Speed Control of Dc Motor Using Chopper

Total Page:16

File Type:pdf, Size:1020Kb

Speed Control of Dc Motor Using Chopper International Journal of Engineering, Management & Sciences (IJEMS) ISSN-2348 –3733, Volume-1, Issue-10, October 2014 Speed Control of Dc Motor Using Chopper Abhishek Soni arrive at a mathematical description that contains the relevant Abstract— Some devices convert electricity into motion but dynamic characteristics of the particular model. do not generate usable mechanical power as primary objective and so are not generally referred to as electric motors. Most electric motors operate through the interaction of magnetic fields and current-carrying conductors to generate force. The reverse process, producing electrical energy from mechanical energy, is done by generators such as an alternator or a dynamo; some electric motors can also be used as generators, for example, a traction motor on a vehicle may perform both tasks. Electric motors and generators are commonly referred to as electric machines. Electric motors are found in applications as diverse as industrial fans, blowers and pumps, machine tools, household appliances, power tools, and disk drives. They may be powered by direct current, e.g., a battery powered portable device or motor vehicle, or by alternating current from a central electrical Figure 1: Electromechanical Energy Conversion distribution grid or inverter. The smallest motors may be found in electric wristwatches. Medium-size motors of highly DC machines may also work as brakes. The brake mode is a standardized dimensions and characteristics provide convenient mechanical power for industrial uses. The very largest electric generator action but with the electrical power either motors are used for propulsion of ships, pipeline compressors, regenerated or dissipated within the machine system, thus and water pumps with ratings in the millions of watts. Electric developing a mechanical braking effect. It also converts some motors may be classified by the source of electric power, by their electrical or mechanical energy to heat, but this is undesired. internal construction, by their application, or by the type of The major advantages of DC machines are easy speed and motion they give. torque regulation. The major parts of any machine are the The physical principle of production of mechanical force by stationary component, the stator, and the rotating component, the interactions of an electric current and a magnetic field was the rotor. known as early as 1821. Electric motors of increasing efficiency were constructed throughout the 19th century, but commercial exploitation of electric motors on a large scale required efficient Types of DC Motor electrical generators and electrical distribution networks. DC Motors are electrically identical to dc generators. In fact, The speed of a DC motor can be varied by controlling the field the same dc machine may be driven mechanically to generate flux, the armature resistance or the terminal voltage applied to a voltage, or it may be driven electrically to move a the armature circuit. The three most common speed control mechanical load. While this is not normally done, it does methods are field resistance control, armature voltage control, point out the similarities between the two machines. and armature resistance control. In this section, modeling There are three types of DC Motors: procedure of these three methods and feedback control method for DC motor drives for dynamic analysis are presented. Series DC Motors. Index Terms— DC (direct current), PMSM (Permanent Magnet Synchronous Motor). Shunt DC Motors. Compound DC Motors. Emf Equation of DC Motor I. INTRODUCTION When the motor armature rotates the conductor also rotates A theory is a general statement of principle abstracted from and hence cut the flux. In accordance with the law of observation. And a model is a representation of a theory that electromagnetic induction emf is induced in them, whose can be used for control and prediction. For a model to be direction found by Flemings right hand rule, is in opposition useful, it must be realistic and yet simple enough to to the applied voltage because of its opposite direction it is understand and manipulate. These requirements are not easily referred to as counter emf or back emf Eb. The rotating fulfilled as realistic models are seldom simple and simple armature generating the back emf Eb is like a battery of emf Eb models are seldom realistic. put across supply mains of V volt. Obviously V has to drive Ia The scope of a model is defined by what is against the opposition of Eb. The power required to overcome considered relevant. Features or behavior that is relevant must this opposition is EbIa. be included in the model and those that are not can be ignored. In DC Motor power is converted into mechanical energy. Modeling refers to the process of analysis and synthesis to Ia = Net Voltage/Resistance, Where