Missouri State Wildlife Action Plan Missouri Department of Conservation Conserving Healthy Fish, Forests, and Wildlife 2015

Total Page:16

File Type:pdf, Size:1020Kb

Missouri State Wildlife Action Plan Missouri Department of Conservation Conserving Healthy Fish, Forests, and Wildlife 2015 Missouri State Wildlife Action Plan Missouri Department of Conservation CONSERVING HEALTHY FISH, FORESTS, AND WILDLIFE 2015 Missouri State Wildlife Action Plan 2015 Missouri is a national leader in fish, forest, and wildlife conservation due to Missouri citizens’ unique and proactive support of conservation efforts. The Conservation Department continues to build on our 79- year legacy of citizen-led conservation by outlining strategic priorities for the future to help us successfully manage fish, forest, and wildlife. Each of these priorities ties directly back to the heart of our mission: to manage and protect the fish, forest, and wildlife resources of the state and to provide opportunities for all citizens to use, enjoy, and learn about those resources. - Robert L. Ziehmer, Director Missouri Department of Conservation Missouri State Wildlife Action Plan 2015 FOREWORD issouri supports an abundant natural heri- examples of the state’s original natural communities tage, ranking 21st in the nation in terms of and outstanding biological diversity. The Depart- Mits numbers of native animal and plant spe- ment’s science-based efforts, aimed at understand- cies. There are over 180 native fish species, includ- ing life-history needs and habitat system dynamics, ing the endemic Niangua darter, that ply the state’s have benefited a variety of Missouri species, includ- aquatic habitats. More than 100 species of native ing recovery efforts of the American burying beetle, amphibians and reptiles occur in a myriad of habitats Ozark hellbender, eastern hellbender, eastern collared from mountain-top glades to lowland swamps. Mis- lizard, prairie massasauga rattlesnake, greater prai- souri supports nationally significant river and stream rie-chicken, bald eagle, peregrine falcon, pallid and systems, some of the largest forested tracts left in the lake sturgeons, Niangua darter, Topeka shiner, Virgin- Midwest, a high density of cave and karst features, ia sneezeweed, geocarpon, and Missouri bladderpod. and some of the largest remnants of the eastern tall- The Department and the citizens of Missouri have grass prairie. Considered together, the opportunity to benefited from commitment to planning and prioritiz- conserve rich wildlife diversity in Missouri is great. ing fish and wildlife diversity management strategies. Missouri citizens have a proud history and a strong With the original Comprehensive Wildlife Conserva- tradition of dedication to the appreciation, conserva- tion Strategy in 2005, the Department worked across tion, and restoration of our rich natural heritage. In all Divisions and with partners to identify and prior- 1937, citizen-led efforts created the Missouri Depart- itize conservation opportunities across the state. Our ment of Conservation (Department), the world’s first current State Wildlife Action Plan is another strong apolitical, science-based conservation agency with step towards the ultimate goal of building a Compre- exclusive authority over fish, forest, and wildlife. In hensive Conservation Strategy for our state, which 1976, citizens renewed their commitment to conser- will fully incorporate Department and partner goals vation by passing an amendment that called for a one- and priorities for fish, forest, and wildlife manage- eighth of one percent sales tax to provide consistent ment and conservation. funding for fish, forest, and wildlife conservation. To- ~ Jennifer Battson Warren, Wildlife Division Chief day, more than 90% of Missourians remain interested in their fish, forest, and wildlife resources. With this support the Department has achieved a great deal of success in the management of Missou- ri’s natural heritage. Missouri has one of the strongest programs of designated Natural Areas in the Midwest, with more than 180 sites representing some of the best Page i Missouri State Wildlife Action Plan 2015 PRIMARY REFERENCES The basic terrestrial natural community classifications and the natural community descriptions within