Comparative Morphology of Caecilian Sperm (Amphibia: Gymnophiona)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Catalogue of the Amphibians of Venezuela: Illustrated and Annotated Species List, Distribution, and Conservation 1,2César L
Mannophryne vulcano, Male carrying tadpoles. El Ávila (Parque Nacional Guairarepano), Distrito Federal. Photo: Jose Vieira. We want to dedicate this work to some outstanding individuals who encouraged us, directly or indirectly, and are no longer with us. They were colleagues and close friends, and their friendship will remain for years to come. César Molina Rodríguez (1960–2015) Erik Arrieta Márquez (1978–2008) Jose Ayarzagüena Sanz (1952–2011) Saúl Gutiérrez Eljuri (1960–2012) Juan Rivero (1923–2014) Luis Scott (1948–2011) Marco Natera Mumaw (1972–2010) Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [Special Section]: 1–198 (e180). Catalogue of the amphibians of Venezuela: Illustrated and annotated species list, distribution, and conservation 1,2César L. Barrio-Amorós, 3,4Fernando J. M. Rojas-Runjaic, and 5J. Celsa Señaris 1Fundación AndígenA, Apartado Postal 210, Mérida, VENEZUELA 2Current address: Doc Frog Expeditions, Uvita de Osa, COSTA RICA 3Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle, Apartado Postal 1930, Caracas 1010-A, VENEZUELA 4Current address: Pontifícia Universidade Católica do Río Grande do Sul (PUCRS), Laboratório de Sistemática de Vertebrados, Av. Ipiranga 6681, Porto Alegre, RS 90619–900, BRAZIL 5Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, apartado 20632, Caracas 1020, VENEZUELA Abstract.—Presented is an annotated checklist of the amphibians of Venezuela, current as of December 2018. The last comprehensive list (Barrio-Amorós 2009c) included a total of 333 species, while the current catalogue lists 387 species (370 anurans, 10 caecilians, and seven salamanders), including 28 species not yet described or properly identified. Fifty species and four genera are added to the previous list, 25 species are deleted, and 47 experienced nomenclatural changes. -
Bioseries12-Amphibians-Taita-English
0c m 12 Symbol key 3456 habitat pond puddle river stream 78 underground day / night day 9101112131415161718 night altitude high low vegetation types shamba forest plantation prelim pages ENGLISH.indd ii 2009/10/22 02:03:47 PM SANBI Biodiversity Series Amphibians of the Taita Hills by G.J. Measey, P.K. Malonza and V. Muchai 2009 prelim pages ENGLISH.indd Sec1:i 2009/10/27 07:51:49 AM SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 September 2004 through the signing into force of the National Environmental Management: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include responsibilities relating to the full diversity of South Africa’s fauna and ora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by or executed in partnership with SANBI. Technical editor: Gerrit Germishuizen Design & layout: Elizma Fouché Cover design: Elizma Fouché How to cite this publication MEASEY, G.J., MALONZA, P.K. & MUCHAI, V. 2009. Amphibians of the Taita Hills / Am bia wa milima ya Taita. SANBI Biodiversity Series 12. South African National Biodiversity Institute, Pretoria. -
Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca
Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Lamoreux, J. F., McKnight, M. W., and R. Cabrera Hernandez (2015). Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca. Gland, Switzerland: IUCN. xxiv + 320pp. ISBN: 978-2-8317-1717-3 DOI: 10.2305/IUCN.CH.2015.SSC-OP.53.en Cover photographs: Totontepec landscape; new Plectrohyla species, Ixalotriton niger, Concepción Pápalo, Thorius minutissimus, Craugastor pozo (panels, left to right) Back cover photograph: Collecting in Chamula, Chiapas Photo credits: The cover photographs were taken by the authors under grant agreements with the two main project funders: NGS and CEPF. -
Stem Caecilian from the Triassic of Colorado Sheds Light on the Origins
Stem caecilian from the Triassic of Colorado sheds light PNAS PLUS on the origins of Lissamphibia Jason D. Pardoa, Bryan J. Smallb, and Adam K. Huttenlockerc,1 aDepartment of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; bMuseum of Texas Tech University, Lubbock, TX 79415; and cDepartment of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved May 18, 2017 (received for review April 26, 2017) The origin of the limbless caecilians remains a lasting question in other early tetrapods; “-ophis” (Greek) meaning serpent. The vertebrate evolution. Molecular phylogenies and morphology species name honors paleontologist Farish Jenkins, whose work on support that caecilians are the sister taxon of batrachians (frogs the Jurassic Eocaecilia inspired the present study. and salamanders), from which