Ra is the resistance of armature circuit Eb = volt, where N is in rps. Manuscript received October 20, 2014 Back emf depends upon the other factors of the armature Abhishek Soni, Asst. Prof. Swasthya Kalyan Technical Campus, Jaipur, India speed if speed is high Eb is large, hence armature current Ia is 5 www.alliedjournals.com Speed Control of Dc Motor Using Chopper small. If speed is less then Eb is less hence motor current flows chopper involves one stage conversion, these are more which develop motor torque. efficient Choppers are now being used all over the world for Starting of DC Motor rapid transit systems. These are also used in trolley cars, The counter-emf aids the armature resistance to limit the marine hoist, forklift trucks and mine haulers. The future current through the armature. When power is first applied to a electric automobiles are likely to use choppers for their speed motor, the armature does not rotate. At that instant the control and braking. Chopper systems offer smooth control, counter-emf is zero and the only factor limiting the armature high efficiency, faster response and regeneration facility. The current is the armature resistance. Usually the armature power semiconductor devices used for a chopper circuit can resistance of a motor is less than 1 Ω; therefore the current be force commutated thyristor, power BJT, MOSFET and through the armature would be very large when the power is IGBT.GTO based chopper are also used. These devices are applied. This current can make an excessive voltage drop generally represented by a switch. When the switch is off, no affecting other equipment in the circuit and even trip overload current can flow. Current flows through the load when switch protective devices. is “on”. The power semiconductor devices have on-state Therefore the need arises for an additional resistance in series voltage drop of 0.5V to 2.5V across them. For the sake of with the armature to limit the current until the motor rotation simplicity, this voltage drop across these devices is generally can build up the counter-emf. As the motor rotation builds up, neglected. As mentioned above, a chopper is dc equivalent to the resistance is gradually cut out. an ac transformer, have continuously variable turn’s ratio. Like a transformer, a chopper can be used to step down or step Three point starter up the fixed dc input voltage. The incoming power is indicated as L1 and L2. The Starting Chopper Circuit components within the broken lines form the three-point The second possibility of controlling the armature current is starter. As the name implies there are only three connections to use a step-up converter. The step-up converter is usually to the starter. The connections to the armature are indicated as attributed the name chopper in the literature. A1 and A2. The ends of the field (excitement) coil are The circuitry layout of this mean of control is shown in figure indicated as F1 and F2. In order to control the speed, a field (a). The controlled switch of the chopper circuit is biased by rheostat is connected in series with the shunt field. One side of an hysteresis controller. The hysteresis controller is the line is connected to the arm of the starter (represented by programmed to guaranty an armature current waveform an arrow in the diagram). The arm is spring-loaded so, it will similar to the one shown in figure (b). return to the "Off" position when not held at any other position. Figure 2 Three point Starter of DC Motor On the first step of the arm, full line voltage is applied across the shunt field. Since the field rheostat is normally set to minimum resistance, the speed of the motor will not Figure 3 Using Chopper circuit Mean. a) Circuit be excessive; additionally, the motor will develop a large Topology starting torque. b) Hysteresis Controller Function As it can been seen, the chopper circuit did perform its duty as The starter also connects an electromagnet in series with intended but that was at the expense of delaying the motor the shunt field. It will hold the arm in position when the from reaching its steady state (rated value) in a short time. arm makes contact with the magnet. Themotor reaches its rated speed at time = 8 seconds. The ratio between the maximum and rated values of the armature Meanwhile that voltage is applied to the shunt field, and current is 1.23 but the armature current has a lot of ripples the starting resistance limits the current to the armature. which might be harmful to the armature circuitry. IV. MODELLING AND SIMULATION OF SPEED As the motor picks up speed counter-emf is built up; the CONTROL OF DC MOTOR arm is moved slowly to short. To produce a good design, there needs to be some amount of III. SPEED CONTROL OF DC MOTOR USING CHOPPER modeling or simulations done to avoid aimless trial and error A chopper is a static power electronic device that converts techniques with the actual equipment (the DC motor).
