Cfreptiles & Amphibians

Total Page:16

File Type:pdf, Size:1020Kb

Cfreptiles & Amphibians HTTPS://JOURNALS.KU.EDU/REPTILESANDAMPHIBIANSTABLE OF CONTENTS IRCF REPTILES & AMPHIBIANSREPTILES • VOL & 15,AMPHIBIANS NO 4 • DEC 2008 • 28(2):189 355–357 • AUG 2021 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY INTRODUCEDTABLE OF CONTENTS SPECIES FEATURE ARTICLES . Chasing Bullsnakes (Pituophis catenifer sayi) in Wisconsin: FirstOn the Road to Understanding Record the Ecology and Conservationof a of theCaecilian Midwest’s Giant Serpent ...................... (Order Joshua M. Kapfer 190 . The Shared History of Treeboas (Corallus grenadensis) and Humans on Grenada: Gymnophiona,A Hypothetical Excursion ............................................................................................................................ Family Typhlonectidae,Robert W. Henderson 198 RESEARCH ARTICLES . TyphlonectesThe Texas Horned Lizard in Central and Western natans Texas ....................... Emily) Henry,in Jason Florida Brewer, Krista Mougey, and Gadand Perry 204 . The Knight Anole (Anolis equestris) in Florida .............................................inBrian J.the Camposano, KennethUnited L. Krysko, Kevin M. Enge,States Ellen M. Donlan, and Michael Granatosky 212 CONSERVATION ALERT 1 1 1 2 2 2 Coleman M.. World’s Sheehy Mammals III , Davidin Crisis ...............................................................................................................................C. Blackburn , Marcel T. Kouete , Kelly B. Gestring , Krissy.............................. Laurie , Austin 220 Prechtel , 3 4 . More Than Mammals ...............................................................................................................................Eric Suarez , and Brooke L. Talley ....................................... 223 . The “Dow Jones Index” of Biodiversity ........................................................................................................................................... 225 1Florida Museum of Natural History, Division of Herpetology, University of Florida, Gainesville, Florida 32611, USA ([email protected]) 2 Florida Fish andHUSBANDRY Wildlife Conservation Commission, NDivision of Habitat and Species Conservation, 10052 NW 53rd Street, Sunrise, Florida 33351, USA 3Florida Fish and Wildlife Conservation Commission, Division of Habitat and Species Conservation, 8535 Northlake Boulevard, West Palm Beach, Florida 33412, USA . Captive Care of the Central Netted Dragon ....................................................................................................... Shannon Plummer 226 4Florida Fish and Wildlife Conservation Commission, Division of Hunting and Game Management, 620 S. Meridian Street, Tallahassee, Florida 32399, USA PROFILE he genus Typhlonectes. Kraig Adler: A Lifetime (Amphibia; Promoting Herpetology Gymnophiona; ................................................................................................ Colombia, French Guiana, Michael Guyana, L. Treglia 234Peru, and Venezuela, Typhlonectidae) contains two species of completely whereas the Rio Cauca Caecilian, T. natans (Fischer 1880), T COMMENTARY aquatic freshwater. The caecilians. Turtles Have Been The Watching Cayenne Me ........................................................................................................................ Caecilian, has a smaller distribution within Eric Gangloff the drainage238 basins of the Typhlonectes compressicauda (Duméril and Bibron 1841), is Cauca and Magdalena Rivers in Colombia and the areas sur- widely distributedBOOK in the REVIEW Amazonian River Basin of Brazil, rounding the Maracaibo Basin in Venezuela (Tapley and . Threatened Amphibians of the World edited by S.N. Stuart, M. Hoffmann, J.S. Chanson, N.A. Cox, R. Berridge, P. Ramani, and B.E. Young .............................................................................................................. Robert Powell 243 CONSERVATION RESEARCH REPORTS: Summaries of Published Conservation Research Reports ................................. 245 NATURAL HISTORY RESEARCH REPORTS: Summaries of Published Reports on Natural History ................................. 247 NEWBRIEFS ...................................................................................................................................................................................... 248 EDITORIAL INFORMATION ..................................................................................................................................................... 