Amphibian Biology and Husbandry

Total Page:16

File Type:pdf, Size:1020Kb

Amphibian Biology and Husbandry Amphibian Biology and Husbandry F. Harvey Pough Abstract Introduction Extant amphibians comprise three lineages—salamanders mphibians have a long history of service as research (Urodela or Caudata), frogs and toads (Anura), and caecil- animals, especially as models for studies of embry- ians (Gymnophiona, Apoda, or Caecilia)—which contain Aonic development, regeneration, and physiological more than 6000 species. Fewer than a dozen species of function. Salamanders (especially ambystomatids and sala- amphibians are commonly maintained in laboratory colo- mandrids) and frogs (notably ranids and Xenopus) have con- nies, and the husbandry requirements for the vast majority tributed much to these studies, and methods for maintaining of amphibians are poorly known. For these species, a review them in the laboratory are well established (Nace et al. of basic characteristics of amphibian biology supplemented 1974, O’Rourke 2002). Reviews of techniques for maintain- by inferences drawn from the morphological and physi- ing, breeding, and rearing these species of amphibians in ological characteristics of the species in question provides a captivity appear elsewhere in this ILAR Journal issue basis for decisions about housing and feeding. Amphibians (Browne and Zippel 2007; Browne et al. 2007; O’Rourke are ectotherms, and their skin is permeable to water, ions, 2007). Discussions of the requirements of some amphibians and respiratory gases. Most species are secretive and, in that are less commonly kept in captivity include the follow- many cases, nocturnal. The essential characteristics of their ing: Buchanan and Jaeger (1995), Cover et al. (1994), de environment include appropriate levels of humidity, tem- Vosjoli (1999), Johnson (1994), Maruska (1994), Pough perature, and lighting as well as retreat sites. Terrestrial and (1991), Wake (1994), Zimmermann (1986), and Zimmer- arboreal species require moist substrates, water dishes, and mann and Zimmermann (1994). high relative humidity. Because temperature requirements Increased interest in organismal biology and in environ- for most species are poorly known, it is advisable to use a mental and evolutionary physiology has brought novel spe- temperature mosaic that will allow an animal to find an cies into the laboratory. These species often are selected for appropriate temperature within its cage. Photoperiod may study because they have particular ecological, environmen- affect physiology and behavior (especially reproduction and tal, or phylogenetic characteristics. Because investigators hibernation), and although the importance of ultraviolet and others have usually collected the animals from the wild, light for calcium metabolism by amphibians is not yet the individual animals have no history of exposure to cap- known, ecological observations suggest that it might be im- tivity, and as species, they have not experienced selection portant for some species of frogs. Some amphibians are for tolerance of captivity. territorial, and some use olfactory cues to mark their terri- Currently there are no established husbandry methods tory and to recognize other individuals of their species. All for most species of amphibians, and only scanty information amphibians are carnivorous as adults, and the feeding re- is available about ecology and behavior for many of them. sponse of many species is elicited by the movement of prey. Meeting the basic physical needs of a species—terrestrial or Diets should include a mixture of prey species, and it may aquatic conditions, and the appropriate temperature and hu- be advisable to load prey with vitamins and minerals. midity—is obviously important, but other issues may be equally significant. Stimuli that elicit behavioral responses, Key Words: amphibian; caecilian; care; frog; herpetocul- for example, may inadvertently increase stress. The social ture; husbandry; salamander; toad behavior of amphibians is substantially more complex and subtle than one would guess from observations of laboratory colonies of Xenopus and axolotls (Ambystoma mexicanum and Ambystoma tigrinum). Social behaviors such as territo- riality and dominance hierarchies may influence feeding and reproduction (e.g., Gabor and Jaeger 1995, Jaeger and Schwarz 1991, Jaeger et al. 1995, Murray and Jenkins 1999, F. Harvey Pough, Ph.D., is Professor of Organismal