Recommended publications
  • ACSM1 System Engineering Manual
    ACSM1 System Engineering Manual 2 3 ACSM1-04 Drive Modules System Engineering Manual 3AFE 68978297 REV A EN EFFECTIVE: 08.10.2007 PDM Vault ID: 00579251 2007 ABB Oy. All rights reserved. 4 5 Safety instructions Never work on the drive, the braking chopper circuit, the motor cable or the motor when input power is applied to the drive. After disconnecting input power, always wait for 5 minutes to let the intermediate circuit capacitors discharge before you start working on the drive, control cabling, motor or motor cable. Even when input power is not applied to the drive, externally supplied control circuits may carry dangerous voltages. Always ensure by measuring that no voltage is actually present. A rotating permanent magnet motor can generate a dangerous voltage. Lock the motor shaft mechanically before connecting a permanent magnet motor to the drive, and before doing any work on a drive system connected to a permanent magnet motor. For complete safety instructions see the ACSM1-04 Drive Modules (0.75 to 45 kW) Hardware Manual (code: 3AFE68797543 [English]). 6 Table of contents Safety instructions ................................................................................................................... 5 Table of contents...................................................................................................................... 6 About this manual .................................................................................................................... 8 Compatibility ..............................................................................................................................
    [Show full text]
  • Siemens On-Stage Powerpoint-Template
    Electromobility Solutions for Modern Haul Trucks 2017 Haulage & Loading Exhibition / Conference Phoenix, Arizona USA Unrestricted © Siemens Industry, Inc. 2017 usa.siemens.com/mining Introduction What is Electromobility? Electromobility is a general term for the development of electric- powered drivetrains designed to shift vehicle design away from the use of fossil fuels and carbon gas emissions. • Hybrid Electric Vehicles (Internal Combustion Engine (ICE) and batteries w/ Electric motor) • Plug-in Electric Vehicles (HEV that can be externally charged) • Battery Electric Vehicles (all electric vehicle that can be externally charged) Electric Drive Technology and Charging Solutions for Mobility. Unrestricted © Siemens Industry, Inc. 2017 2017 Haulage & Loading Exhibition and Conference Page 2 May 8, 2017 Electromobility Solutions for Modern Haul Trucks Mechanical Vehicle (MV) w/ On-board Diesel Engine Traditional Powertrain Main Components: - Diesel Engine - Torque Converter - Drive Shaft (Cardan) - Transmission - Differential - Gearbox Disadvantages: - Low efficiency - High maintenance costs Unrestricted © Siemens Industry, Inc. 2017 2017 Haulage & Loading Exhibition and Conference Page 3 May 8, 2017 Electromobility Solutions for Modern Haul Trucks Electric Vehicle (EV) w/ On-board Diesel Engine Electrical Drivetrain replaces Mechanical Drivetrain, keeps the diesel engine Main Components: - Diesel engine - Alternator w/ Rectifier - Inverters - Traction motors - Braking chopper/Grid resistor Benefits - Higher efficiency - Electrical braking
    [Show full text]
  • Brushless DC Electric Motor
    Please read: A personal appeal from Wikipedia author Dr. Sengai Podhuvan We now accept ₹ (INR) Brushless DC electric motor From Wikipedia, the free encyclopedia Jump to: navigation, search A microprocessor-controlled BLDC motor powering a micro remote-controlled airplane. This external rotor motor weighs 5 grams, consumes approximately 11 watts (15 millihorsepower) and produces thrust of more than twice the weight of the plane. Contents [hide] 1 Brushless versus Brushed motor 2 Controller implementations 3 Variations in construction 4 AC and DC power supplies 5 KM rating 6 Kv rating 7 Applications o 7.1 Transport o 7.2 Heating and ventilation o 7.3 Industrial Engineering . 7.3.1 Motion Control Systems . 7.3.2 Positioning and Actuation Systems o 7.4 Stepper motor o 7.5 Model engineering 8 See also 9 References 10 External links Brushless DC motors (BLDC motors, BL motors) also known as electronically commutated motors (ECMs, EC motors) are electric motors powered by direct-current (DC) electricity and having electronic commutation systems, rather than mechanical commutators and brushes. The current-to-torque and frequency-to-speed relationships of BLDC motors are linear. BLDC motors may be described as stepper motors, with fixed permanent magnets and possibly more poles on the rotor than the stator, or reluctance motors. The latter may be without permanent magnets, just poles that are induced on the rotor then pulled into alignment by timed stator windings. However, the term stepper motor tends to be used for motors that are designed specifically to be operated in a mode where they are frequently stopped with the rotor in a defined angular position; this page describes more general BLDC motor principles, though there is overlap.