Missou- ri’s State Wildlife Action Plan are generalizations, primarily adopted from those descriptions published within The Terrestrial Natural Communities of Missouri, authored by Paul W. Nelson, copyrighted by the Missouri Natural Areas Committee (2010). This valuable reference tool was compiled with resources, knowledge, and expertise from the Missouri Department of Conservation, Missouri Department of Natural Resources, U.S. Forest Service, U.S. Fish and Wildlife Service, National Park Service, The Nature Conservancy, Missouri Re- source Assessment Partnership, and many other important contributors. The aquatic natural community classifications and descriptions within Missouri’s State Wildlife Action Plan are primarily adopted from The Fishes of Missouri, authored by William L. Pflieger (1997). Page ii Missouri State Wildlife Action Plan 2015 ACKNOWLEDGEMENTS The development of this State Wildlife Action Plan has truly been a team effort and exhibits the collective efforts of a number of Department staff. Dennis Figg (Wildlife) began leading the revision effort. Dennis and Phillip Hanberry (Missouri Resource Assessment Partnership, housed at University of Missouri-Columbia) developed draft scoring criteria and GIS analyses for each habitat that formed the foundation for the revised Conservation Opportunity Areas (COAs), which are the backbone of this Plan. After Dennis’ retirement in fall of 2014, Kelly Rezac and Nathan (Nate) Muenks assumed the leadership of the team to complete the de- velopment of the habitat priorities, definition of the COAs and development of the Plan. Kelly and Nate also co-authored much of the Plan. Assisting the team have been several hourly employees whose help has been vital to the effort, including Robbie Doerhoff, Taliaa Pendergrass, Joshua Ernst, Courtney Duchardt, Lin Kuhn and Donnamarie Duffin. These provided invaluable assistance with logistics in conducting meetings, writing and editing, gathering information, coordinating with staff and the host of other duties associated with this effort. The Comprehensive Conservation Strategy Steering Committee, consisting of Ange Corson (Fisheries), Steve Westin (Forestry), Kevin Borisenko (Private Land Services) and Norman Murray (Wildlife), provided guidance and review throughout the development of the Plan. Four Division Chiefs, Jennifer Battson Warren (Wildlife), Lisa Allen (Forestry), Brian Canaday (Fisheries) and Bill White (Private Land Services) have pro- vided administrative guidance throughout the process and support for staff involvement to develop and imple- ment the Plan. Teams of staff with expertise on each habitat system type reviewed the scoring criteria and resulting habitat priorities to finalize the recommended COAs (see page ix for a list of these team members). These recommen- dations were then forwarded to Regional Coordination Teams (Department Regional Supervisors from each Division) who reviewed the COAs and provided a regional perspective to the set of COAs as well. All of these teams responded with their expertise with very short turn-around periods and their help strengthened the result significantly. Amy Buechler (Policy Coordination) guided the development of the Public Participation Strategy and con- ducting the stakeholder engagement meetings. Heather Feeler (Outreach and Education) and Sarah Kendrick (Wildlife) helped develop outreach materials. All staff and partners who have participated in this process have done so with enthusiasm and profession- alism and their contributions are greatly appreciated to building this Plan into a quality product. Page iii Missouri State Wildlife Action Plan 2015 HABITAT TEAMS Page iv Missouri State Wildlife Action Plan 2015 TABLE OF CONTENTS Foreward . i Table of Contents . V Preface . 1 Tables 1 & 2: Roadmap to Eight Elements . 3 Element 1: Species of Greatest Conservation Need . 4 Element 2: Habitat Systems . 8 Elements 3 and 4: Threats and Actions . .12 . Element 5: Monitoring and Evaluation . 17 Element 6: Revision . 19 Figure 1. Integration of Missouri Conservation Priorities . 19 Elements 7 and 8: Partner and Public Input . 20 Literature Cited . 26 Maps Figure 2: Missouri Ecoregions . 29 Figure 3: 2015 Conservation Opportunity Areas . 30 Figure 4: 2015 Conservation Opportunity Areas Separated by Habitat Systems . 