Biology, Department Simons et al. 1997). Olfactory stimuli deposited on the sub- of Biological Sciences, Rochester Institute of Technology, Rochester, NY. Address correspondence and reprint requests to Dr. F. Harvey Pough, strate or carried through the air are elements of the behav- Department of Biological Sciences, Rochester Institute of Technology, 85 ioral ecology of some species of salamanders (Jaeger 1986). Lomb Memorial Drive, Rochester, NY 14623, or email [email protected]. Lighting conditions may also be more important than we Volume 48, Number 3 2007 203 realize—photoperiod as well as the intensity and spectral Phylogenetic and Ecological Diversity quality of light are probably important stimuli for some amphibians. A recent revision of the extant amphibians (Frost 2006) has Caring for exotic species of amphibians has much in resulted in a change of the generic names of many species. common with herpetoculture, and herpetocultural resources The literature of amphibian biology uses the old names, and can be useful sources of information and advice. Recom- literature searches require these names. To minimize con- mended resources include the Herpetocultural Library (de fusion, I have used the familiar names with the new names Vosjoli 2004, 2006; de Vosjoli et al. 2005); web sites (e.g., in parentheses. www.pumilio.com); and chat groups (e.g., www.groups The extant amphibians illustrate an approach to terres- .msn.com/HerpetocultureChatGroup/amphibians.msnw). In trial vertebrate life that combines ectothermy and a low addition, information about the ecology, geographic ranges, metabolic rate with highly efficient secondary production and conservation status of amphibians is available from (Pough 1983). A low metabolic rate reduces the mass- Amphibiaweb (www.amphibiaweb.org) and Global Am- specific metabolic rate with the result that small body size is phibian Assessment (www.globalamphibians.org). energetically feasible. Most amphibians are small. Twenty Herpetological Review, which the Society for the Study percent of the species of salamanders and 17% of frog spe- of Amphibians and Reptiles publishes, includes a section on cies have adult body masses of1gorless, and 65% of Herpetological Husbandry; and the International Zoo Year- salamanders and 50% of anurans are smaller than5gas book includes information about the care of amphibians. adults. Because they are ectotherms, amphibians do not use Professional staff members at zoos and aquaria may be able ingested energy to control their body temperature. As a to provide suggestions about the husbandry of particular result, their net secondary production efficiency is high— species. amphibians convert half or more of the energy they ingest When species-specific information about the behavioral, into their own body mass compared with less than 1% for ecological, and physiological characteristics of a species of birds and mammals. The combination of small body size amphibian is not available, inferences based on elements of and efficient biomass production allows amphibians to play the basic biology of amphibians may provide the only a unique role in ecosystems by consuming prey items that guidelines. Two characteristics of amphibians—ectothermal are too small for other vertebrates to eat and by repackaging regulation of body temperature and permeable skin—play most of that energy into salamander and frog-size packages central roles in their biology and provide starting points for (Pough 1980). inferences about their requirements in captivity. It is pos- The skin of amphibians lacks scales, is plentifully sup- sible to amplify these general characteristics with informa- plied with mucus and poison glands, and is a site of oxygen tion about the phylogenetic relationships and by and carbon dioxide exchange for adults as well as for larvae. observations of the morphological characteristics of the spe- Small body size and glandular skin profoundly influence the cies in question. ecology, physiology, and behavior of amphibians. Cutane- ous respiration accounts for a significant proportion of re- Biological Characteristics and Life Style spiratory gas exchange, water evaporates from the skin of of Amphibians some amphibians as rapidly as from a free-water surface, and amphibians are sensitive to toxins in the environment The extant amphibians (Amphibia [Frost 2006] or Lissam- (Alford and Richards 1999; Boutilier et al. 1992; Maerz et phibia [Tree