    [Show full text]
  • Electrical Braking 2 Technical Guide No.8 - Electrical Braking Contents
    Technical Guide No. 8 Electrical Braking 2 Technical Guide No.8 - Electrical Braking Contents 1. Introduction ........................................................... 5 1.1 General .................................................................... 5 1.2 Drive applications map according to speed and torque ..................................................................... 5 2. Evaluating braking power................................... 7 2.1 General dimension principles for electrical braking ..................................................................... 7 2.2 Basics of load descriptions ................................... 8 2.2.1 Constant torque and quadratic torque...... 8 2.2.2 Evaluating brake torque and power .......... 8 2.2.3 Summary and Conclusions ........................ 12 3. Electrical braking solutions in drives .............. 13 3.1 Motor Flux braking ................................................. 13 3.2 Braking chopper and braking resistor .................. 14 3.2.1 The energy storage nature of the frequency converter ................................... 14 3.2.2 Principle of the braking chopper ............... 15 3.3 Anti-parallel thyristor bridge configuration ........... 17 3.4 IGBT bridge configuration...................................... 19 3.4.1 General principles of IGBT based regeneration units ....................................... 19 3.4.2 IGBT based regeneration-control targets . 19 3.4.3 Direct torque control in the form of direct power control .............................................
    [Show full text]
  • W.E.F. : 2016-2017
    R.V.R. & J.C. College of Engineering (Autonomous) R-16 R V R & J C COLLEGE OF ENGINEERING, CHOWDAVARAM, GUNTUR-19 (Autonomous) R-16 REGULATIONS & SCHEME CHOICE BASED CREDIT SYSTEM Regulations, Scheme of Instruction, Examination and Detailed Syllabi for 4-Year B.Tech Degree Course in Electrical & Electronics Engineering (Semester System) w.e.f. : 2016-2017 B.Tech.(EEE)/R-16/2016-2017 Page 1 of 187 R.V.R. & J.C. College of Engineering (Autonomous) R-16 EEE Department Vision: “To impart education leading to highly competent professionals in the field of Electrical & Electronics Engineering who are globally competent and to make the Department a Centre for Excellence”. EEE Department Mission: “Integrated development of professionals with knowledge and skills in the field of specialization, ethics and values needed to be employable in the field of Electrical Engineering and contribute to the economic growth of the employing organization and pursue lifelong learning” Program Educational Objectives of B. Tech Program in Electrical & Electronics Engineering: PEO I. To facilitate the students to become Electrical & Electronics Engineers who are competent, innovative and productive in addressing the broader interests of the organizations & society. PEO II. To prepare the students to grow professionally with necessary soft skills. PEO III. To make our graduates to engage and excel in activities to enhance knowledge in their professional works with ethical codes of life & profession. Program Specific Outcomes of B. Tech Program in Electrical & Electronics Engineering: PSO1 Graduates of the program will be able to demonstrate knowledge and hands on competence in developing, Testing, Operation and Maintenance of Electrical & Electronics systems.
