Chapter 11 the Biology and Ecology of the Oceanic Whitetip Shark, Carcharhinus Longimanus

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 11 the Biology and Ecology of the Oceanic Whitetip Shark, Carcharhinus Longimanus Chapter 11 The Biology and Ecology of the Oceanic Whitetip Shark, Carcharhinus longimanus Ramón Bonfi l, Shelley Clarke and Hideki Nakano Abstract The oceanic whitetip shark (Carcharhinus longimanus) is a common circumtropical preda- tor and is taken as bycatch in many oceanic fi sheries. This summary of its life history, dis- tribution and abundance, and fi shery-related information is supplemented with unpublished data taken during Japanese tuna research operations in the Pacifi c Ocean. Oceanic whitetips are moderately slow-growing sharks that do not appear to have differential growth rates by sex, and individuals in the Atlantic and Pacifi c Oceans seem to grow at similar rates. They reach sexual maturity at approximately 170–200 cm total length (TL), or 4–7 years of age, and have a 9- to 12-month embryonic development period. Pupping and nursery areas are thought to exist in the central Pacifi c, between 0ºN and 15ºN. According to two demographic metrics, the resilience of C. longimanus to fi shery exploitation is similar to that of blue and shortfi n mako sharks. Nevertheless, reported oceanic whitetip shark catches in several major longline fi sheries represent only a small fraction of total shark catches, and studies in the Northwest Atlantic and Gulf of Mexico suggest that this species has suffered signifi cant declines in abundance. Stock assessment has been severely hampered by the lack of species-specifi c catch data in most fi sheries, but recent implementation of species-based reporting by the International Commission for the Conservation of Atlantic Tunas (ICCAT) and some of its member countries will provide better data for quantitative assessment. On the basis of its life-history characteristics, this species is presently considered by the World Conservation Union to be vulnerable to, but not currently threatened by, pelagic fi sheries. Key words: oceanic whitetip shark, Carcharhinus longimanus, Carcharhinidae, age and growth, reproduction, distribution, abundance, fi sheries. Introduction The oceanic whitetip shark (Carcharhinus longimanus, Carcharhinidae) is one of the most common top predators in open waters of all tropical oceans of the world, and is the only truly oceanic shark of its genus. This species and the blue shark (Prionace glauca, Carcharhinidae) are the most abundant oceanic sharks, and they seem to have evolved an Sharks of the Open Ocean: Biology, Fisheries and Conservation. Edited by M. D. Camhi, E. K. Pikitch and E. A. Babcock © 2008 Blackwell Publishing Ltd. ISBN: 978-0632-05995-9 Biology and Ecology of the Oceanic Whitetip Shark 129 effi cient partitioning of the oceanic environment, with blue sharks dominating the temper- ate seas and oceanic whitetips prevailing in tropical areas (Nakano, 1996; Matsunaga and Nakano, 1999). Despite its worldwide distribution and frequent appearance in most high-seas fi shery catches in tropical areas, little attention has been paid to oceanic whitetip shark biology and ecology. Since Bigelow and Schroeder (1948) pointed out that “astonishingly little is known of the habits of longimanus, considering that it is one of the members of its genus that has been recognized the longest,” only a handful of papers have focused on this shark. Studies by Backus et al. (1956) in the western North Atlantic and Strasburg (1958) in the eastern Pacifi c Ocean were among the fi rst to describe the distribution, abundance, size structure, diet, behavior, sex segregation, and reproduction of the oceanic whitetip. However, nearly 30 years passed before Saika and Yoshimura (1985) further reported on the natural history of this species, and theirs was a limited analysis of the ecology and biology of populations in the western Pacifi c Ocean. More recently, a paper by Savel’ev and Chernikov (1994) assessed the presumed ability of oceanic whitetip sharks to search for food from smells in the air, and Seki et al. (1998) and Lessa et al. (1999) studied the age, growth, and repro- duction of populations in the Pacifi c Ocean and equatorial West Atlantic, respectively. The latest contributions to our knowledge of this species come from a pair of papers, Baum et al. (2003) and Baum and Myers (2004), describing declines in shark populations in the Northwest Atlantic and Gulf of Mexico. We also present data from fi sheries that catch oceanic whitetip sharks, as well as unpublished data on the bycatch from Japanese tuna research and training cruises (including a total of 209,530 longline sets and 444 million hooks). Distribution and movements The oceanic whitetip shark is a tropical, epipelagic species occurring from the surface to at least 152 m depth. It has a clear preference for open ocean waters and its abundance increases away from continental and insular shelves (Backus et al., 