of Life Web Project 1995]) appear in the fossil al. 2005; Shoemaker et al. 1992). record during the Mesozoic. A large number of derived The discussion that follows emphasizes features that are characters (initially identified by Parsons and Williams helpful starting points for inferences about the habits, habi- [1963] and subsequently restated and modified [Duellman tats, and husbandry of unfamiliar species of amphibians. and Trueb 1985, Frost 2006]) support the monophyly of the group. The lower Triassic form Triadobatrachus forms a Frogs and Toads monophyletic group with frogs and toads (Rage and Rocˆek 1989). The earliest salamander fossils are from Middle Ju- Anurans are the largest group of amphibians. Approxi- rassic sites in England and
Recommended publications
  • REVISION O F the AFRICAN Caeclllan GENUS
    REVISION OFTHE AFRICAN CAEClLlAN GENUS SCHISTOMETOPUM PARKER (AMPH IBIA: CYMNOPHIONA: CAECILI IDAE) BY RONALD A. NU AND MICHAEL E. PFRENDER MISCELLANEC JS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, NO. 18Fb; ' Ann Arbor, September 2 7, 1 998 ISSN 076-8405 MIS(:ELIANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, LJNTVERSITY OF MICHIGAN NO. 187 The publicatioils of the M~~sclunof Zoology, The [Jniversity of Michigan, consist PI-irnarilyof two series-the Occasion:~lPapers allti the Miscellaneous Publicatio~ls.Both series were founded by Dc Bryant Walker, Mr. Rradshaw H. Swales, anti Dr. W.W. Newcornb. Occasionally the Museuni publishes contributiorls outside of these series; begirlnirlg in 1990 these are titled Special Publicatio~lsa~ld arc numbered. All submitted ~n;inl~scriptsreceive external review. The Misccllarieous Publications, which include ~l~ollographicstltdies, papers on field and ~II- seuln techniques, and other contributions 11ot within the scope of the Occasio~lalPapers, are pl~b- lishcd separately. It is not intended that they be grouped into volumes. Each 11r11nberhas a title page and, when necessary, a table of co1itelits. Tllc Occasional Papel-s, publication of which was begun in 1913, servc as a medium Sol- original studies based prirlcipally upon the collections in the Museurn. They are issurtl separately. MThen a sufficient number of pages has hcen printed to niakc a volume, a title pagc, table of contenb, and an index are supplied to libraries and individuals on the mailing list for the series. A cornplete list of publications on Birds, Fishes, Insects, Mammals, Moll~~sks,Rcpdles and Amphib- ians, and other topics is available. Address inquiries to the Directt)r, Muse~unof Zoolohy, The lir~ivcr- sity of Michigan, Ann Arbor, Michigarl 48109-1079.
    [Show full text]
  • Caecilia Guntheri Dunn, 1942 (Gymnophiona, Caeciliidae) in Central America
    17 2 NOTES ON GEOGRAPHIC DISTRIBUTION Check List 17 (2): 649–653 https://doi.org/10.15560/17.2.649 First record of Caecilia guntheri Dunn, 1942 (Gymnophiona, Caeciliidae) in Central America Luis C. Elizondo-Lara Programa de Maestría en Ciencias Biológicas, Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, Panama City, Panama • luis. [email protected]; [email protected] https://orcid.org/0000-0002-8647-6717 Departamento de Fisiología y Comportamiento Animal, Facultad de Ciencias Naturales Exactas y Tecnología, Universidad de Panamá, Panama City, Panama Red Mesoamericana y del Caribe para la Conservación de Anfibios y Reptiles Abstract I report the first encounter in Central America of an individual of Caecilia guntheri Dunn, 1942 (Gymnophiona, Caeciliidae). The individual was observed and collected in a primary evergreen submontane forest in Cerro Pirre, Darien Province, Republic of Panama. It was identified mainly by the low counts of secondary and primary folds. The encounter of this individual of C. guntheri highlights the disjunct populations and apparently the results of dispersion of this species from South to Central America by biotic exchange as result of the closure of the Isthmus of Panama. Keywords Amphibians, biotic exchange, Cerro Pirre, Darien, disjunct distribution, Panama Academic editor: Javier Ernesto Cortés Suárez | Received 28 December 2020 | Accepted 28 March 2021 | Published 13 April 2021 Citation: Elizondo-Lara LC (2021) First record of Caecilia guntheri Dunn, 1942 (Gymnophiona, Caeciliidae) in Central America. Check List 17 (2): 649–653. https://doi.org/10.15560/17.2.649 Introduction The genus Caecilia Linnaeus, 1758 was described from Rica (Köhler 2011; Kubicki and Arias 2017).