251 FOCUS ON CONSERVATION: A Project You Can Support ............................................................................................... 252 Front Cover. Shannon Plummer. Back Cover. Michael Kern Totat et velleseque audant mo Totat et velleseque audant mo estibus inveliquo velique rerchil estibus inveliquo velique rerchil erspienimus, quos accullabo. Ilibus erspienimus, quos accullabo. Ilibus aut dolor apicto invere pe dolum aut dolor apicto invere pe dolum fugiatis maionsequat eumque fugiatis maionsequat eumque moditia erere nonsedis ma sectiatur moditia erere nonsedis ma sectia- ma derrovitae voluptam, as quos tur ma derrovitae voluptam, as accullabo. Fig. 1. This aquatic Rio Cauca Caecilian (Typhlonectes natans; UF:Herp:190000) found alive in the Tamiami Canal (C-4) in Miami-Dade County, Florida, represents the first documented record of this order of amphibians found in the United States. Photograph by Krissy Laurie. Copyright is held by the authors. Articles in R&A are made available under a 355 Reptiles & Amphibians ISSN 2332-4961 Creative Commons Attribution-NonCommercial 4.0 International license. SHEEHY ET AL. REPTILES & AMPHIBIANS • 28(2): 355–357 • AUG 2021 Acosta-Galvis 2010; AmphibiaWeb 2021). The two spe- Coral Gables Canal that runs parallel to HWY 826 east to the cies are similar in appearance, but can be differentiated by salinity structure, also yielded no additional caecilians. the relative width of the head (head wider than body in T. The caecilian appeared in good health when collected natans and narrower than body in T. compressicauda; Taylor (Fig. 2), although attempts to feed it in captivity failed and 1968; Maciel and Hoogmoed 2011), tooth shape (teeth with the animal later died. The specimen was subsequently depos- sharp tips in T. natans and with broadly dilated crowns in ited in the Herpetology Collection at the Florida Museum T. compressicauda; Wilkinson 1991), and the number of anal of Natural History (UF:Herp:190000; adult; total length = denticulations (typically 9 in T. natans and 10–11 in T. com- 582 mm; suspected male based on the circular cloacal disc; pressicauda; Taylor 1968; Maciel and Hoogmoed 2011). Both Tapley and Acosta-Galvis 2010). We identified this specimen species are viviparous (Kupfer 2009), as is typical of members as Typhlonectes natans by the presence of the following mor- of the family Typhlonectidae (Wells 2010). phological characters: head wider than body, teeth with sharp At 1326 h on 21 October 2019, personnel with the tips, and presence of nine anal denticulations. This identifica- Florida Fish and Wildlife Conservation Commission (FWC) tion was confirmed after analyzing 539 bp of mitochondrial were conducting a routine electrofishing survey of a section ribosomal 16S (GenBank Accession No. MZ444144) ampli- of the Tamiami Canal (C-4) in Miami-Dade County, Florida fied by PCR using 16SaL and 16SbH primers (Palumbi et (25.77120°N, 80.31013°W; WGS 84) when they found a al. 1996) following extraction of genomic DNA from fresh single live caecilian (Fig. 1). It was captured in water about 1 muscle tissue using a QIAGEN DNeasy Blood & Tissue Kit. m deep along the southern shore in a box-cut stretch of canal Following alignment with other mitochondrial 16S rRNA containing a narrow fringe of aquatic vegetation (Vallisneria sequences of typhlonectids from GenBank, this specimen is americana and Cabomba caroliniana). Subsequent electro- confirmed as T. natans by its low pairwise sequence divergence fishing on 7 November 2019 in the same canal and associ- (0.0–1.8%; mean = 0.5%; n = 10) from other individuals of ated lateral canal yielded no additional caecilians. Additional this species (Table 1). Furthermore, DNA from the specimen electrofishing in the eastern half of Tamiami Canal, from the is identical to several 16S rRNA sequences in GenBank from individuals of T. natans from captive populations (X86290, Y10951) as well as one individual (MN555720) from north- ern Colombia (Acosta-Galvis et al. 2019). To our knowledge, this represents the first record of a caecilian (order Gymnophiona) in Florida or anywhere else in the United States. Although stem caecilians are known from the fossil record of North America (Jenkins and Walsh 1993), no extant caecilians occur north of southern Mexico. As a result of this discovery, all three orders of extant amphibians are now known to occur in Florida, including many native species of frogs (Anura) and salamanders (Caudata) as well as several non-native species of frogs (Krysko et al. 2019; Goodman et al. 2021). Typhlonectes natans is readily available in the pet trade, and the species is bred in captivity by hob- byists as well as several zoos and aquaria (Tapley and Acosta- Galvis 2010; Churgin et al. 2013). Therefore, the presence Fig. 2. This aquatic Rio Cauca Caecilian (Typhlonectes natans; UF:Herp:190000) was captured in water about 1 m in depth along a of this caecilian in Florida is likely the result of a released or stretch of the C-4 canal near the Miami International Airport,