1956; Strasburg, 1958; Compagno, 1984). Although it can be found in waters between 15ºC and 28ºC, it is most commonly found in waters with temperatures above 20ºC. It is one of the most abundant oceanic sharks, and although it generally does not school, it can form aggre- gations around food sources. Catch rates for this species have been shown to decrease with increasing depth between 80 and 280 m, suggesting that oceanic whitetips are found in shallow surface waters more commonly than other pelagic sharks, such as the bigeye thresher (Alopias superciliosus, Alopiidae; Nakano et al., 1997). Preliminary data from Japanese research and training tuna longliners (H. Nakano, unpublished data) indicate that, in the Pacifi c Ocean, oceanic whitetips are most abundant in a belt between 10ºN and 10ºS, are common between 20ºN and 20ºS, and can occur up to about 30ºN in the northwestern Pacifi c (Fig. 11.1). These data also show that pregnant oceanic whitetips occur mainly in a wide area of the North Pacifi c between 140ºW and 150ºE, with higher concentrations in the central part of this distribution just above 10ºN (Fig. 11.2). Newborn sharks occur between the equator and 20ºN, but mainly in a narrow strip just above 10ºN in the central Pacifi c, coincident with the higher concentrations of 130 Sharks of the Open Ocean 100 40ЊN 10 1 20ЊN 0Њ 20ЊS 40ЊS 120ЊE 140ЊE 160ЊE 180Њ 160ЊW 140ЊW 120ЊW 100ЊW80ЊW Fig. 11.1 Catch rate of oceanic whitetip sharks by Japanese tuna research and training vessels for each sampled 1° quadrant in the Pacifi c Ocean. Bubble size is proportional to the number of sharks per thousand hooks (aggregated data from 209,530 longline sets with a total of 444 million hooks for the period 1992–1998, from the National Research Institute of Far Seas Fisheries). 40ЊN 30ЊN 20ЊN 10ЊN 0Њ 10ЊS Pregnant females 20ЊS Newborns 30ЊS 120ЊE 140ЊE 160ЊE 180Њ 160ЊW 140ЊW 120ЊW 100ЊW Fig. 11.2 Distribution of pregnant females and newborns of oceanic whitetip shark in the tropical Pacifi c Ocean (data from Japanese tuna research and training vessels for the period 1992–1998, from the National Research Institute of Far Seas Fisheries). pregnant females. This suggests that the area between 150ºW and 180ºW and just above 10ºN might be a pupping ground for oceanic whitetip sharks. However, incomplete sam- pling limits a better defi nition of this area. Little is known of the migrations and movements of this species; Backus et al. (1956) reported that oceanic whitetip sharks move out of the Gulf of Mexico during the winter Biology and Ecology of the Oceanic Whitetip Shark 131 and may move southward from the waters north of Cape Hatteras when temperatures drop. They hypothesize that the avoidance of shallow-water habitats may be a mechanism to avoid competition for food with faster-swimming coastal sharks. In the Cooperative Shark Tagging Program of the US National Marine Fisheries Service, 542 oceanic whitetips were tagged in the Atlantic Ocean between 1962 and 1993, but only 6 were recaptured. Maximum time at liberty was 3.3 years, maximum distance traveled was 2,270 km, and maximum estimated speed was 32 km/day (Kohler et al., 1998). These data indicate movements from the northeastern Gulf of Mexico to the Atlantic Coast of Florida, from the Mid-Atlantic Bight to southern Cuba, from the Lesser Antilles west into the central Caribbean Sea, from east to west along the equatorial Atlantic, and from off southern Brazil in a northeasterly direction. Biology and ecology Diet Oceanic whitetip sharks are one of the main apex predators in tropical open waters, and feed mostly on oceanic teleosts and cephalopods (Backus et al., 1956). Their diet consists of lancetfi sh, oarfi sh, threadfi ns, barracuda, jacks, dolphinfi sh, tuna, skipjack and other scombrids, white marlin, and squid, and occasionally stingrays, seabirds, turtles, marine gastropods, crustaceans, carrion from marine mammals, and garbage (Compagno, 1984). Reproduction Similar to other carcharhinid species, the oceanic whitetip shark is viviparous with pla- cental embryonic development. There are few reproductive studies for this species, and most of the information comes from the Pacifi c Ocean populations considered in Seki et al. (1998). In the North Pacifi c, mating takes place during June and July, and parturition occurs from February to July. These fi ndings, based on a sample size of 52 embryos, sug- gest a 9- to 12-month embryonic development period. From a more limited sample size for the South Pacifi c (n 16), parturition appears to occur in November. Size at maturity ranged from 168 to 196 cm total length (TL) for males and from 175 to 189 cm TL for females, although a 137-cm-TL pregnant female was also recorded but not fully investi- gated (lengths converted from precaudal (PL) to total length using Seki et al.’s formula of TLϭ1.397 PL). Size at birth was between 55 and 75 cm TL, and the number of embryos in a litter ranged from 1 to 14, with a mode of 5 and an average of 6.2 (Seki et al., 1998).