    [Show full text]
  • Gymnophiona: Caeciliidae) from the Techniques, and Recent Predictions Western Ghats of Goa and Karnataka (Dinesh Et Al
    JoTT NOTE 2(8): 1105-1108 New site records of Gegeneophis upsurge in the description of new goaensis and G. mhadeiensis species in Gegeneophis may be due to optimization of surveying (Gymnophiona: Caeciliidae) from the techniques, and recent predictions Western Ghats of Goa and Karnataka (Dinesh et al. 2009) indicate future discovery of new species from this genus. 1 2 Gopalakrishna Bhatta , K.P. Dinesh , Gegeneophis goaensis was described by Bhatta et 3 4 P. Prashanth , Nirmal U. Kulkarni & al. (2007a) from Keri Village, Sattari Taluk, North Goa 5 C. Radhakrishnan District, Goa based on a set of three specimens collected in September 2006 and July 2008. G. mhadeiensis 1 Department of Biology, BASE Educational Service Pvt. Ltd., was described in 2007 from Chorla Village, Khanapur Basavanagudi, Bengaluru, Karnataka 560004, India 2,5 Zoological Survey of India, Western Ghat Regional Centre, Taluk, Belgaum District, Karnataka from a set of three Eranhipalam, Kozhikode, Kerala 673006, India specimens collected during 2006 (Bhatta et al. 2007b). 3 Agumbe Rainforest Research Station, Agumbe, Karnataka During our recent explorations for these secretive animals 577411, India 4 in the bordering districts of Maharashtra (Sindhudurg), Hiru Naik Building, Dhuler Mapusa, Goa 403507, India Email: 2 [email protected] (corresponding author) Goa (North Goa) and Karnataka (Belgaum), we collected an individual of G. goaensis (Image 1) below the soil heap surrounding a banana plantation in Chorla In India the order Gymnophiona Müller is represented Village (Karnataka) on 05 August 2009 (Table 1). All by 26 species under four genera in two families (Dinesh the morphological and morphometric details were in et al.
    [Show full text]
  • Downloaded on 24 September 2013
    ISSN 2320-5407 International Journal of Advanced Research (2014), Volume 2, Issue 1, 802-809 Journal homepage: http://www.journalijar.com INTERNATIONAL JOURNAL OF ADVANCED RESEARCH RESEARCH ARTICLE Karyology of the East African caecilian Schistometopum gregorii (Amphibia: Gymnophiona) from the Tana River Delta, Kenya Venu Govindappa Centre for Applied Genetics, Department of Zoology, Bangalore University, Bangalore, Karnataka, India. Manuscript Info Abstract Manuscript History: This report presents a male somatic karyotype (2N=22; FN=40) and late meiotic stages of Schistometopum gregorii that seems to fall in line with that Received: 11 November 2013 Final Accepted: 22 December 2013 of other taxa of the family Dermophiidae. In view of a different basic Published Online: January 2014 chromosome number prevailing for this species as well for this group, it appears possible to predict that this East African species posits more closely Key words: related towards Indian endemic Indotyphlidae. Schistometopum gregorii, Giemsa stained chromosomes, meiosis, karyotype. Copy Right, IJAR, 2014,. All rights reserved. Introduction Caecilians are the limbless and elongate amphibians that form the third extant order of Amphibia and are recognised by approximately 190 species (Frost, 2013; Nishikawa et al., 2013). They are sparsely distributed in the wet or moist tropics (except Madagascar) east of the Wallace line (Himstedt, 1996; Kamei et al., 2012). African caecilians (excluding the Seychelles) are represented by about 21 species (Gower et al., 2005), most of which are known from the Eastern Arc Mountains and Coastal Forests biodiversity hotspots (Myers et al., 2000). The coastal forests of eastern Africa contain remarkable levels of biodiversity which have been formally recognised by their reclassification into the Coastal Forests of Eastern Africa, while the Eastern Arc Mountains have been included in the larger Eastern Afromotane hotspot (Myers, 2003; Wilkinson and Nussbaum, 2006; Wilkinson et al., 2003).
