWLEDGEMENTS........................................................................................................ v LIST OF TABLES........................................................................................................................vi LIST OF FIGURES...................................................................................................................
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • MAF Underwatermission Synopsis Final
    Conceived by Max Serio Developed by Max Serio, John Hopkins, Martin Kase, Tina Dalton Directed by Max Serio, Tina Dalton Narrated by Rachel King, Juliet Jordan, Marcello Fabrizi Underwater Mission: Cleaner Friends First episode of the series. Our heroes: Sara,Maxi and Emma the sea turtle will explore who are their Cleaner Friends. Their adventure will be supported with the valuable information of "Sea Pad" their "friend-board computer". Cleaner Friends : Cleaner shrimp,moray eel,Blue Streak Cleaner Wrasse,Moorish Idols,Humphead Wrasse,Spadefish, sea star,Mushroom Coral,Bristletooths. Underwater Mission: Predators In this episode Sara and Max will experience an interesting trip with Emma the sea tur- tle. “Sea Pad” is going to show them the most interesting underwater predators and their habbits. Predators : Mooray eel (Ribbon eel, White eyed moray eel), Sand conger eel, Barracudas, Stonefish, Anglerfish, Lionfish, Mantis Shrimp, White tip reef shark, Tiger Shark Underwater Mission: Crazy Colours Maxi and Sara are going to visit the most colourful environment they have ever seen. Emma the sea turtle will take them to an underwater trip where they find the beautiful wolrd of crazy-coloured fish. Crazy-coloured fish : Gold Belly Damsel Fish, Emperor Angelfish, Yellow Ribbon Sweetlip, Peach Fairies, Anemones, Corals, Clown Trigger fish, Butterfly fish, Leopard coral trout, Scribbled Filefish, Lionfish, Cuttlefish, Nudibranch, Parrotfish Underwater Mission: Startling Shapes There are many shapes that the sea creatures and objects have. Emma, Sara and Maxi are going to discover as much of them as they can. Those they can’t spot on the first glance will be uncovered by the trusted clever “Sea pad”.
    [Show full text]
  • Forage Fish Management Plan
    Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis ....................................................................................................................................
    [Show full text]
  • Multiplex Real-Time PCR Assay to Detect Illegal Trade of CITES-Listed
    www.nature.com/scientificreports OPEN Multiplex real-time PCR assay to detect illegal trade of CITES-listed shark species Received: 29 March 2018 Diego Cardeñosa 1,2, Jessica Quinlan3, Kwok Ho Shea4 & Demian D. Chapman3 Accepted: 23 October 2018 The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) is a Published: xx xx xxxx multilateral environmental agreement to ensure that the international trade of threatened species is either prohibited (Appendix I listed species) or being conducted legally, sustainably, and transparently (Appendix II listed species). Twelve threatened shark species exploited for their fns, meat, and other products have been listed under CITES Appendix II. Sharks are often traded in high volumes, some of their products are visually indistinguishable, and most importing/exporting nations have limited capacity to detect illicit trade and enforce the regulations. High volume shipments often must be screened after only a short period of detainment (e.g., a maximum of 24 hours), which together with costs and capacity issues have limited the use of DNA approaches to identify illicit trade. Here, we present a reliable, feld-based, fast (<4 hours), and cost efective ($0.94 USD per sample) multiplex real- time PCR protocol capable of detecting nine of the twelve sharks listed under CITES in a single reaction. This approach facilitates detection of illicit trade, with positive results providing probable cause to detain shipments for more robust forensic analysis. We also provide evidence of its application in real law enforcement scenarios in Hong Kong. Adoption of this approach can help parties meet their CITES requirements, avoiding potential international trade sanctions in the future.
    [Show full text]
  • Hepatobiliary Polycyclic Aromatic Hydrocarbons in Pelagic Fishes of the Gulf of Mexico
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School October 2020 Hepatobiliary Polycyclic Aromatic Hydrocarbons in Pelagic Fishes of the Gulf of Mexico Madison R. Schwaab University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biology Commons, and the Toxicology Commons Scholar Commons Citation Schwaab, Madison R., "Hepatobiliary Polycyclic Aromatic Hydrocarbons in Pelagic Fishes of the Gulf of Mexico" (2020). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/8586 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Hepatobiliary Polycyclic Aromatic Hydrocarbons in Pelagic Fishes of the Gulf of Mexico by Madison R. Schwaab A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Marine Science with a concentration in Marine Resource Assessment College of Marine Science University of South Florida Major Professor: Steven A. Murawski, Ph.D. Erin L. Pulster, Ph.D. Ernst Peebles, Ph.D. Date of Approval: October 30, 2020 Keywords: Oil, Contaminants, PAH, Fish Copyright © 2020, Madison R. Schwaab Acknowledgements I would first like to acknowledge my advisor, Dr. Steven Murawski, and my committee members, Dr. Erin Pulster and Dr. Ernst Peebles, for their help throughout this project. Dr. Murawski contributed so much, both to this project and to my professional development, during my time at the University of South Florida.
    [Show full text]
  • Crestfish Lophotus Lacepede (Giorna, 1809) and Scalloped Ribbonfish Zu Cristatus (Bonelli, 1819) in the Northern Coast of Sicily, Italy
    ISSN: 0001-5113 ACTA ADRIAT., ORIGINAL SCIENTIFIC PAPER AADRAY 58(1): 137 - 146, 2017 Occurrence of two rare species from order Lampriformes: Crestfish Lophotus lacepede (Giorna, 1809) and scalloped ribbonfish Zu cristatus (Bonelli, 1819) in the northern coast of Sicily, Italy Fabio FALSONE1, Michele Luca GERACI1, Danilo SCANNELLA1, Charles Odilichukwu R. OKPALA1, Giovan Battista GIUSTO1, Mar BOSCH-BELMAR2, Salvatore GANCITANO1 and Gioacchino BONO1 1Institute for the Coastal Marine Environment, IAMC‑CNR, 91026 Mazara del Vallo, Sicily, Italy 2Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy Corresponding author, e‑mail: [email protected] The bony fish Lophotus lacepede (Giorna, 1809) and Zu cristatus (Bonelli, 1819) are the two species rarely recorded within the Mediterranean basin, usually reported as accidentally captured in depth (mesopelagic) fishing operations. In the current work, we present the first record of L. lacepede and Z. cristatus in fishing catches from southwestern Tyrrhenian Sea. Moreover, in order to improve existent biological/ecological knowledge, some bio-related aspects such as feeding aspect, sexual maturity and age estimate have been discussed. Key words: crestfish, scalloped ribbonfish, meristic features, vertebrae, growth ring INTRODUCTION species of Lophotidae family, the L. lacepede inhabits the epipelagic zone, although it could The target species of this study (Lophotus also be recorded in most oceans from the surface lacepede and Zu cristatus) belong to Lophotidae up to 1000 m depth (HEEMSTRA, 1986; PALMER, (Bonaparte, 1845) and Trachipteridae (Swain- 1986; OLNEY, 1999). First record of this spe- son, 1839) families respectively, including the cies in the Mediterranean Basin was from the Lampriformes order (consisted of 7 families).
    [Show full text]