Recommended publications
  • Red Tail Barracuda (Acestrorhynchus Falcatus) Ecological Risk Screening Summary
    Red Tail Barracuda (Acestrorhynchus falcatus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, March 2014 Revised, January 2018 and June 2018 Web Version, 6/7/2018 Photo: S. Brosse. Licensed under Creative Commons (CC BY-NC). Available: http://www.fishbase.org/photos/PicturesSummary.php?StartRow=0&ID=23498&what=species& TotRec=2 (January 2018). 1 1 Native Range, and Status in the United States Native Range From Froese and Pauly (2017): “South America: Amazon and Orinoco River basins and rivers of Guyana, Suriname and French Guiana.” Status in the United States This species has not been reported as introduced or established in the United States. This species is in trade in the United States. For example: From Pet Zone Tropical Fish (2018): “Red Tail Barracuda […] Your Price: $29.99 […] Product Description Red Tail Barracuda (Acestrorhynchus falcatus)” Pet Zone Tropical Fish is based in San Diego, California. From Arizona Aquatic Gardens (2018): “Yellow Tail Barracuda Acestrorhynchus falcatus List: $129.00 - $149.00 $68.00 – $88.00” Arizona Aquatic Gardens is based in Tucson, Arizona. Means of Introductions in the United States This species has not been reported as introduced or established in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii 2 Subclass Neopterygii Infraclass Teleostei Superorder Ostariophysi
    [Show full text]
  • Sharks in Crisis: a Call to Action for the Mediterranean
    REPORT 2019 SHARKS IN CRISIS: A CALL TO ACTION FOR THE MEDITERRANEAN WWF Sharks in the Mediterranean 2019 | 1 fp SECTION 1 ACKNOWLEDGEMENTS Written and edited by WWF Mediterranean Marine Initiative / Evan Jeffries (www.swim2birds.co.uk), based on data contained in: Bartolí, A., Polti, S., Niedermüller, S.K. & García, R. 2018. Sharks in the Mediterranean: A review of the literature on the current state of scientific knowledge, conservation measures and management policies and instruments. Design by Catherine Perry (www.swim2birds.co.uk) Front cover photo: Blue shark (Prionace glauca) © Joost van Uffelen / WWF References and sources are available online at www.wwfmmi.org Published in July 2019 by WWF – World Wide Fund For Nature Any reproduction in full or in part must mention the title and credit the WWF Mediterranean Marine Initiative as the copyright owner. © Text 2019 WWF. All rights reserved. Our thanks go to the following people for their invaluable comments and contributions to this report: Fabrizio Serena, Monica Barone, Adi Barash (M.E.C.O.), Ioannis Giovos (iSea), Pamela Mason (SharkLab Malta), Ali Hood (Sharktrust), Matthieu Lapinksi (AILERONS association), Sandrine Polti, Alex Bartoli, Raul Garcia, Alessandro Buzzi, Giulia Prato, Jose Luis Garcia Varas, Ayse Oruc, Danijel Kanski, Antigoni Foutsi, Théa Jacob, Sofiane Mahjoub, Sarah Fagnani, Heike Zidowitz, Philipp Kanstinger, Andy Cornish and Marco Costantini. Special acknowledgements go to WWF-Spain for funding this report. KEY CONTACTS Giuseppe Di Carlo Director WWF Mediterranean Marine Initiative Email: [email protected] Simone Niedermueller Mediterranean Shark expert Email: [email protected] Stefania Campogianni Communications manager WWF Mediterranean Marine Initiative Email: [email protected] WWF is one of the world’s largest and most respected independent conservation organizations, with more than 5 million supporters and a global network active in over 100 countries.