    [Show full text]
  • Biogeographic Analysis Reveals Ancient Continental Vicariance and Recent Oceanic Dispersal in Amphibians ∗ R
    Syst. Biol. 63(5):779–797, 2014 © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: [email protected] DOI:10.1093/sysbio/syu042 Advance Access publication June 19, 2014 Biogeographic Analysis Reveals Ancient Continental Vicariance and Recent Oceanic Dispersal in Amphibians ∗ R. ALEXANDER PYRON Department of Biological Sciences, The George Washington University, 2023 G Street NW, Washington, DC 20052, USA; ∗ Correspondence to be sent to: Department of Biological Sciences, The George Washington University, 2023 G Street NW, Washington, DC 20052, USA; E-mail: [email protected]. Received 13 February 2014; reviews returned 17 April 2014; accepted 13 June 2014 Downloaded from Associate Editor: Adrian Paterson Abstract.—Amphibia comprises over 7000 extant species distributed in almost every ecosystem on every continent except Antarctica. Most species also show high specificity for particular habitats, biomes, or climatic niches, seemingly rendering long-distance dispersal unlikely. Indeed, many lineages still seem to show the signature of their Pangaean origin, approximately 300 Ma later. To date, no study has attempted a large-scale historical-biogeographic analysis of the group to understand the distribution of extant lineages. Here, I use an updated chronogram containing 3309 species (~45% of http://sysbio.oxfordjournals.org/ extant diversity) to reconstruct their movement between 12 global ecoregions. I find that Pangaean origin and subsequent Laurasian and Gondwanan fragmentation explain a large proportion of patterns in the distribution of extant species. However, dispersal during the Cenozoic, likely across land bridges or short distances across oceans, has also exerted a strong influence.
    [Show full text]
  • The IUCN Amphibians Initiative: a Record of the 2001-2008 Amphibian Assessment Efforts for the IUCN Red List
    The IUCN Amphibians Initiative: A record of the 2001-2008 amphibian assessment efforts for the IUCN Red List Contents Introduction ..................................................................................................................................... 4 Amphibians on the IUCN Red List - Home Page ................................................................................ 5 Assessment process ......................................................................................................................... 6 Partners ................................................................................................................................................................. 6 The Central Coordinating Team ............................................................................................................................ 6 The IUCN/SSC – CI/CABS Biodiversity Assessment Unit........................................................................................ 6 An Introduction to Amphibians ................................................................................................................................. 7 Assessment methods ................................................................................................................................................ 7 1. Data Collection .................................................................................................................................................. 8 2. Data Review ...................................................................................................................................................
    [Show full text]
  • Towards Evidence-Based Husbandry for Caecilian Amphibians: Substrate Preference in Geotrypetes Seraphini (Amphibia: Gymnophiona: Dermophiidae)
    RESEARCH ARTICLE The Herpetological Bulletin 129, 2014: 15-18 Towards evidence-based husbandry for caecilian amphibians: Substrate preference in Geotrypetes seraphini (Amphibia: Gymnophiona: Dermophiidae) BENJAMIN TAPLEY1*, ZOE BRYANT1, SEBASTIAN GRANT1, GRANT KOTHER1, YEDRA FEL- TRER1, NIC MASTERS1, TAINA STRIKE1, IRI GILL1, MARK WILKINSON2 & DAVID J GOWER2 1Zoological Society of London, Regents Park, London NW1 4RY 2Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD *Corresponding author email: [email protected] ABSTRACT - Maintaining caecilians in captivity provides opportunities to study life-history, behaviour and reproductive biology and to investigate and to develop treatment protocols for amphibian chytridiomycosis. Few species of caecilians are maintained in captivity and little has been published on their husbandry. We present data on substrate preference in a group of eight Central African Geotrypetes seraphini (Duméril, 1859). Two substrates were trialled; coir and Megazorb (a waste product from the paper making industry). G. seraphini showed a strong preference for the Megazorb. We anticipate this finding will improve the captive management of this and perhaps also other species of fossorial caecilians, and stimulate evidence-based husbandry practices. INTRODUCTION (Gower & Wilkinson, 2005) and little has been published on the captive husbandry of terrestrial caecilians (Wake, 1994; O’ Reilly, 1996). A basic parameter in terrestrial The paucity of information on caecilian ecology and caecilian husbandry is substrate, but data on tolerances and general neglect of their conservation needs should be of preferences in the wild or in captivity are mostly lacking. concern in light of global amphibian declines (Alford & Terrestrial caecilians are reported from a wide range of Richards 1999; Stuart et al., 2004; Gower & Wilkinson, soil pH (Gundappa et al., 1981; Wake, 1994; Kupfer et 2005).
