Odonatologica 15(3): 335-345 September I, 1986

A survey of some for ultravioletpatterns*

D.F.J. Hilton

Department of Biological Sciences, Bishop’s University,

Lennoxville, Quebec, J1M 1Z7, Canada

Received May 8, 1985 / Revised and Accepted March 3, 1986

series of 338 in families A museum specimens comprising spp. 118 genera and 16

were photographed both with and without a Kodak 18-A ultraviolet (UV) filter.

These photographs revealed that only Euphaeaamphicyana reflected UV from its

other wings whereas all spp. either did not absorb UV (e.g. 94.5% of the Coenagri-

did In with flavescent. onidae) or so to varying degrees. particular, spp. orange or

brown UV these wings (or wing patches) exhibited absorption for same areas.

However, other spp. with nearly transparent wings (especially certain )

Pruinose also had strong UV absorption. body regions reflected UV but the standard

acetone treatment for color preservation dissolves thewax particles of the pruinosity

and destroys UV reflectivity. As is typical for cuticle, non-pruinosebody

regions absorbed UV and this obscured whatever color patterns might otherwise be

visible without the camera’s UV filter. Frequently there is sexual dimorphismin UV

and and these role various of patterns (wings body) differences may play a in aspects

mating behavior.

INTRODUCTION

Considerable attention has been paid to the various ultraviolet (UV) patterns

exhibited by the Lepidoptera (e.g. SCOTT, 1973). Studies have shown (e.g.

RUTOWSKI, 1981) that differing UV-reflectance patterns are frequently used as

visual in various of behavior. few cues aspects mating Although a other

groups have been investigated for the presence of UV patterns (HINTON, 1973; POPE & HINTON, 1977; S1LBERGL1ED, 1979), little informationis available

for the Odonata. ROBEY (1975) noted that pruinose areas on the bodies of male

Erythemis simplicicollis, cyanea, L. incesta and Pachydiplax longi-

• Dr. the occasion of his 70th Dedicated to M.J. Westfall, Jr. on birthday. 336 D.F.J. Hilton

pennis reflected UV; so too did S1LBERGLIED (1979) for L. pulchella and

Plathemis (= Libellula) lydia, and ROBERTSON (1984) for L. luctuosa, L. pulchella, Pachydiplax longipennis and Plathemis lydia. In addition, SILBER-

GLIED (1979) observed UV reflection from the iridescent body regions of both

sexes of Argia fumipennis. In contrast to these studies which recorded UV

reflectance, SATO (1984) recorded UV absorbance in the wings of Calopteryx

C. and did FRANTSEVICH cornelia, virgo japonica Mnais pruinosa costalis, as

& MOKRUSHOV (1984) for

certain species of Sympetrum.

Members ofthe Odonata are noted for their excellent vision, and those species which have

been investigated are known to

have UV receptors (MENZEL,

1979), especially in the omma- tidia of the dorsal region ofthe eyes (EGUCH1, 1971; GOLD-

SMITH & BERNARD, 1974).

For these reasons it seemed particularly important to sur-

vey the Odonata in order to

determine the extent of UV

patterns in these .

METHODS

taken Photographs were of preser- ved specimens in the Odonata collec- tion at Bishop’s University. These

represented 338 species (plus 11

in 118 and 16 subspecies) genera

families ( Tab. 1). All non-Canadian species were obtained from other

and relied odonatologists I upon their 1-3. and ultraviolet of: determinations for species identifica- Figs Daylight (D) (U) patterns

(I) Tetragoneuria costalis male Davidius tion. (M); — (2)

nanus (M); (3) Gomphurusfraternus ( M). Photographic techniques were

adapted from ECUJCHI & MEYER-

-ROCHOW (1983). FERRIS (1972)

ME Pcntax-M and HI IT, (1977). The camera was a Pentax Super with a 50 mm 1:1.7 lens to which

the UV Kodak 18-A UV was attached (for photographs) a ("Wrattcn") filter. The film was Tri-X

Panchromatic 400 ASA. 337 Ultraviolet patterns in Odonata

RESULTS

Fourteen response patterns to UV light have been determined in this survey

in its indicated (Figs 1-14) and each species Table I has UV pattern-type by a

number the which matches its representing Figure most closely own pattern.