31 habitat systems Introduction . 32. Grassland/Prairie/Savanna Conservation . 33 Overview . 33 Page v Missouri State Wildlife Action Plan TABLE OF CONTENTS Grassland/Prairie/Savanna Conservation (Continued) Conservation Opportunity Areas . 34 Landcover Information. .35 Scoring Criteria . 36 Species of Greatest Conservation Need . 37 Habitat System Threats . 40 Habitat Management Actions . 4. 1 Loess Hills Prairie................................................................42 Case Study: Loess Hills Prairie Complex ........... ..............................43 Glaciated Prairie.................................................................44 Case Study: Grand River Grasslands Priority Geography...........................45 Unglaciated Prairie . 46 Case Study: Upper Osage Grasslands Priority Geography..........................47 Sand Prairie . 48 Case Study: Sand Ridge Grasslands . 49 Savanna........................................................................50 Case Study: Missouri-Iowa Woodland/Savanna Geography . 51 Wet Prairie . .52 Case Study: Flight Lake, Douglas Branch, and Ripgut Prairie .......................53 Literature Cited . 54 Forest and Woodland Conservation Overview . 56 Conservation Opportunity
Recommended publications
  • Nutritional Ecology of the Carpenter Ant Camponotus Pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption
    Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology Richard D. Fell, Chairman Jeffrey R. Bloomquist Richard E. Keyel Charles Kugler Donald E. Mullins June 12, 1998 Blacksburg, Virginia Keywords: diet, feeding behavior, food, foraging, Formicidae Copyright 1998, Colleen A. Cannon Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon (ABSTRACT) The nutritional ecology of the black carpenter ant, Camponotus pennsylvanicus (De Geer) was investigated by examining macronutrient preference and particle consumption in foraging workers. The crops of foragers collected in the field were analyzed for macronutrient content at two-week intervals through the active season. Choice tests were conducted at similar intervals during the active season to determine preference within and between macronutrient groups. Isolated individuals and small social groups were fed fluorescent microspheres in the laboratory to establish the fate of particles ingested by workers of both castes. Under natural conditions, foragers chiefly collected carbohydrate and nitrogenous material. Carbohydrate predominated in the crop and consisted largely of simple sugars. A small amount of glycogen was present. Carbohydrate levels did not vary with time. Lipid levels in the crop were quite low. The level of nitrogen compounds in the crop was approximately half that of carbohydrate, and exhibited seasonal dependence. Peaks in nitrogen foraging occurred in June and September, months associated with the completion of brood rearing in Camponotus.
    [Show full text]
  • Ecography ECOG-02578 Pinkert, S., Brandl, R
    Ecography ECOG-02578 Pinkert, S., Brandl, R. and Zeuss, D. 2016. Colour lightness of dragonfly assemblages across North America and Europe. – Ecography doi: 10.1111/ecog.02578 Supplementary material Appendix 1 Figures A1–A12, Table A1 and A2 1 Figure A1. Scatterplots between female and male colour lightness of 44 North American (Needham et al. 2000) and 19 European (Askew 1988) dragonfly species. Note that colour lightness of females and males is highly correlated. 2 Figure A2. Correlation of the average colour lightness of European dragonfly species illustrated in both Askew (1988) and Dijkstra and Lewington (2006). Average colour lightness ranges from 0 (absolute black) to 255 (pure white). Note that the extracted colour values of dorsal dragonfly drawings from both sources are highly correlated. 3 Figure A3. Frequency distribution of the average colour lightness of 152 North American and 74 European dragonfly species. Average colour lightness ranges from 0 (absolute black) to 255 (pure white). Rugs at the abscissa indicate the value of each species. Note that colour values are from different sources (North America: Needham et al. 2000, Europe: Askew 1988), and hence absolute values are not directly comparable. 4 Figure A4. Scatterplots of single ordinary least-squares regressions between average colour lightness of 8,127 North American dragonfly assemblages and mean temperature of the warmest quarter. Red dots represent assemblages that were excluded from the analysis because they contained less than five species. Note that those assemblages that were excluded scatter more than those with more than five species (c.f. the coefficients of determination) due to the inherent effect of very low sampling sizes.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • By the Lepidoptera (Eg Patterns Are Frequently Used