    [Show full text]
  • 3Systematics and Diversity of Extant Amphibians
    Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water.
    [Show full text]
  • Global Diversity of Amphibians (Amphibia) in Freshwater
    Hydrobiologia (2008) 595:569–580 DOI 10.1007/s10750-007-9032-2 FRESHWATER ANIMAL DIVERSITY ASSESSMENT Global diversity of amphibians (Amphibia) in freshwater Miguel Vences Æ Jo¨rn Ko¨hler Ó Springer Science+Business Media B.V. 2007 Abstract This article present a review of species amphibians is very high, with only six out of 348 numbers, biogeographic patterns and evolutionary aquatic genera occurring in more than one of the major trends of amphibians in freshwater. Although most biogeographic divisions used herein. Global declines amphibians live in freshwater in at least their larval threatening amphibians are known to be triggered by phase, many species have evolved different degrees of an emerging infectious fungal disease and possibly by independence from water including direct terrestrial climate change, emphasizing the need of concerted development and viviparity. Of a total of 5,828 conservation efforts, and of more research, focused on amphibian species considered here, 4,117 are aquatic both their terrestrial and aquatic stages. in that they live in the water during at least one life- history stage, and a further 177 species are water- Keywords Amphibia Á Anura Á Urodela Á dependent. These numbers are tentative and provide a Gymnophiona Á Species diversity Á Evolutionary conservative estimate, because (1) the biology of many trends Á Aquatic species Á Biogeography Á Threats species is unknown, (2) more direct-developing spe- cies e.g. in the Brachycephalidae, probably depend directly on moisture near water bodies and (3) the Introduction accelerating rate of species discoveries and descrip- tions in amphibians indicates the existence of many Amphibians are a textbook example of organisms more, yet undescribed species, most of which are living at the interface between terrestrial and aquatic likely to have aquatic larvae.
    [Show full text]
  • July to December 2019 (Pdf)
    2019 Journal Publications July Adelizzi, R. Portmann, J. van Meter, R. (2019). Effect of Individual and Combined Treatments of Pesticide, Fertilizer, and Salt on Growth and Corticosterone Levels of Larval Southern Leopard Frogs (Lithobates sphenocephala). Archives of Environmental Contamination and Toxicology, 77(1), pp.29-39. https://www.ncbi.nlm.nih.gov/pubmed/31020372 Albecker, M. A. McCoy, M. W. (2019). Local adaptation for enhanced salt tolerance reduces non‐ adaptive plasticity caused by osmotic stress. Evolution, Early View. https://onlinelibrary.wiley.com/doi/abs/10.1111/evo.13798 Alvarez, M. D. V. Fernandez, C. Cove, M. V. (2019). Assessing the role of habitat and species interactions in the population decline and detection bias of Neotropical leaf litter frogs in and around La Selva Biological Station, Costa Rica. Neotropical Biology and Conservation 14(2), pp.143– 156, e37526. https://neotropical.pensoft.net/article/37526/list/11/ Amat, F. Rivera, X. Romano, A. Sotgiu, G. (2019). Sexual dimorphism in the endemic Sardinian cave salamander (Atylodes genei). Folia Zoologica, 68(2), p.61-65. https://bioone.org/journals/Folia-Zoologica/volume-68/issue-2/fozo.047.2019/Sexual-dimorphism- in-the-endemic-Sardinian-cave-salamander-Atylodes-genei/10.25225/fozo.047.2019.short Amézquita, A, Suárez, G. Palacios-Rodríguez, P. Beltrán, I. Rodríguez, C. Barrientos, L. S. Daza, J. M. Mazariegos, L. (2019). A new species of Pristimantis (Anura: Craugastoridae) from the cloud forests of Colombian western Andes. Zootaxa, 4648(3). https://www.biotaxa.org/Zootaxa/article/view/zootaxa.4648.3.8 Arrivillaga, C. Oakley, J. Ebiner, S. (2019). Predation of Scinax ruber (Anura: Hylidae) tadpoles by a fishing spider of the genus Thaumisia (Araneae: Pisauridae) in south-east Peru.