they diverged no later than the early Permian. Although recent efforts have discovered new, early Holotype. Denver Museum of Nature & Science (DMNH) 56658, members of the batrachian lineage, the record of pre-Cretaceous partial skull with lower jaw and disarticulated postcrania (Fig. 1 caecilians is limited to a single species, Eocaecilia micropodia. The A–D). Discovered by B.J.S. in 1999 in the Upper Triassic Chinle position of Eocaecilia within tetrapod phylogeny is controversial, Formation (“red siltstone” member), Main Elk Creek locality, as it already acquired the specialized morphology that character- Garfield County, Colorado (DMNH loc. 1306). The tetrapod as- izes modern caecilians by the Jurassic. Here, we report on a small semblage is regarded as middle–late Norian in age (Revueltian land amphibian from the Upper Triassic of Colorado, United States, with vertebrate faunachron) (13). -
Supplemental Material Conservation Status of the Herpetofauna
Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 8(2) [Special Section]: 1–18; S1–S24 (e87). Supplemental Material Conservation status of the herpetofauna, protected areas, and current problems in Valle del Cauca, Colombia 1Alejandro Valencia-Zuleta, Andrés Felipe Jaramillo-Martínez, Andrea Echeverry-Bocanegra, Ron- ald Viáfara-Vega, Oscar Hernández-Córdoba, Victoria E. Cardona-Botero, Jaime Gutiérrez-Zúñiga, and Fernando Castro-Herrera Universidad del Valle, Grupo Laboratorio de Herpetología, Departamento de Biología, Cali, COLOMBIA Citation: Valencia-Zuleta A, Jaramillo-Martínez AF, Echeverry-Bocanegra A, Viáfara-Vega R, Hernández-Córdoba O, Cardona-Botero VE, Gutiérrez- Zúñiga J, Castro-Herrera F. 2014. Conservation status of the herpetofauna, protected areas, and current problems in Valle del Cauca, Colombia. Amphibian & Reptile Conservation 8(2) [Special Section]: 1–18; S1–S24 (e87). Copyright: © 2014 Valencia-Zuleta et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCom- mercial-NoDerivatives 4.0 International License, which permits unrestricted use for non-commercial and education purposes only, in any medium, provided the original author and the official and authorized publication sources are recognized and properly credited. The official and authorized publication credit sources, which will be duly enforced, are as follows: official journal title Amphibian & Reptile Conservation; official journal website <amphibian-reptile-conservation.org>. Received: 12 March 2014; Accepted: 24 November 2014; Published: 19 December 2014 Table 1. Taxonomic list of amphibians and reptile of the department of Valle del Cauca (Cardona-B. et al. 2014). Actualization of threat categories based on: IUCN (red list), Red Book of Amphibians (Rueda et al. -
Care and Parentage in a Skin-Feeding Caecilian Amphibian ALEXANDER KUPFER1,2Ã, MARK WILKINSON2, DAVID J
JOURNAL OF EXPERIMENTAL ZOOLOGY 309A:460–467 (2008) A Journal of Integrative Biology Care and Parentage in a Skin-Feeding Caecilian Amphibian ALEXANDER KUPFER1,2Ã, MARK WILKINSON2, DAVID J. GOWER2, 1–3 4,5 HENDRIK MU¨ LLER , AND ROBERT JEHLE 1Institut fu¨r Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universita¨t Jena, Jena, Germany 2Department of Zoology, The Natural History Museum, London, United Kingdom 3Institute of Biology, Leiden University, Leiden, The Netherlands 4School of Environment and Life Sciences, Centre for Environmental Systems Research, University of Salford, Salford, Greater Manchester, United Kingdom 5Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom ABSTRACT An exceptional form of parental care has recently been discovered in a poorly known caecilian amphibian. Mothers of the Taita Hills (Kenya) endemic Boulengerula taitanus provide their own skin as a food source for their offspring. Field data suggest that nursing is costly. Females found attending young had a lower body condition and fat body volume than nonbrooding and egg-incubating females, and the female condition decreased substantially during parental care. Most mothers and their eggs or offspring were found in close proximity to other nesting females, in high-density nest sites that enhance the potential for social interactions and highlighting the possibility of communal breeding. Parentage was investigated using Amplified Fragment Length Polymorphism (AFLP) genetic markers in 29 offspring from six litters guarded by putative mothers. Our data provide the first evidence of multiple paternity in a caecilian, implying that two fathers sired one litter. Some young from two litters had genotypes not matching the guarding female suggesting that not all offspring are cared for by their biological mothers. -
Review Article Distribution and Conservation Status of Amphibian