Pattern 1 (Fig. 1) has no UV absorbance or reflectance, patterns 2-. 13 (Figs 2-13) show varying degrees of UV absorbance, while pattern 14 (Fig. 14) shows UV

reflectance.

Certains trends can be seen.

Almost all the Coenagrioni-

dae [52/55 (94.5%)] did not

show any UV patterns (like

Fig. 1) and the same was true

to a lesser extent for the

Leucorrhiniinae [11/14

(78.6%)] and Libellulinae

[14/21 (66.7%)]. In contrast,

10/12 (83.3%) ofthe Calopte-

ryginae had a very dark UV-

-absorbing wing pattern (like

Fig. 13), probably due to the

dark pigment(s) typically pre-

sent in their wings. The effect

of wing pigment(s) as UV

absorbers can be seen in

species such as Mnaispruino-

sa in which dark-winged

males had a very dark UV

while pattern paler-winged

females had only a slight wing

darkening in UV. This ten-

dency for wing pigment(s) to

absorb UV was found in a 4-6. and ultraviolet of: Figs Daylight (D) (U) patterns (4)

number of species with fla- vinosa Boyeria (M); — (5) Dromogomphus spinosus fe-

vescent, orange or brown male (F); — (6) Gomphus melaenops (M).

wings or wing patches [e.g.

Lestes eurinus (like Fig. 5), Anax parthenope julius (Fig. 9), Nannophya pyg-

maea (like Fig. II), Sympetrum semicinctum (like Fig. II) and Tholymis

such Libellula tillarga (Fig. 12)]. Species as lydia or Rhyothemis fuligi-

nosa, with very dark wing patches, undoubtedly also absorbed UV in these

pigmented areas. However, they are already so dark in daylight that no change

was evident in UV and thus are considered in Table I not to show UV patterns 338 D.F.J. Hilton

(like Fig. 1). Many Gomphidae had dark UV wing patterns, particularly at

one-halfof the basal one-quarter to the wings (Figs 2, 3 & 7), even though their

in wings were transparent daylight. However, by holding the wings against a white background and looking very closely it was often possible to see a very faint flavescence which corresponded in position to the; UV-absorbing regions of the

in wings. Sexual dimorphism U V wing patterns was frequent. This might just bea small difference in wing darkening (e.g. Polycanthagyna melanictera)I or one sex could have dark in while remained a wing pattern UV the other sex’s wings

transparent [e.g. Gomphus

hodgesi (Fig. 10)].

Euphaea amphicyana was

unusual because it was the only

species to have wings that reflected UV. This occurred in

the basal two-thirds of the hind

wings (Fig. 14) and correspon-

ded with a deep-purple reflec-

tive region which became visi- ble against the very dark brown

wing pigment(s) only when the

wings were held at a particular

angle.

DISCUSSION

In contrast to many butter-

flies (e.g. SCOTT, 1973) (and except for Euphaea amphicy- ana) the Odonata listed in

Table I did not show UV reflectance. GHIRADELLA

(1984) and GHIRADELLA et al. (1972) have shown that UV reflectance in Lepidoptera is Figs 7-9. Daylight (D) and ultraviolet (U) patterns of:

due to optical interference (7) Gomphus pryeri (M); (X) Anax panybeus (M);

within the microscopic struc- (9) Anax parthenopejulius (F).

ture of wing scales. Certain

Coleoptera (POPE & HINTON, 1977)have UV reflectance primarily caused by

microtrichia pigments contained within and other setae but it may also be from dried cuticular secretions (some Tenebrionidacand Buprestidae) or subcuticular pigments (a few desert-dwelling Tenebrionidac). Because Odonata lack lepidopteran-type scales or the surface cuticular processes typical of some beetles. Ultraviolet patterns in Odonata 339

this be the few reflect UV. The may reason why so species major exceptions are those which exhibit species pruinosity. ROBERTSON (1984), using a spectrophotometer, determinedthat pruinosity strongly reflected UV. BYERS

(1975), ROBEY (1975) and SILBERGL1ED (1979) recorded the tendency for white or bluish pruinose areas to have an enhanced whiteness when

UV filter. I noticed photographed through a also this effect but did not designate it in as a separate pattern-type TableI. Both BYERS (1975) and S1LBERGL1ED

that UV reflectance of (1979) suggested pruinose areas might be a Tyndall effect and BYERS (1975) observed that when the wax particles which comprise the pruino- sity are removed by organic solvents the Tyndall effect is permanently destroyed. Due to the widespread practice by odonatologists of soaking captured Odonata in acetone for 24 hrs in order to preserve colors, many museum speci- mens will have lost their pruinosity and thus not reflect UV from these areas.