    Odonatologica 15(3): 335-345 September I, 1986 A survey of some Odonata for ultravioletpatterns* D.F.J. Hilton Department of Biological Sciences, Bishop’s University, Lennoxville, Quebec, J1M 1Z7, Canada Received May 8, 1985 / Revised and Accepted March 3, 1986 series of 338 in families A museum specimens comprising spp. 118 genera and 16 were photographed both with and without a Kodak 18-A ultraviolet (UV) filter. These photographs revealed that only Euphaeaamphicyana reflected UV from its other wings whereas all spp. either did not absorb UV (e.g. 94.5% of the Coenagri- did In with flavescent. onidae) or so to varying degrees. particular, spp. orange or brown UV these wings (or wing patches) exhibited absorption for same areas. However, other spp. with nearly transparent wings (especially certain Gomphidae) Pruinose also had strong UV absorption. body regions reflected UV but the standard acetone treatment for color preservation dissolves thewax particles of the pruinosity and destroys UV reflectivity. As is typical for arthropod cuticle, non-pruinosebody regions absorbed UV and this obscured whatever color patterns might otherwise be visible without the camera’s UV filter. Frequently there is sexual dimorphismin UV and and these role various of patterns (wings body) differences may play a in aspects mating behavior. INTRODUCTION Considerable attention has been paid to the various ultraviolet (UV) patterns exhibited by the Lepidoptera (e.g. SCOTT, 1973). Studies have shown (e.g. RUTOWSKI, 1981) that differing UV-reflectance patterns are frequently used as visual in various of behavior. few insect cues aspects mating Although a other groups have been investigated for the presence of UV patterns (HINTON, 1973; POPE & HINTON, 1977; S1LBERGL1ED, 1979), little informationis available for the Odonata.
    [Show full text]
  • A Checklist of North American Odonata
    A Checklist of North American Odonata Including English Name, Etymology, Type Locality, and Distribution Dennis R. Paulson and Sidney W. Dunkle 2009 Edition (updated 14 April 2009) A Checklist of North American Odonata Including English Name, Etymology, Type Locality, and Distribution 2009 Edition (updated 14 April 2009) Dennis R. Paulson1 and Sidney W. Dunkle2 Originally published as Occasional Paper No. 56, Slater Museum of Natural History, University of Puget Sound, June 1999; completely revised March 2009. Copyright © 2009 Dennis R. Paulson and Sidney W. Dunkle 2009 edition published by Jim Johnson Cover photo: Tramea carolina (Carolina Saddlebags), Cabin Lake, Aiken Co., South Carolina, 13 May 2008, Dennis Paulson. 1 1724 NE 98 Street, Seattle, WA 98115 2 8030 Lakeside Parkway, Apt. 8208, Tucson, AZ 85730 ABSTRACT The checklist includes all 457 species of North American Odonata considered valid at this time. For each species the original citation, English name, type locality, etymology of both scientific and English names, and approxi- mate distribution are given. Literature citations for original descriptions of all species are given in the appended list of references. INTRODUCTION Before the first edition of this checklist there was no re- Table 1. The families of North American Odonata, cent checklist of North American Odonata. Muttkows- with number of species. ki (1910) and Needham and Heywood (1929) are long out of date. The Zygoptera and Anisoptera were cov- Family Genera Species ered by Westfall and May (2006) and Needham, West- fall, and May (2000), respectively, but some changes Calopterygidae 2 8 in nomenclature have been made subsequently. Davies Lestidae 2 19 and Tobin (1984, 1985) listed the world odonate fauna Coenagrionidae 15 103 but did not include type localities or details of distri- Platystictidae 1 1 bution.