    [Show full text]
  • OPERATING INSTRUCTIONS NORDAC Frequency Inverters
    OPERATING INSTRUCTIONS NORDAC Frequency Inverters Type series SK 1.300/1 to SK 2.400/1 And Type series SK 1.300/3 to SK 38.000/3 BU 3000/93E GETRIEBEBAU NORD Schlicht + Küchenmeister GmbH & Co. Rudolf-Diesel-Str. 1 * D - 22941 Bargteheide Postfach 1262 * D - 22934 Bargteheide Tel.: 04532/401-0 * Telex 261505 * Fax 04532/401-555 Table of contents Page 1.0 General 1 1.1 Delivery 1 1.2 Scope of delivery 1 1.3 Installation and operation 1 2.0 Installation 2 3.0 Frequency inverter dimensions 3 3.1 Braking chopper dimensions 3 4.0 Connection 4 4.1 Power section 4 4.1.1 Type SK 1.300/1 - SK 2.400/1 4 4.1.2 Type SK 1.300/3 - SK 38.000/3 4 4.1.3 Additional measures 4 4.2 Control section 5 4.2.1 Control terminal strip 5 4.2.2 Control inputs 6 5.0 Operation and displays 12 5.1 Setting and display facilities 13 5.2 Description of settings and displays 14 6.0 Commssioning 22 6.1 Parameter record 23 7.0 Braking chopper 24 7.1 Technical data 24 7.2 Installation instructions 24 7.3 Settings 24 7.4 Selection criteria 24 8.0 Failure and faults 26 9.0 Speed controller 27 10.0 Mains filter 29 10.1 Radio interference suppression 29 10.2 Effect on other consumers 30 10.3 Line capacitances (motor cable) 30 10.4 Output filters 30 10.5 Regulations 30 11.0 Technical data 31 T.-Nr.: 06063082 Stand: 42/93 1.0 General NORDAC frequency Inverters are sine-related pulse-width modulated inverters with a constant DC link voltage.
    [Show full text]
  • Design Considerations of Traction Converter for Three Phase AC Locomotive
    © 2018 JETIR June 2018, Volume 5, Issue 6 www.jetir.org (ISSN-2349-5162) Design considerations of Traction converter for three phase AC locomotive Dr. Premananda Pany [email protected] Synergy Institute of Engineering & Technology Dhenkanal, Odisha Abstract- This paper presents some of the important design issues of traction converter for three phase AC locomotive. The analytical approach is required to select appropriate components which will make the system more reliable, stable with minimum power loss. The mathematical approach required in the design of each component is presented. The main components of TC such as IGBTs, Driver circuit, heat sink, precharging resistor, DC link capacitor, resonant filter, bleeder resistors, earth fault resistors, braking chopper are discussed in this paper. The behavior of each component under variation in power supply and supply frequency are discussed. The analysis presented in this paper is very much useful for a designer while designing a converter inverter system for a vehicular system. The control strategy adopted for front end converter is discussed and simulated results using PSIM is also presented. Keywords: Traction converter, Inverter, DC link, Resonant, PSIM. I. Introduction The traction drives consists of power electronic have become more complex over the past decades due to the advancement of high power and high speed semiconductors such as IGBT, IGCT, microprocessor control and three phase inverter drives . Now a day it is common to operate 3 phase induction motor drives with traction electric multiple unit and locomotive. The three phase induction motor drive provides an improved in the overall performance of electric traction equipment. With the ability to increase the level of the available power, the train operator has been able to improve train operating times, the speed of the traction unit and the demand on the power supply system.
    [Show full text]
  • Analysis and Simulation of Mechanical Trains Driven By
    ANALYSIS AND SIMULATION OF MECHANICAL TRAINS DRIVEN BY VARIABLE FREQUENCY DRIVE SYSTEMS A Thesis by XU HAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2010 Major Subject: Mechanical Engineering ANALYSIS AND SIMULATION OF MECHANICAL TRAINS DRIVEN BY VARIABLE FREQUENCY DRIVE SYSTEMS A Thesis by XU HAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Alan B. Palazzolo Committee Members, Won-jong Kim Hamid A. Toliyat Head of Department, Dennis O'Neal December 2010 Major Subject: Mechanical Engineering iii ABSTRACT Analysis and Simulation of Mechanical Trains Driven by Variable Frequency Drive Systems. (December 2010) Xu Han, B.S., Zhejiang University, P.R.China Chair of Advisory Committee: Dr. Alan B. Palazzolo Induction motors and Variable Frequency Drives (VFDs) are widely used in in- dustry to drive machinery trains. However, some mechanical trains driven by VFD- motor systems have encountered torsional vibration problems. This vibration can induce large stresses on shafts and couplings, and reduce the lifetime of these me- chanical parts. Long before the designed lifetime, the mechanical train may encounter failure. This thesis focuses on VFDs with voltage source rectifiers for squirrel-cage induction motors of open-loop Volts/Hertz and closed-loop Field Oriented Control (FOC). First, the torsional vibration problems induced by VFDs are introduced. Then, the mathematical model for a squirrel-cage induction motor is given.