Recommended publications
  • Vertebrates, Overview
    VERTEBRATES, OVERVIEW Carl Gans* and Christopher J. Bell† *Department of Integrative Biology, University of Texas at Austin and †Department of Geological Sciences, University of Texas at Austin I. Introduction neurectoderm An embryonic tissue that gives rise to II. General Vertebrate Characteristics the central tube of the nervous system. III. Early Chordate and Vertebrate History notochord A stiff, flexible, longitudinal rod running IV. Vertebrate Classification along the middorsal portion of the chordate body. V. Definitions and Diagnoses of Major Chordate It is situated dorsal to the coelom and ventral to the Groups central tube of the nervous system. pharynx The anterior portion of the alimentary canal, characterized by lateral buds that provide skeletal GLOSSARY support for the gill region. tuberculum interglenoideum An anterior projection of chordate A member of the group Chordata. The the first (cervical) vertebra in salamanders. The tu- Chordata includes the most recent common ancestor berculum interglenoideum bears articular facets that of tunicates and cephalochordates and all of that insert into the foramen magnum of the skull and ancestor’s descendants. Tunicates, lancelets, hag- provide additional articulation points between the fishes, and vertebrates are all chordates. skull and the vertebral column. ectoderm An embryonic tissue that provides the future outside layer of the animal. ectothermy A method of body temperature control in which the animal utilizes external sources for gaining VERTEBRATES INCLUDE ALL the fishes, amphibians, and giving up heat, thus achieving temperature con- reptiles, birds, and mammals. These animals are united trol without affecting metabolic rate. in a more inclusive group, the Chordata, that includes endothermy A method of body temperature control in the closest living relatives of vertebrates, the hagfishes, which the animal modifies its metabolic rate to lancelets, and tunicates.
    [Show full text]
  • Catalogue of the Amphibians of Venezuela: Illustrated and Annotated Species List, Distribution, and Conservation 1,2César L
    Mannophryne vulcano, Male carrying tadpoles. El Ávila (Parque Nacional Guairarepano), Distrito Federal. Photo: Jose Vieira. We want to dedicate this work to some outstanding individuals who encouraged us, directly or indirectly, and are no longer with us. They were colleagues and close friends, and their friendship will remain for years to come. César Molina Rodríguez (1960–2015) Erik Arrieta Márquez (1978–2008) Jose Ayarzagüena Sanz (1952–2011) Saúl Gutiérrez Eljuri (1960–2012) Juan Rivero (1923–2014) Luis Scott (1948–2011) Marco Natera Mumaw (1972–2010) Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [Special Section]: 1–198 (e180). Catalogue of the amphibians of Venezuela: Illustrated and annotated species list, distribution, and conservation 1,2César L. Barrio-Amorós, 3,4Fernando J. M. Rojas-Runjaic, and 5J. Celsa Señaris 1Fundación AndígenA, Apartado Postal 210, Mérida, VENEZUELA 2Current address: Doc Frog Expeditions, Uvita de Osa, COSTA RICA 3Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle, Apartado Postal 1930, Caracas 1010-A, VENEZUELA 4Current address: Pontifícia Universidade Católica do Río Grande do Sul (PUCRS), Laboratório de Sistemática de Vertebrados, Av. Ipiranga 6681, Porto Alegre, RS 90619–900, BRAZIL 5Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, apartado 20632, Caracas 1020, VENEZUELA Abstract.—Presented is an annotated checklist of the amphibians of Venezuela, current as of December 2018. The last comprehensive list (Barrio-Amorós 2009c) included a total of 333 species, while the current catalogue lists 387 species (370 anurans, 10 caecilians, and seven salamanders), including 28 species not yet described or properly identified. Fifty species and four genera are added to the previous list, 25 species are deleted, and 47 experienced nomenclatural changes.