    [Show full text]
  • Cumulative Index of ARGIA and Bulletin of American Odonatology
    Cumulative Index of ARGIA and Bulletin of American Odonatology Compiled by Jim Johnson PDF available at http://odonata.bogfoot.net/docs/Argia-BAO_Cumulative_Index.pdf Last updated: 14 February 2021 Below are titles from all issues of ARGIA and Bulletin of American Odonatology (BAO) published to date by the Dragonfly Society of the Americas. The purpose of this listing is to facilitate the searching of authors and title keywords across all issues in both journals, and to make browsing of the titles more convenient. PDFs of ARGIA and BAO can be downloaded from https://www.dragonflysocietyamericas.org/en/publications. The most recent three years of issues for both publications are only available to current members of the Dragonfly Society of the Americas. Contact Jim Johnson at [email protected] if you find any errors. ARGIA 1 (1–4), 1989 Welcome to the Dragonfly Society of America Cook, C. 1 Society's Name Revised Cook, C. 2 DSA Receives Grant from SIO Cook, C. 2 North and Central American Catalogue of Odonata—A Proposal Donnelly, T.W. 3 US Endangered Species—A Request for Information Donnelly, T.W. 4 Odonate Collecting in the Peruvian Amazon Dunkle, S.W. 5 Collecting in Costa Rica Dunkle, S.W. 6 Research in Progress Garrison, R.W. 8 Season Summary Project Cook, C. 9 Membership List 10 Survey of Ohio Odonata Planned Glotzhober, R.C. 11 Book Review: The Dragonflies of Europe Cook, C. 12 Book Review: Dragonflies of the Florida Peninsula, Bermuda and the Bahamas Cook, C. 12 Constitution of the Dragonfly Society of America 13 Exchanges and Notices 15 General Information About the Dragonfly Society of America (DSA) Cook, C.
    [Show full text]
  • Great Lakes Entomologist
    The GREAT LAKES ENTOMOLOGIST Vol. 8, No. 4 Winter 1975 THE GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 8 1975 No. 4 TABLE OF CONTENTS A New Genus, Six New Species, and Records of Protura from Michigan Ernest C. Bernard .................................... 157 A New Species of Neelides (Collembola: Neelidae) from the United States Ernest C. Bernard ................................... 183 New Species and Additional Records of Protura from Michigan e Ernest C. Be'inard .................................... 187 Pesticide Effects on Orthopteroid Distribution in Southern Michigan Farmlands Benedict C. Pinkowski ....: ............................ 197 Heptageniidae (Ephemeroptera) of Wisconsin R. Wills Flowers and William L. Hilsenhoff .................... 201 Curculionidae and Chrysomelidae found in Aquatic Habitats in Wisconsin Lutz J. Bayer and H. Jane Brockman ......................... 219 Projected Red Pine Yields from Aldrin-treated and Untreated Stands Damaged by White Grubs and other Agents Richard F. Fowler and Louis F. Wilson ....................... 227 Genetic Variation in Resistance of.Scotch Pine to Zirnmerman Pine Moth Jonathan W. Wright, Louis F. Wilson and John N. Bright ............. 231 Abundance of Insects Inhabiting the Male Strobili of Red Pine William J. Mattson ................................... 237 Habitats and Populations of the Ant Stenamma diecki Emery in Southern Michigan Mary Talbot ....................................... 241 A List of the Ants (Hymenoptera: Formicidae) of the Edwin S. George Reserve, Livingston County, Michigan Mary Talbot ....................................... 245 COVER ILLUSTRATION Anterior portion of a Proturan, Amerentulus americanus (Ewing) (Protura: Acerento- midae), mounted and cleared. Photograph taken with Nomarski interference contrast optics by E. C. Bernard. X950. Vol. 8, No. 3 of The Great Lakes Entomologist was mailed October 24, 1975. THE MICHIGAN ENTOMOLOGICAL SOCIETY 1975-76 OFFICERS President David C.