    [Show full text]
  • Sea Monsters in Antiquity: a Classical and Zoological Investigation
    Sea Monsters in Antiquity: A Classical and Zoological Investigation Alexander L. Jaffe Harvard University Dept. of Organismic and Evolutionary Biology Class of 2015 Abstract: Sea monsters inspired both fascination and fear in the minds of the ancients. In this paper, I aim to examine several traditional monsters of antiquity with a multi-faceted approach that couples classical background with modern day zoological knowledge. Looking at the examples of the ketos and the sea serpent in Roman and Greek societies, I evaluate the scientific bases for representations of these monsters across of variety of media, from poetry to ceramics. Through the juxtaposition of the classical material and modern science, I seek to gain a greater understanding of the ancient conception of sea monsters and explain the way in which they were rationalized and depicted by ancient cultures. A closer look at extant literature, historical accounts, and artwork also helps to reveal a human sentiment towards the ocean and its denizens penetrating through time even into the modern day. “The Sea-monsters, mighty of limb and huge, the wonders of the sea, heavy with strength invincible, a terror for the eyes to behold and ever armed with deadly rage—many of these there be that roam the spacious seas...”1 Oppian, Halieutica 1 As the Greek poet Oppian so eloquently reveals, sea monsters inspired both fascination and fear in the minds of the ancients. From the Old Testament to Ovid, sources from throughout the ancient world show authors exercising both imagination and observation in the description of these creatures. Mythology as well played a large role in the creation of these beliefs, with such classic examples as Perseus and Andromeda or Herakles and Hesione.
    [Show full text]
  • MAF Underwatermission Synopsis Final
    Conceived by Max Serio Developed by Max Serio, John Hopkins, Martin Kase, Tina Dalton Directed by Max Serio, Tina Dalton Narrated by Rachel King, Juliet Jordan, Marcello Fabrizi Underwater Mission: Cleaner Friends First episode of the series. Our heroes: Sara,Maxi and Emma the sea turtle will explore who are their Cleaner Friends. Their adventure will be supported with the valuable information of "Sea Pad" their "friend-board computer". Cleaner Friends : Cleaner shrimp,moray eel,Blue Streak Cleaner Wrasse,Moorish Idols,Humphead Wrasse,Spadefish, sea star,Mushroom Coral,Bristletooths. Underwater Mission: Predators In this episode Sara and Max will experience an interesting trip with Emma the sea tur- tle. “Sea Pad” is going to show them the most interesting underwater predators and their habbits. Predators : Mooray eel (Ribbon eel, White eyed moray eel), Sand conger eel, Barracudas, Stonefish, Anglerfish, Lionfish, Mantis Shrimp, White tip reef shark, Tiger Shark Underwater Mission: Crazy Colours Maxi and Sara are going to visit the most colourful environment they have ever seen. Emma the sea turtle will take them to an underwater trip where they find the beautiful wolrd of crazy-coloured fish. Crazy-coloured fish : Gold Belly Damsel Fish, Emperor Angelfish, Yellow Ribbon Sweetlip, Peach Fairies, Anemones, Corals, Clown Trigger fish, Butterfly fish, Leopard coral trout, Scribbled Filefish, Lionfish, Cuttlefish, Nudibranch, Parrotfish Underwater Mission: Startling Shapes There are many shapes that the sea creatures and objects have. Emma, Sara and Maxi are going to discover as much of them as they can. Those they can’t spot on the first glance will be uncovered by the trusted clever “Sea pad”.
    [Show full text]
  • Forage Fish Management Plan
    Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis ....................................................................................................................................
    [Show full text]
  • Ribbon Reefs Dive Site Info
    Ribbon Reefs - Dive Sites The Cod Hole The world-famous Cod Hole is home to numerous Potato Cod. These huge fish are quite used to divers, offering the chance to get up close and personal, and are quite willing to pose for a photo whilst visiting one of the many cleaning stations. Whilst usually docile and relaxed, the Cod feed allows divers to see the spectacle of these fish feeding in action. The shallows of Cod Hole offer excellent coral life to explore and the chance to search for many hidden treasures. Follow the terraced reef down for the chance to witness pelagic fish on their way past. Though susceptible to current on an incoming tide, this makes for an excellent drift dive. Marine Life • Giant Potato Cod • Flowery Cod • Spine Cheek Anemonefish • Lionfish • Pygmy Sea Horse • Reef Sharks • Red Bass • Nudibranchs • Lacey Scorpionfish • Ghost Pipefish Dynamite Pass Get the tides right and you are in for a thrilling drift dive along the reef wall of Cormorant Reef. Sit back, enjoy the ride and let Dynamite Pass blow your mind as a plethora of marine life passes right in front of your eyes. Marine Life • Reef Sharks • Lagoon Rays • Flounder • Green Turtles • Sweetlips • Mackerel • Soft Corals • Caverns The Snake Pit An isolated reef between Lizard Island and #10 Ribbon Reef. Living up to its name, this site is famous for the Olive Sea Snakes found here. These snakes tend to be curious of divers entering their domain and have been known to be fascinated with their reflection in a camera lens.