    [Show full text]
  • The Care and Captive Breeding of the Caecilian Typhlonectes Natans
    HUSBANDRY AND PROPAGATION The care and captive breeding of the caecilian Typhlonectes natans RICHARD PARKINSON Ecology UK, 317 Ormskirk Road, Upholland, Skelmersdale, Lancashire, UK E-mail: [email protected] riAECILIANS (Apoda) are the often overlooked Many caecilians have no larval stage and, while third order of amphibians and are not thought some lay eggs, many including Typhlonectes natans to be closely-related to either Anurans or Urodelans. give birth to live young after a long pregnancy. Despite the existence of over 160 species occurring Unlike any other amphibian (or reptile) this is a true throughout the tropics (excluding Australasia and pregnancy in which the membranous gills of the Madagascar), relatively little is known about them. embryo functions like the placenta in mammals, so The earliest known fossil caecilian is Eocaecilia that the mother can supply the embryo with oxygen. micropodia, which is dated to the early Jurassic The embryo consumes nutrients secreted by the Period approximately 240 million years ago. uterine walls using specialized teeth for the Eocaecilia micropodia still possessed small but purpose. well developed legs like modem amphiumas and sirens. The worm-like appearance and generally Captive Care subterranean habits of caecilians has often led to In March 1995 I acquired ten specimens of the their dismissal as primitive and uninteresting. This aquatic caecilian Typhlonectes natans (identified by view-point is erroneous. Far from being primitive, cloacae denticulation after Wilkinson, 1996) which caecilians are highly adapted to their lifestyle. had been imported from Guyana. I immediately lost 7),phlonectes natans are minimalist organisms two as a result of an ill-fitting aquarium lid.
    [Show full text]
  • REVISION O F the AFRICAN Caeclllan GENUS
    REVISION OFTHE AFRICAN CAEClLlAN GENUS SCHISTOMETOPUM PARKER (AMPH IBIA: CYMNOPHIONA: CAECILI IDAE) BY RONALD A. NU AND MICHAEL E. PFRENDER MISCELLANEC JS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, NO. 18Fb; ' Ann Arbor, September 2 7, 1 998 ISSN 076-8405 MIS(:ELIANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, LJNTVERSITY OF MICHIGAN NO. 187 The publicatioils of the M~~sclunof Zoology, The [Jniversity of Michigan, consist PI-irnarilyof two series-the Occasion:~lPapers allti the Miscellaneous Publicatio~ls.Both series were founded by Dc Bryant Walker, Mr. Rradshaw H. Swales, anti Dr. W.W. Newcornb. Occasionally the Museuni publishes contributiorls outside of these series; begirlnirlg in 1990 these are titled Special Publicatio~lsa~ld arc numbered. All submitted ~n;inl~scriptsreceive external review. The Misccllarieous Publications, which include ~l~ollographicstltdies, papers on field and ~II- seuln techniques, and other contributions 11ot within the scope of the Occasio~lalPapers, are pl~b- lishcd separately. It is not intended that they be grouped into volumes. Each 11r11nberhas a title page and, when necessary, a table of co1itelits. Tllc Occasional Papel-s, publication of which was begun in 1913, servc as a medium Sol- original studies based prirlcipally upon the collections in the Museurn. They are issurtl separately. MThen a sufficient number of pages has hcen printed to niakc a volume, a title pagc, table of contenb, and an index are supplied to libraries and individuals on the mailing list for the series. A cornplete list of publications on Birds, Fishes, Insects, Mammals, Moll~~sks,Rcpdles and Amphib- ians, and other topics is available. Address inquiries to the Directt)r, Muse~unof Zoolohy, The lir~ivcr- sity of Michigan, Ann Arbor, Michigarl 48109-1079.