    [Show full text]
  • Sperm Storage in Spermathecae of the Great Lamper Eel, Amphiuma Tridacfyhm (Caudata: Amp Hi U Midae)
    JOURNAL OF MORPHOLOGY 230:79-97 (1996) Sperm Storage in Spermathecae of the Great Lamper Eel, Amphiuma tridacfyhm (Caudata: Amp hi u midae) DAVID M. SEVER, J. SEAN DOODY, COURTNEY A. REDDISH, MICHELLE M. WENNER, AND DON R. CHURCH Department of Biology, Saint Mary's College, Notre Dame, Indiana 46556 (D.M.S., C.A.R., M.M. W.); Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana 70402 (J.S.D., D.R.C.) ABSTRACT The spermathecae of ten female Amphiuma tridactylum were examined by light and electron microscopy during the presumed mating and ovipository seasons (March-August) in Louisiana. Spermathecae were simple tubuloalveolar glands in the dorsal wall of the cloaca. Six of the ten specimens were vitellogenic, and all of these specimens contained sperm in their sperma- thecae and had secretory activity in the spermathecal epithelium. Two nonvitel- logenic females also had sperm in their spermathecae and active epithelial cells, whereas the other nonvitellogenic females lacked stored sperm and secretory activity in the spermathecae. In specimens storing sperm from March-May, the sperm were normal in cytology, and secretory vacuoles were contained within the epithelium. In the August sample, however, evidence of sperm degradation was present, and secretory material had been released into the lumen by an apocrine process. We therefore hypothesize that the spermathecal secretions function in sperm degeneration. Q 1996 Wiley-Liss, Inc. The Amphiumidae consists of three spe- of A. tridactylum and described these glands cies of Amphiuma, elongate, fossorial sala- in A. means and A. phloleter. In addition, manders with reduced limbs and one exter- Sever ('gla, '94) reported on the phylogeny nal gill slit, a paedomorphic character of the spermathecae and other cloacal glands (Duellman and Trueb, '86).
    [Show full text]
  • Sexual Dimorphism in the Three-Toed Amphiuma, Amphiuma Tridactylum: Sexual Selection Or Ecological Causes?
    Copeia 2008, No. 1, 39–42 Sexual Dimorphism in the Three-toed Amphiuma, Amphiuma tridactylum: Sexual Selection or Ecological Causes? Clifford L. Fontenot, Jr.1 and Richard A. Seigel2 Sexual dimorphism is widespread among vertebrates, and may be attributable to sexual selection, differences in ecology between the sexes, or both. The large aquatic salamander, Amphiuma tridactylum, has been suggested to have male biased sexual dimorphism that is attributable to male–male combat, although detailed evidence is lacking. To test this, data were collected on A. tridactylum head and body size, as well as on bite-marks inflicted by conspecifics. Amphiuma tridactylum is sexually dimorphic in several characters. There was no sex difference in body length, but males had heavier bodies than females of the same body length. Larger males had wider and longer heads than larger females, but whether any of these sexually dimorphic characters are attributable to differences in diet is unknown because diet data (by sex) are lacking. There was no difference in the number of bite-marks between males and females, and juveniles also possessed bite-marks, suggesting that the biting is not necessarily related to courtship or other reproductive activities. In addition, fresh bite-marks were present on individuals during months well outside of the breeding season. Biting was observed in the field and lab to occur by both sexes on both sexes, during feeding-frenzy type foraging. Thus, biting is likely related to foraging rather than to courtship. The sexually dimorphic characters remain unexplained, pending sex-specific diet data, but there is no evidence that they are related to male–male combat or to courtship.