    [Show full text]
  • University of Engineering & Management, Jaipur
    UNIVERSITY OF ENGINEERING & MANAGEMENT,JAIPUR Lecture-wise Plan Subject Name: Electric Drives Subject Code-EE701 Year: 4th Year Semester: Eight Module Topics Number of Lectures Number Electric Drive: 5L 1. Concept, classification, parts and 1 advantages of electrical drives. 1 2. Types of Loads, Components of load 2 toques, Fundamental torque equations, Equivalent value of drive parameters for loads with rotational and translational motion.. 3. Determination of moment of inertia, 1 Steady state stability, Transient stability 4. Multi quadrant operation of drives. Load 1 equalization Motor power rating: 6L 1. Thermal model of motor for heating and 2 2 cooling, classes of motor duty 2. Determination of motor rating for continuous, short time and intermittent 2 duty. 3. Equivalent current, torque and power 1 methods of determination of rating for fluctuating and intermittent loads 4. Effect of load inertia & environmental 1 factors Stating of Electric Drives: 6L 1. Effect of starting on Power supply, motor \2 3. and load 2. Methods of stating of electric motors. 2 Acceleration time Energy relation during stating, 3. Methods to reduce the Energy loss during starting 2 Braking of Electric Drives: 2L 4 1. Types of braking, braking of DC motor, 2 Induction motor and Synchronous motor, Energy loss during braking Dc Motor Drives: 6L 5 1. Modelling of DC motors, State space modelling, block diagram &Transfer 2 function 2. Single phase, three phases fully controlled and half controlled DC drives. Dual 2 converter control of DC drives 3. Power factor, supply harmonics and ripple in motor current chopper controlled DC 2 motor drives Induction motor drives: 4L 6 1.
    [Show full text]
  • An Efficient Braking Algorithm for Interior Permanent Magnet Synchronous Motors
    13th INTERNATIONAL SYMPOSIUM on POWER ELECTRONICS - Ee 2005 XIII Međunarodni simpozijum Energetska elektronika – Ee 2005 NOVI SAD, SERBIA & MONTENEGRO, November 2nd - 4th, 2005 AN EFFICIENT BRAKING ALGORITHM FOR INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTORS Vladan R. Jevremović, Borislav Jeftenić* SR Drives Ltd – Emerson Motor Technologies, Harrogate, United Kingdom Faculty of Electrical Engineering, University of Belgrade, Serbia & Montenegro* Abstract: This paper presents an efficient braking permanent magnet and reluctance torque has been algorithm for a permanent magnet synchronous motor proposed. drives with a diode front end rectifier. Regenerative braking energy is dissipated in stator windings which act 2. EFFICIENT BRAKING CRITERIA as a braking resistor, without adding any additional Braking methods within electrical motor drives can braking choppers and electronic control circuits. be classified into three main groups – inertial, soft and Application of this braking algorithm results in maximum active braking. power losses in stator windings and relatively high a) Inertial, passive braking (coast down) is achieved braking torque, all within inverter current and voltage simply by turning off the inverter. The whole braking capabilities. Also, this algorithm determines braking process relies on rotor inertia, mechanical load, viscous dynamics by regulating voltage on a DC link capacitor and ventilating friction. This braking method has no well bellow critical limit. practical value when being used at high motor speeds, Key Words: Braking/Permanent Magnet Synchronous Motor due to very long stopping time. Also, this way of braking is recommended for low speeds only. In case of high 1. INTRODUCTION speeds, where field weakening algorithm is used (with Permanent magnet synchronous motor drives can notoriously high direct axis currents), electromotive operate in all four quadrants of torque-speed force can be relatively high (several kV).