    [Show full text]
  • The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
    lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae.
    [Show full text]
  • Amphibia: Gymnophiona) Is Not Lungless: Implications for Taxonomy and for Understanding the Evolution of Lunglessness
    Zootaxa 3779 (3): 383–388 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3779.3.6 http://zoobank.org/urn:lsid:zoobank.org:pub:594529A3-2A73-454A-B04E-900AFE0BA84D Caecilita Wake & Donnelly, 2010 (Amphibia: Gymnophiona) is not lungless: implications for taxonomy and for understanding the evolution of lunglessness MARK WILKINSON1,4, PHILIPPE J. R. KOK2, FARAH AHMED3 & DAVID J. GOWER1 1Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK 2Biology Department, Amphibian Evolution Lab, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium and Department of Vertebrates, Royal Belgian Institute of Natural Sciences, 29 rue Vautier, B-1000 Brussels, Belgium 3Department of Earth Sciences, The Natural History Museum, London, SW7 5BD, UK 4Corresponding author. Email: [email protected] Abstract According to current understanding, five lineages of amphibians, but no other tetrapods, are secondarily lungless and are believed to rely exclusively on cutaneous gas exchange. One explanation of the evolutionary loss of lungs interprets lung- lessness as an adaptation to reduce buoyancy in fast-flowing aquatic environments, reasoning that excessive buoyancy in such an environment would cause organisms being swept away. While not uncontroversial, this hypothesis provides a plausible potential explanation of the evolution of lunglessness in four of the five lungless amphibian lineages. The ex- ception is the most recently reported lungless lineage, the newly described Guyanan caecilian genus and species Caecilita iwokramae Wake & Donnelly, 2010, which is inconsistent with the reduced disadvantageous buoyancy hypothesis by vir- tue of it seemingly being terrestrial and having a terrestrial ancestry.
    [Show full text]
  • Supplemental Material Conservation Status of the Herpetofauna
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 8(2) [Special Section]: 1–18; S1–S24 (e87). Supplemental Material Conservation status of the herpetofauna, protected areas, and current problems in Valle del Cauca, Colombia 1Alejandro Valencia-Zuleta, Andrés Felipe Jaramillo-Martínez, Andrea Echeverry-Bocanegra, Ron- ald Viáfara-Vega, Oscar Hernández-Córdoba, Victoria E. Cardona-Botero, Jaime Gutiérrez-Zúñiga, and Fernando Castro-Herrera Universidad del Valle, Grupo Laboratorio de Herpetología, Departamento de Biología, Cali, COLOMBIA Citation: Valencia-Zuleta A, Jaramillo-Martínez AF, Echeverry-Bocanegra A, Viáfara-Vega R, Hernández-Córdoba O, Cardona-Botero VE, Gutiérrez- Zúñiga J, Castro-Herrera F. 2014. Conservation status of the herpetofauna, protected areas, and current problems in Valle del Cauca, Colombia. Amphibian & Reptile Conservation 8(2) [Special Section]: 1–18; S1–S24 (e87). Copyright: © 2014 Valencia-Zuleta et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCom- mercial-NoDerivatives 4.0 International License, which permits unrestricted use for non-commercial and education purposes only, in any medium, provided the original author and the official and authorized publication sources are recognized and properly credited. The official and authorized publication credit sources, which will be duly enforced, are as follows: official journal title Amphibian & Reptile Conservation; official journal website <amphibian-reptile-conservation.org>. Received: 12 March 2014; Accepted: 24 November 2014; Published: 19 December 2014 Table 1. Taxonomic list of amphibians and reptile of the department of Valle del Cauca (Cardona-B. et al. 2014). Actualization of threat categories based on: IUCN (red list), Red Book of Amphibians (Rueda et al.