It is not known what pigments are responsible for the flavescent, orange or brown wings (or wing pat- ches) that strongly absorbed

UV in many Odonata. How-

in ever, plants, BREHM &

K RELL (1975) and THOM P-

SON et al. (1972) have determinedthat flavonoids in the nectar guides of some flowers are responsible for 10-12. (D) ultraviolet Figs Daylight and (U) patterns of: these regions absorbing UV. (10) Gomphus hodgesi (F + M); — (II) Sympetrum As noted SILBERGLIED Occidentale fasciatum (F + M); — (12) Tholymis tillarga (1979), arthropod cuticle ab- (F + M). sorbs UV. This is why

Odonata without pruinose regions had dark bodies in UV and their daylight color-patterns were obscured (Figs 1U-I4U).

One cannot generalize about the role UV patterns play in odonate behavior. However, it is obviously not a species or sex recognition factor for some (e.g. 340 D.F.J. Hilton

Table I

of Odonata which examined for the of Species were presence UV patterns

UV 22 2 . pattempattern type . UV „ , patternvpattem type Species'Species 1 Species'Species 1 3£ 9Ç 3 9

COENAGRIONIDAECOHNAGRIONIDAE E.£ hageni < lI I1

Amphicnemidinae !Ischnuraschnüra asiaticaasiatica lI I

AntiagrionAniiagrion gayi II I1 I.1. cervula 1

Pseudagrioninae I.1. elegans I I1

Ceriagrion latericumlalericum I.1. prognathaprognalha lI

ryukyuanum iI I1 I.1. pumilio lI

C. melanurum Ii I1 I.1. ramburii lI

C. nipponicumnipponicum Ii I. senegalensis Il I1

1. PseudagrionPseudagrionp. pilidorsum Ii I1 I. verticalisverlicalis lI I1

TelebasisTelehasis salva I Oxyagrion terminale I I1

Coenagrioninae Agriocnemidinae

I I1 lI I1 CercionCerdon calamorum \ Agriocnemis feminaoryzae

C. hieroglyphicum I I1 Mortonagrionselenionselenion lI I1

C. plagiosum Ii I1 Argiinae

C. sexlineatumsexlineatum iI I1 Argia moeslamoesta lI I

C. sieboldiisieholdii iI I1 A. oenea 4

Chromagrion conditumcondilum iI I1 A. pulla I1

Coenagrion angulatum iI I1 A. tezpi 13

C. armatumarmalum iI I A. violacea I1 I1

C. concinnumcuncinnum I I PLATYCNEMIDIDAEPLATYCNEM1DIDAE

C. hastulalumhaslulalum I I1 Calicnemidinae

C. puella iI I1 ■Coeticciaf.Coeliccia f. flavicaudaJlavicauda I1

C. pulchellumpulchellum iI I1 Platycnemidinae

C. resolutumresolulum I I1 Copera annulataannulala I1

C. vernale I I 1 C. marginipes I1

Erythromma najas I I1 C.C. tokyoensistokyoensis 2

Nehalennia gracilis iI I1 PlatycnemisPlalycnemisfoliaceafuliacea sasakii I1 I1

N. irene Ii I1 P. pennipes 4 55

N. speciosaspeciosa I I1 PSEUDOSTIGMATIDAE

PyrrhosomaPirrhosoma nymphulanymphula I I1 MecistogasterMecislogasierlinearislinearis 4