    [Show full text]
  • — Technical Guide No. 8 Electrical Braking
    — ABB DRIVES Technical guide No. 8 Electrical braking 2 TECHNICAL GUIDE NO. 8 ELECTRICAL BRAKING — Electrical braking Cranes, elevators, centrifuges, downhill conveyors and test benches are typical examples of braking applications. Several factors affect the selection of the most optimal braking solution, such as system efficiency, installation footprint, complexity of the installation and investment and energy cost. 3 — Table of contents 04 Introduction 04 General 05 Drive applications map according to speed and torque 06 Evaluating braking power 06 General dimension principles for electrical braking 07 Basics of load descriptions 09 Constant torque and quadratic torque 09 Evaluating brake torque and power 11 Summary and conclusions 12 Electrical braking solution in drives 12 Motor flux braking 13 Brake chopper and resistor 13 The energy storage nature of the variable speed drive 14 Principle of the brake chopper 16 A thyristor bridge configuration 17 Regenerative rectifier unit 18 Matrix technology 19 Regenerative braking unit 20 IGBT bridge configuration 20 General principles of IGBT based regeneration units 20 IGBT based regeneration – control targets 21 Active control of the IGBTs for low harmonic content 22 Dimensioning an IGBT regeneration unit 23 Common DC 25 Evaluating the life cycle cost of different forms of electrical braking 25 Calculating the direct cost of energy 25 Evaluating the investment cost 26 Calculating the life cycle cost 26 Case 1 – Occasional braking 27 Case 2 – Crane application 28 Case 3 – Centrifuge application 29 Comparison of different braking technologies 30 Symbols and definitions 4 TECHNICAL GUIDE NO. 8 ELECTRICAL BRAKING — Introduction — General This guide continues ABB’s technical guide series, describing the practical solutions available in reducing stored energy and transferring stored energy back into electrical energy.
    [Show full text]
  • Design and Analysis of Drive System with Slip Ring Induction Motor for Electric Traction in India
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref International Journal of Power Electronics and Drive System (IJPEDS) Vol. 5, No. 3, February 2015, pp. 374~382 ISSN: 2088-8694 374 Design and Analysis of Drive System with Slip Ring Induction Motor for Electric Traction in India C. Nagamani*, R. Somanatham**, U. Chaitanya Kumar*** * Research Scholar, University College of Engineering, Osmania University, Hyderabad, India ** HOD, Dept. Of Electrical & Electronics Engineering, Anurag College of Engineering, Hyderabad, India *** M.Tech Student, Dept. Of EEE, Anurag College of Engineering, Hyderabad, India Article Info ABSTRACT The use of Squirrel Cage Motor for Traction has revolutionised the motive Article history: power of a Locomotive. The Asynchronous Motor is rugged, has high Received Oct 31, 2014 starting Torque, very smooth Voltage and Speed control as compared to a Revised Jan 12, 2015 DC Series Motor. When looking at the Traction perspective, a Wound Rotor Induction Motor can be an alternative to the Squirrel Cage Motor as it has Accepted Jan 24, 2015 higher starting Torque at lower starting current and better efficiency than a Squirrel Cage Motor. The Slip Power Recovery scheme also plays a Keyword: proactive role as there can be substantial savings of energy in case of a Wound Rotor Induction Motor as the Slip Power recovered can be used to Electric Traction drive the Auxiliary Loads of the Locomotive and also for powering the Slip Power Recovery trailing Passenger Cars. A detailed design and analysis of a Drive System Squirrel Cage Induction Motor with Wound Rotor Induction Motor for Electric Traction is presented in this Wound Rotor Induction Motor Research Paper.
    [Show full text]