    [Show full text]
  • Caecilia Guntheri Dunn, 1942 (Gymnophiona, Caeciliidae) in Central America
    17 2 NOTES ON GEOGRAPHIC DISTRIBUTION Check List 17 (2): 649–653 https://doi.org/10.15560/17.2.649 First record of Caecilia guntheri Dunn, 1942 (Gymnophiona, Caeciliidae) in Central America Luis C. Elizondo-Lara Programa de Maestría en Ciencias Biológicas, Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, Panama City, Panama • luis. [email protected]; [email protected] https://orcid.org/0000-0002-8647-6717 Departamento de Fisiología y Comportamiento Animal, Facultad de Ciencias Naturales Exactas y Tecnología, Universidad de Panamá, Panama City, Panama Red Mesoamericana y del Caribe para la Conservación de Anfibios y Reptiles Abstract I report the first encounter in Central America of an individual of Caecilia guntheri Dunn, 1942 (Gymnophiona, Caeciliidae). The individual was observed and collected in a primary evergreen submontane forest in Cerro Pirre, Darien Province, Republic of Panama. It was identified mainly by the low counts of secondary and primary folds. The encounter of this individual of C. guntheri highlights the disjunct populations and apparently the results of dispersion of this species from South to Central America by biotic exchange as result of the closure of the Isthmus of Panama. Keywords Amphibians, biotic exchange, Cerro Pirre, Darien, disjunct distribution, Panama Academic editor: Javier Ernesto Cortés Suárez | Received 28 December 2020 | Accepted 28 March 2021 | Published 13 April 2021 Citation: Elizondo-Lara LC (2021) First record of Caecilia guntheri Dunn, 1942 (Gymnophiona, Caeciliidae) in Central America. Check List 17 (2): 649–653. https://doi.org/10.15560/17.2.649 Introduction The genus Caecilia Linnaeus, 1758 was described from Rica (Köhler 2011; Kubicki and Arias 2017).
    [Show full text]
  • Spermatogenesis and Histology of the Testes of the Caecilian, <Em
    University of Richmond UR Scholarship Repository Biology Faculty Publications Biology 12-1986 Spermatogenesis and Histology of the Testes of the Caecilian, Chthonerpeton indistinctum Rafael O. de Sá University of Richmond, [email protected] Nibia Berois Follow this and additional works at: http://scholarship.richmond.edu/biology-faculty-publications Part of the Biology Commons, Developmental Biology Commons, and the Structural Biology Commons Recommended Citation Sá, Rafael de, and Nibia Berois. "Spermatogenesis and Histology of the Testes of the Caecilian, Chthonerpeton indistinctum." Journal of Herpetology 20, no. 4 (December 1986): 510-14. doi:10.2307/1564247. This Article is brought to you for free and open access by the Biology at UR Scholarship Repository. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. fourn•I of Herpetology, Vol. 20, No. 4, pp. 510-514, 1986 Copyright 1986 Society for the Study of Amphibians and Reptiles Spermatogenesis and Histology of the Testes of the Caecilian, Chthonerpeton indistinctum RAFAEL DE SA1 AND NIBIA BEROIS2 1Museum of Natural History and Department of Systematics and Ecology, The University of Kansas, Lawrence, Kansas 66045-2454, USA 2Departamento de Biologfa Celular, Facultad de Humanidades y Ciencias, Universidad Mayor de la Republica Oriental del Uruguay, Tristan Narvaja 1674, Montevideo, Uruguay ABSTRACT. - Macroscopically, the testes of Chthonerpeton indistinctum consist of a series of oval lobes. The number and size of lobes is variable in Chthonerpeton indistinctum. Histologically, the testes are divided into structural units, locules separated by septa of connective tissue. Inside of each locule spermatogenesis takes place in cysts of germinal cells that divide synchronically.
    [Show full text]
  • The Caecilians of the World: a Taxonomic Review by Edward Harrison Taylor Review By: Marvalee H
    The Caecilians of the World: A Taxonomic Review by Edward Harrison Taylor Review by: Marvalee H. Wake Copeia, Vol. 1969, No. 1 (Mar. 6, 1969), pp. 216-219 Published by: American Society of Ichthyologists and Herpetologists (ASIH) Stable URL: http://www.jstor.org/stable/1441738 . Accessed: 25/03/2014 11:09 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Society of Ichthyologists and Herpetologists (ASIH) is collaborating with JSTOR to digitize, preserve and extend access to Copeia. http://www.jstor.org This content downloaded from 192.188.55.3 on Tue, 25 Mar 2014 11:09:44 AM All use subject to JSTOR Terms and Conditions 216 COPEIA, 1969, NO. 1 three year period, some of the latter per- add-not only the Indo-Pacific, but this Indo- sonally by Munro. The book must be used Australian archipelago, the richest area in in conjunction with the checklist "The the world for marine fish species, badly needs Fishes of the New Guinea Region" (Papua more work of this high calibre.-F. H. TAL- and New Guinea Agr. J. 10:97-339, 1958), BOT, Australian Museum, 6-8 College Street, a sizable work in itself, including a full list Sydney, Australia.