    [Show full text]
  • Multiplex Real-Time PCR Assay to Detect Illegal Trade of CITES-Listed
    www.nature.com/scientificreports OPEN Multiplex real-time PCR assay to detect illegal trade of CITES-listed shark species Received: 29 March 2018 Diego Cardeñosa 1,2, Jessica Quinlan3, Kwok Ho Shea4 & Demian D. Chapman3 Accepted: 23 October 2018 The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) is a Published: xx xx xxxx multilateral environmental agreement to ensure that the international trade of threatened species is either prohibited (Appendix I listed species) or being conducted legally, sustainably, and transparently (Appendix II listed species). Twelve threatened shark species exploited for their fns, meat, and other products have been listed under CITES Appendix II. Sharks are often traded in high volumes, some of their products are visually indistinguishable, and most importing/exporting nations have limited capacity to detect illicit trade and enforce the regulations. High volume shipments often must be screened after only a short period of detainment (e.g., a maximum of 24 hours), which together with costs and capacity issues have limited the use of DNA approaches to identify illicit trade. Here, we present a reliable, feld-based, fast (<4 hours), and cost efective ($0.94 USD per sample) multiplex real- time PCR protocol capable of detecting nine of the twelve sharks listed under CITES in a single reaction. This approach facilitates detection of illicit trade, with positive results providing probable cause to detain shipments for more robust forensic analysis. We also provide evidence of its application in real law enforcement scenarios in Hong Kong. Adoption of this approach can help parties meet their CITES requirements, avoiding potential international trade sanctions in the future.
    [Show full text]
  • Hepatobiliary Polycyclic Aromatic Hydrocarbons in Pelagic Fishes of the Gulf of Mexico
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School October 2020 Hepatobiliary Polycyclic Aromatic Hydrocarbons in Pelagic Fishes of the Gulf of Mexico Madison R. Schwaab University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biology Commons, and the Toxicology Commons Scholar Commons Citation Schwaab, Madison R., "Hepatobiliary Polycyclic Aromatic Hydrocarbons in Pelagic Fishes of the Gulf of Mexico" (2020). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/8586 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Hepatobiliary Polycyclic Aromatic Hydrocarbons in Pelagic Fishes of the Gulf of Mexico by Madison R. Schwaab A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Marine Science with a concentration in Marine Resource Assessment College of Marine Science University of South Florida Major Professor: Steven A. Murawski, Ph.D. Erin L. Pulster, Ph.D. Ernst Peebles, Ph.D. Date of Approval: October 30, 2020 Keywords: Oil, Contaminants, PAH, Fish Copyright © 2020, Madison R. Schwaab Acknowledgements I would first like to acknowledge my advisor, Dr. Steven Murawski, and my committee members, Dr. Erin Pulster and Dr. Ernst Peebles, for their help throughout this project. Dr. Murawski contributed so much, both to this project and to my professional development, during my time at the University of South Florida.