Mongabay.com Open Access Journal - Tropical Conservation Science Vol.7 (1):1-25 2014 Review Article Distribution and conservation status of amphibian and reptile species in the Lacandona rainforest, Mexico: an update after 20 years of research Omar Hernández-Ordóñez1, 2, *, Miguel Martínez-Ramos2, Víctor Arroyo-Rodríguez2, Adriana González-Hernández3, Arturo González-Zamora4, Diego A. Zárate2 and, Víctor Hugo Reynoso3 1Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México; Av. Universidad 3000, C.P. 04360, Coyoacán, Mexico City, Mexico. 2 Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Ex Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico. 3Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico. 4División de Posgrado, Instituto de Ecología A.C. Km. 2.5 Camino antiguo a Coatepec No. 351, Xalapa 91070, Veracruz, Mexico. * Corresponding author: Omar Hernández Ordóñez, email: [email protected] Abstract Mexico has one of the richest tropical forests, but is also one of the most deforested in Mesoamerica. Species lists updates and accurate information on the geographic distribution of species are necessary for baseline studies in ecology and conservation of these sites. Here, we present an updated list of the diversity of amphibians and reptiles in the Lacandona region, and actualized information on their distribution and conservation status. Although some studies have discussed the amphibians and reptiles of the Lacandona, most herpetological lists came from the northern part of the region, and there are no confirmed records for many of the species assumed to live in the region. -
Pseudoeurycea Naucampatepetl. the Cofre De Perote Salamander Is Endemic to the Sierra Madre Oriental of Eastern Mexico. This
Pseudoeurycea naucampatepetl. The Cofre de Perote salamander is endemic to the Sierra Madre Oriental of eastern Mexico. This relatively large salamander (reported to attain a total length of 150 mm) is recorded only from, “a narrow ridge extending east from Cofre de Perote and terminating [on] a small peak (Cerro Volcancillo) at the type locality,” in central Veracruz, at elevations from 2,500 to 3,000 m (Amphibian Species of the World website). Pseudoeurycea naucampatepetl has been assigned to the P. bellii complex of the P. bellii group (Raffaëlli 2007) and is considered most closely related to P. gigantea, a species endemic to the La specimens and has not been seen for 20 years, despite thorough surveys in 2003 and 2004 (EDGE; www.edgeofexistence.org), and thus it might be extinct. The habitat at the type locality (pine-oak forest with abundant bunch grass) lies within Lower Montane Wet Forest (Wilson and Johnson 2010; IUCN Red List website [accessed 21 April 2013]). The known specimens were “found beneath the surface of roadside banks” (www.edgeofexistence.org) along the road to Las Lajas Microwave Station, 15 kilometers (by road) south of Highway 140 from Las Vigas, Veracruz (Amphibian Species of the World website). This species is terrestrial and presumed to reproduce by direct development. Pseudoeurycea naucampatepetl is placed as number 89 in the top 100 Evolutionarily Distinct and Globally Endangered amphib- ians (EDGE; www.edgeofexistence.org). We calculated this animal’s EVS as 17, which is in the middle of the high vulnerability category (see text for explanation), and its IUCN status has been assessed as Critically Endangered. -
Morphological Evolution and Modularity of the Caecilian Skull Carla Bardua1,2* , Mark Wilkinson1, David J
Bardua et al. BMC Evolutionary Biology (2019) 19:30 https://doi.org/10.1186/s12862-018-1342-7 RESEARCH ARTICLE Open Access Morphological evolution and modularity of the caecilian skull Carla Bardua1,2* , Mark Wilkinson1, David J. Gower1, Emma Sherratt3 and Anjali Goswami1,2 Abstract Background: Caecilians (Gymnophiona) are the least speciose extant lissamphibian order, yet living forms capture approximately 250 million years of evolution since their earliest divergences. This long history is reflected in the broad range of skull morphologies exhibited by this largely fossorial, but developmentally diverse, clade. However, this diversity of form makes quantification of caecilian cranial morphology challenging, with highly variable presence or absence of many structures. Consequently, few studies have examined morphological evolution across caecilians. This extensive variation also raises the question of degree of conservation of cranial modules (semi-autonomous subsets of highly-integrated traits) within this clade, allowing us to assess the importance of modular organisation in shaping morphological evolution. We used an intensive surface geometric morphometric approach to quantify cranial morphological variation across all 32 extant