    [Show full text]
  • LCR MSCP Species Accounts, 2008
    Lower Colorado River Multi-Species Conservation Program Steering Committee Members Federal Participant Group California Participant Group Bureau of Reclamation California Department of Fish and Game U.S. Fish and Wildlife Service City of Needles National Park Service Coachella Valley Water District Bureau of Land Management Colorado River Board of California Bureau of Indian Affairs Bard Water District Western Area Power Administration Imperial Irrigation District Los Angeles Department of Water and Power Palo Verde Irrigation District Arizona Participant Group San Diego County Water Authority Southern California Edison Company Arizona Department of Water Resources Southern California Public Power Authority Arizona Electric Power Cooperative, Inc. The Metropolitan Water District of Southern Arizona Game and Fish Department California Arizona Power Authority Central Arizona Water Conservation District Cibola Valley Irrigation and Drainage District Nevada Participant Group City of Bullhead City City of Lake Havasu City Colorado River Commission of Nevada City of Mesa Nevada Department of Wildlife City of Somerton Southern Nevada Water Authority City of Yuma Colorado River Commission Power Users Electrical District No. 3, Pinal County, Arizona Basic Water Company Golden Shores Water Conservation District Mohave County Water Authority Mohave Valley Irrigation and Drainage District Native American Participant Group Mohave Water Conservation District North Gila Valley Irrigation and Drainage District Hualapai Tribe Town of Fredonia Colorado River Indian Tribes Town of Thatcher The Cocopah Indian Tribe Town of Wickenburg Salt River Project Agricultural Improvement and Power District Unit “B” Irrigation and Drainage District Conservation Participant Group Wellton-Mohawk Irrigation and Drainage District Yuma County Water Users’ Association Ducks Unlimited Yuma Irrigation District Lower Colorado River RC&D Area, Inc.
    [Show full text]
  • Amphibian, Amphiuma Tridactylum
    J. Exp. Biol. (1971). 55. 47-6i 47 With 5 text-figures Printed in Great Britain GAS TENSIONS IN THE LUNGS AND MAJOR BLOOD VESSELS OF THE URODELE AMPHIBIAN, AMPHIUMA TRIDACTYLUM BY DANIEL P. TOEWS,* G. SHELTONf AND D. J. RANDALL Department of Zoology, University of British Columbia, Vancouver 8, B.C., Canada (Received 2 December 1970) INTRODUCTION Those vertebrates which exchange their respiratory gases in both air and water present complex and interesting problems, particularly in relation to the regulation of ventilation and perfusion of the exchanging surfaces. In both lungfish and amphibia the lung is perfused via morphologically distinct pulmonary arteries and veins which form part of a partially divided double circulation. However, the incompletely divided heart in these forms is a region possessing potential for the development of extensive shunts between pulmonary and systemic circuits. The effect of such shunts would be to allow both intermixing of blood streams returning to the heart and inequalities of flow in the two circuits. Variations in the balance of flow to lungs and body, associated with breathing behaviour, have already been demonstrated in both lungfish (Johansen, Lenfant & Hanson, 1968) and amphibia (Shelton, 1970). In spite of an anatomical arrangement which would suggest very considerable mixing of blood from pulmonary and systemic inflow, selective distribution of oxygenated and deoxygenated streams has been reported by a number of workers (Delong, 1962; Johansen, 1963; Haberich, ^65; Johansen & Ditadi, 1966; Johansen et al. 1968). In lungfish and amphibia it was found that blood in the systemic arch was consistently more highly oxygenated than that in the pulmonary artery.
    [Show full text]
  • The Evolution of Social Parasitism in Formica Ants Revealed by a Global Phylogeny
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423324; this version posted February 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The evolution of social parasitism in Formica ants revealed by a global phylogeny Marek L. Borowiec*a,b,c, Stefan P. Coverd, and Christian Rabeling†a aSchool of Life Sciences, Arizona State University, Tempe, AZ 85287, U.S.A. bInstitute of Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83843, U.S.A. cDepartment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, U.S.A. dMuseum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A. Abstract Studying the behavioral and life history transitions from a cooperative, eusocial life history to exploita­ tive social parasitism allows for deciphering the conditions under which changes in behavior and social organization lead to diversification. The Holarctic ant genus Formica is ideally suited for studying the evo­ lution of social parasitism because half of its 176 species are confirmed or suspected social parasites, which includes all three major classes of social parasitism known in ants. However, the life­history transitions associated with the evolution of social parasitism in this genus are largely unexplored. To test compet­ ing hypotheses regarding the origins and evolution of social parasitism, we reconstructed the first global phylogeny of Formica ants and representative formicine outgroups.
    [Show full text]