    [Show full text]
  • Amphibia: Gymnophiona: Ichthyophiidae) from Myanmar
    Zootaxa 3785 (1): 045–058 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3785.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:7EF35A95-5C75-4D16-8EE4-F84934A80C2A A new species of striped Ichthyophis Fitzinger, 1826 (Amphibia: Gymnophiona: Ichthyophiidae) from Myanmar MARK WILKINSON1,5, BRONWEN PRESSWELL1,2, EMMA SHERRATT1,3, ANNA PAPADOPOULOU1,4 & DAVID J. GOWER1 1Department of Zoology!, The Natural History Museum, London SW7 5BD, UK 2Department of Zoology, University of Otago, PO Box 56, Dunedin New Zealand 3Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford St., Cam- bridge, MA 02138, USA 4Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor MI 41809, USA 5Corresponding author. E-mail: [email protected] ! Currently the Department of Life Sciences Abstract A new species of striped ichthyophiid caecilian, Ichthyophis multicolor sp. nov., is described on the basis of morpholog- ical and molecular data from a sample of 14 specimens from Ayeyarwady Region, Myanmar. The new species resembles superficially the Indian I. tricolor Annandale, 1909 in having both a pale lateral stripe and an adjacent dark ventrolateral stripe contrasting with a paler venter. It differs from I. tricolor in having many more annuli, and in many details of cranial osteology, and molecular data indicate that it is more closely related to other Southeast Asian Ichthyophis than to those of South Asia. The caecilian fauna of Myanmar is exceptionally poorly known but is likely to include chikilids as well as multiple species of Ichthyophis.
    [Show full text]
  • Gymnophiona: Caeciliidae) from the Techniques, and Recent Predictions Western Ghats of Goa and Karnataka (Dinesh Et Al
    JoTT NOTE 2(8): 1105-1108 New site records of Gegeneophis upsurge in the description of new goaensis and G. mhadeiensis species in Gegeneophis may be due to optimization of surveying (Gymnophiona: Caeciliidae) from the techniques, and recent predictions Western Ghats of Goa and Karnataka (Dinesh et al. 2009) indicate future discovery of new species from this genus. 1 2 Gopalakrishna Bhatta , K.P. Dinesh , Gegeneophis goaensis was described by Bhatta et 3 4 P. Prashanth , Nirmal U. Kulkarni & al. (2007a) from Keri Village, Sattari Taluk, North Goa 5 C. Radhakrishnan District, Goa based on a set of three specimens collected in September 2006 and July 2008. G. mhadeiensis 1 Department of Biology, BASE Educational Service Pvt. Ltd., was described in 2007 from Chorla Village, Khanapur Basavanagudi, Bengaluru, Karnataka 560004, India 2,5 Zoological Survey of India, Western Ghat Regional Centre, Taluk, Belgaum District, Karnataka from a set of three Eranhipalam, Kozhikode, Kerala 673006, India specimens collected during 2006 (Bhatta et al. 2007b). 3 Agumbe Rainforest Research Station, Agumbe, Karnataka During our recent explorations for these secretive animals 577411, India 4 in the bordering districts of Maharashtra (Sindhudurg), Hiru Naik Building, Dhuler Mapusa, Goa 403507, India Email: 2 [email protected] (corresponding author) Goa (North Goa) and Karnataka (Belgaum), we collected an individual of G. goaensis (Image 1) below the soil heap surrounding a banana plantation in Chorla In India the order Gymnophiona Müller is represented Village (Karnataka) on 05 August 2009 (Table 1). All by 26 species under four genera in two families (Dinesh the morphological and morphometric details were in et al.
    [Show full text]