    [Show full text]
  • Crestfish Lophotus Lacepede (Giorna, 1809) and Scalloped Ribbonfish Zu Cristatus (Bonelli, 1819) in the Northern Coast of Sicily, Italy
    ISSN: 0001-5113 ACTA ADRIAT., ORIGINAL SCIENTIFIC PAPER AADRAY 58(1): 137 - 146, 2017 Occurrence of two rare species from order Lampriformes: Crestfish Lophotus lacepede (Giorna, 1809) and scalloped ribbonfish Zu cristatus (Bonelli, 1819) in the northern coast of Sicily, Italy Fabio FALSONE1, Michele Luca GERACI1, Danilo SCANNELLA1, Charles Odilichukwu R. OKPALA1, Giovan Battista GIUSTO1, Mar BOSCH-BELMAR2, Salvatore GANCITANO1 and Gioacchino BONO1 1Institute for the Coastal Marine Environment, IAMC‑CNR, 91026 Mazara del Vallo, Sicily, Italy 2Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy Corresponding author, e‑mail: [email protected] The bony fish Lophotus lacepede (Giorna, 1809) and Zu cristatus (Bonelli, 1819) are the two species rarely recorded within the Mediterranean basin, usually reported as accidentally captured in depth (mesopelagic) fishing operations. In the current work, we present the first record of L. lacepede and Z. cristatus in fishing catches from southwestern Tyrrhenian Sea. Moreover, in order to improve existent biological/ecological knowledge, some bio-related aspects such as feeding aspect, sexual maturity and age estimate have been discussed. Key words: crestfish, scalloped ribbonfish, meristic features, vertebrae, growth ring INTRODUCTION species of Lophotidae family, the L. lacepede inhabits the epipelagic zone, although it could The target species of this study (Lophotus also be recorded in most oceans from the surface lacepede and Zu cristatus) belong to Lophotidae up to 1000 m depth (HEEMSTRA, 1986; PALMER, (Bonaparte, 1845) and Trachipteridae (Swain- 1986; OLNEY, 1999). First record of this spe- son, 1839) families respectively, including the cies in the Mediterranean Basin was from the Lampriformes order (consisted of 7 families).
    [Show full text]
  • 1 a Petition to List the Oceanic Whitetip Shark
    A Petition to List the Oceanic Whitetip Shark (Carcharhinus longimanus) as an Endangered, or Alternatively as a Threatened, Species Pursuant to the Endangered Species Act and for the Concurrent Designation of Critical Habitat Oceanic whitetip shark (used with permission from Andy Murch/Elasmodiver.com). Submitted to the U.S. Secretary of Commerce acting through the National Oceanic and Atmospheric Administration and the National Marine Fisheries Service September 21, 2015 By: Defenders of Wildlife1 535 16th Street, Suite 310 Denver, CO 80202 Phone: (720) 943-0471 (720) 942-0457 [email protected] [email protected] 1 Defenders of Wildlife would like to thank Courtney McVean, a law student at the University of Denver, Sturm college of Law, for her substantial research and work preparing this Petition. 1 TABLE OF CONTENTS I. INTRODUCTION ............................................................................................................................... 4 II. GOVERNING PROVISIONS OF THE ENDANGERED SPECIES ACT ............................................. 5 A. Species and Distinct Population Segments ....................................................................... 5 B. Significant Portion of the Species’ Range ......................................................................... 6 C. Listing Factors ....................................................................................................................... 7 D. 90-Day and 12-Month Findings ........................................................................................
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Report on Bycatch of Tuna Longline Fishing Operation Eastern Indian Ocean by SEAFDEC Research Vessels Year 2005-2011
    Report on Bycatch of Tuna Longline Fishing Operation Eastern Indian Ocean by SEAFDEC Research Vessels Year 2005-2011 Sayan promjinda, Isara Chanrachkij Southeast Asian Fisheries Development Center 1) Abstract Catch data, by three SEAFDEC research vessels namely, M.V.SEAFDEC and M.V. SEAFDEC2, recorded through fishing logbook from year 2005 to 2011, is summarized and calculated the hook rate in Catch Per Unit Effort (CPUE). Total numbers of fishing operation are 73 tuna longline operations. Total numbers of hook deployed are 38,333 hooks. Numbers of deployed hooks are ranged from 90 to 620 hooks in an operation and average in an operation is 490 hooks. Numbers of individual bycatch were 494 individual fishes with 6940.26 kg. Distribution of CPUEs in kilogram per haul and hook rate (%) from the longline operations is 1.29 individual fish/100 hooks, 18.1 kg/100 hooks. Three dominant catch is listed; 1) Lancetfish (Alepisaurus ferox); 2) Big-eye Thresher Shark (Alopias superciliosus); and 3) Sting Ray (Dasyatis spp.) 2) Introduction: Bycatch species of tuna longline fisheries i.e. shark and rays, sea turtle, marine mammal and seabird, is group of importance species concerned by international organization what increase magnitude to force the fishers on conservation issues in recently year. Since 1968, Southeast Asian Fisheries Development Center, Training Department (SEAFDEC/TD) has established for enhance human capacity on modern marine capture in Southeast Asia. Tuna longline is one of the major fishing gears appointed to train SEAFDEC trainees. Thus, tuna longline operations have been carried out every year around the fishing ground of South China Sea and Indian Ocean.
    [Show full text]