    [Show full text]
  • A New Species of Boulengerula Tornier, 1896 (Amphibia: Gymnophiona: Herpelidae) from Kenya and the “Rediscovery” of Boulengerula Denhardti
    Zootaxa 4286 (4): 525–534 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4286.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:89438641-D8A5-42D1-88A1-0C495E139E3B A new species of Boulengerula Tornier, 1896 (Amphibia: Gymnophiona: Herpelidae) from Kenya and the “rediscovery” of Boulengerula denhardti MARK WILKINSON1,4, PATRICK K. MALONZA2, PATRICK CAMPBELL1 & SIMON P. LOADER1,3 1Life Sciences, The Natural History Museum, London SW7 5BD, UK 2Herpetology Section, National Museums of Kenya, Museum Hill Road, Nairobi, Kenya 3University of Roehampton, London SW15 4JD, UK 4Corresponding author. E-mail: [email protected] Abstract A new species of herpelid caecilian, Boulengerula spawlsi sp. nov., is described based on nine specimens from Ngaia (= Ngaya or Ngaja) Forest Reserve, Nyambene Hills, Meru County, Kenya collected between 2007 and 2013. The new spe- cies differs from all other Boulengerula in having more anteriorly positioned tentacular apertures and tentacular grooves that are partly or completely covered by the maxillopalatines. Specimens of the new species were previously erroneously reported as a rediscovery of the poorly known congener Boulengerula denhardti Neiden, 1912 together with a biogeo- graphic scenario to explain their disjunct distribution that is not required. Key words: Africa, biogeography, caecilians, morphology, systematics, taxonomy Introduction As currently conceived, the herpelid caecilian genus Boulengerula Tornier, 1896 includes seven species of East African caecilians that are distinctive among African caecilians in having a stapes and lacking secondary annular grooves (Wilkinson et al. 2011). Like their West African sister taxon Herpele Peters, 1880 (Wilkinson et al.
    [Show full text]
  • Cfreptiles & Amphibians
    HTTPS://JOURNALS.KU.EDU/REPTILESANDAMPHIBIANSTABLE OF CONTENTS IRCF REPTILES & AMPHIBIANSREPTILES • VOL & 15,AMPHIBIANS NO 4 • DEC 2008 • 28(2):189 355–357 • AUG 2021 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY INTRODUCEDTABLE OF CONTENTS SPECIES FEATURE ARTICLES . Chasing Bullsnakes (Pituophis catenifer sayi) in Wisconsin: FirstOn the Road to Understanding Record the Ecology and Conservationof a of theCaecilian Midwest’s Giant Serpent ...................... (Order Joshua M. Kapfer 190 . The Shared History of Treeboas (Corallus grenadensis) and Humans on Grenada: Gymnophiona,A Hypothetical Excursion ............................................................................................................................ Family Typhlonectidae,Robert W. Henderson 198 RESEARCH ARTICLES . TyphlonectesThe Texas Horned Lizard in Central and Western natans Texas ....................... Emily) Henry,in Jason Florida Brewer, Krista Mougey, and Gadand Perry 204 . The Knight Anole (Anolis equestris) in Florida .............................................inBrian J.the Camposano, KennethUnited L. Krysko, Kevin M. Enge,States Ellen M. Donlan, and Michael Granatosky 212 CONSERVATION ALERT 1 1 1 2 2 2 Coleman M.. World’s Sheehy Mammals III , Davidin Crisis ...............................................................................................................................C. Blackburn , Marcel T. Kouete , Kelly B. Gestring , Krissy.............................. Laurie , Austin 220 Prechtel , 3 4 . More Than Mammals ...............................................................................................................................Eric
    [Show full text]