caecilian genera. We defined 16 cranial regions using 53 landmarks and 687 curve and 729 surface sliding semilandmarks. With these unprecedented high-dimensional data, we analysed cranial shape and modularity across caecilians assessing phylogenetic, allometric and ecological influences on cranial evolution, as well as investigating the relationships among integration, evolutionary rate, and morphological disparity. Results: We found highest support for a ten-module model, with greater integration of the posterior skull. Phylogenetic signal was significant (Kmult =0.87,p < 0.01), but stronger in anterior modules, while allometric influences were also significant (R2 =0.16,p < 0.01), but stronger posteriorly. -
Missouri State Wildlife Action Plan Missouri Department of Conservation Conserving Healthy Fish, Forests, and Wildlife 2015
Missouri State Wildlife Action Plan Missouri Department of Conservation CONSERVING HEALTHY FISH, FORESTS, AND WILDLIFE 2015 Missouri State Wildlife Action Plan 2015 Missouri is a national leader in fish, forest, and wildlife conservation due to Missouri citizens’ unique and proactive support of conservation efforts. The Conservation Department continues to build on our 79- year legacy of citizen-led conservation by outlining strategic priorities for the future to help us successfully manage fish, forest, and wildlife. Each of these priorities ties directly back to the heart of our mission: to manage and protect the fish, forest, and wildlife resources of the state and to provide opportunities for all citizens to use, enjoy, and learn about those resources. - Robert L. Ziehmer, Director Missouri Department of Conservation Missouri State Wildlife Action Plan 2015 FOREWORD issouri supports an abundant natural heri- examples of the state’s original natural communities tage, ranking 21st in the nation in terms of and outstanding biological diversity. The Depart- Mits numbers of native animal and plant spe- ment’s science-based efforts, aimed at understand- cies. There are over 180 native fish species, includ- ing life-history needs and habitat system dynamics, ing the endemic Niangua darter, that ply the state’s have benefited a variety of Missouri species, includ- aquatic habitats. More than 100 species of native ing recovery efforts of the American burying beetle, amphibians and reptiles occur in a myriad of habitats Ozark hellbender, eastern hellbender, eastern collared from mountain-top glades to lowland swamps. Mis- lizard, prairie massasauga rattlesnake, greater prai- souri supports nationally significant river and stream rie-chicken, bald eagle, peregrine falcon, pallid and systems, some of the largest forested tracts left in the lake sturgeons, Niangua darter, Topeka shiner, Virgin- Midwest, a high density of cave and karst features, ia sneezeweed, geocarpon, and Missouri bladderpod. -
Spermatogenesis and Histology of the Testes of the Caecilian, <Em
University of Richmond UR Scholarship Repository Biology Faculty Publications Biology 12-1986 Spermatogenesis and Histology of the Testes of the Caecilian, Chthonerpeton indistinctum Rafael O. de Sá University of Richmond, [email protected] Nibia Berois Follow this and additional works at: http://scholarship.richmond.edu/biology-faculty-publications Part of the Biology Commons, Developmental Biology Commons, and the Structural Biology Commons Recommended Citation Sá, Rafael de, and Nibia Berois. "Spermatogenesis and Histology of the Testes of the Caecilian, Chthonerpeton indistinctum." Journal of Herpetology 20, no. 4 (December 1986): 510-14. doi:10.2307/1564247. This Article is brought to you for free and open access by the Biology at UR Scholarship Repository. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. fourn•I of Herpetology, Vol. 20, No. 4, pp. 510-514, 1986 Copyright 1986 Society for the Study of Amphibians and Reptiles Spermatogenesis and Histology of the Testes of the Caecilian, Chthonerpeton indistinctum RAFAEL DE SA1 AND NIBIA BEROIS2 1Museum of Natural History and Department of Systematics and Ecology, The University of Kansas, Lawrence, Kansas 66045-2454, USA 2Departamento de Biologfa Celular, Facultad de Humanidades y Ciencias, Universidad Mayor de la Republica Oriental del Uruguay, Tristan Narvaja 1674, Montevideo, Uruguay ABSTRACT. - Macroscopically, the testes of Chthonerpeton indistinctum consist of a series of oval lobes. The number and size of lobes is variable in Chthonerpeton indistinctum. Histologically, the testes are divided into structural units, locules separated by septa of connective tissue. Inside of each locule spermatogenesis takes place in cysts of germinal cells that divide synchronically. -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................