Ischnurinae Megaloprepus caerulatuscaerulalus I1

Acanthagrion gracile iI LESTIDAE

Aciagrion hisopa i1 Lestinae

A. migramigrai unitum iI I1 Archilestes grandis 5 4

AmphiagrionAmphiagrionsaucium iI I 1 ChalcolesiesChalcolesles viridisviridis 4 4

Cyanallagmainterruptainterrupta 4 4 Lestes congener I1 I1

Kn I1 I1 L.L d. Enallagmaallayma aspersum d. disjunctusdisjonctas I1 I1

E. I1 I1 L.L 1 horeale dryasdryas I I1

E.£ carunculatumcarunculaium I1 E.L eurinus 5 5

E.£ civilecivile I1 L./_ forcipatus I1 I1

E.£ cyathigerumcyathigcrum I1 L.£ japonicusjaponicus 4

E deseni /.. E. deserti yezoensis I1 L. rectangularisreelangularis I1

E. I1 I1 4 4 ebriumehrium L.L sponsa

E.£ exsulans I1 L./_ temporalis 4 4

and ' Genera species arc listed alphabetically;higher categories are according to Davies (19X1).

2 Numbers refer the to corresponding figures; a blank indicates this sex was not available for

examination. Ultraviolet in patterns Odonata 341

2 UV 2 patternpattern type UV pattern typetype’ Species-Species 1 Species 1

o<5 29 5S 92

LL. unguiculatus iII1 A. eremitaeremila I 1I

A. L. virens 4 4 cyanea 4 4

L. viridis I1 A. i. interruptainterrupla I1 I1

Sympecmatinae A. i. lineatalineal a I1 909

4 44 IndolestesIndolesles cyanea A. juncea I1 44

I. peregrinus I1 44 A. j.J. americana I1 5

Sympecma paedisca II1 1 A. multicolor 1

PSEUDOLESTIDAE A. nigronigroflavaflava 4 4

HypolestinaeHy polestinae A. palmata I1 1I

aculeataaculeata RhipidolestesRhipidolesies a. 4 1 A. sitchensis I1

R. aculeataaculeala hiraoi II1 1 A. subarctica I1 I1

R. okinawanus 4 A. lubercuUferatuberculitera I1 I1

CALOPTERYGIDAE A. umbrosa occidentalis I1 4

Calopteryginae A. u. umbrosa 1 4

CalopteryxCalopleryx amalumamatum 13 A. verticalisverticalis I1

C. atrataalrala 13 13 5 5

C. Corneliacamélia 13 13 Anax juniusJunius 5 5

C. maculatum 13 13 A. longipes 6

C. 13 13 A. splendens A. n. nigrqfasciatusnigrofasciaius 5

C. virgo 13 13 A. panybeus 8

MatronaMalrona basilarishasilaris 13 13 A. parthenopepanhenopeJuliusjulius 9 9

M. basilarishasilaris japonica 13 Gynacanthajaponica 4 55

costalis Mnais 13 13 PolycanthagynaPoh canthagynamelanictera 5 4

M. pruinosa nawai 13 44 Brachytroninae

M. p.p. pruinosa 13 44 Aeschnophlebia anisoptera 13 I1

Neurobasis c. chinensis 13 13 A. longistigmalongisligma 55

Psolodesmus mandarinus BasiaeschnaBasiaeschna janatajanata 4

44 dorotheadorothea I1 Boyeria grafiana 4 4

VestalisVeslalis apicalis 4 1 B. maclachlani 11

Hetaerininae Hetaerininae B. vinosa 4

MnesareteMnesareie I1 1 pudica GGomphaeschnaomphaeschna furcillatafurcillaia I1

CHLOROCYPHIDAE Oligoaeschnapryeripryeri 4

Chlorocyphinae GOMPHIDAE

Rhinocypha bisignatahisignaia 13 44 Gomphinae

EUPHAEIDAE maxwelli 1I

Euphaea amphicyana 1414 A. villosipes I1 I1

E. formosa 1313 DavidiusDavidius fujiamafujiama 2

E. 1313 13 yayeyamana D. m. moiwanusmom anus 2

b.h. brevicaudahrevicauda 4 44 BayaderaBayaderu D. nanus 2

EPIOPHLEBIIDAE Dromogomphus spinosus 5

I1 I1 EpiophlebiaEpiophlehiasuperslessuperstes ErpetogomphusErpelogomphus designatusdesignaius 4

AESHNIDAE Gomphurus fraternusfralernus 3

Aeshninae Gomphus australis 3

Aeshna canadensis I1 44 G. borealis 2

coerulea A. I1 G. brevis 2 2

A. constconstrictarida II1 1 342 D.F.J. Hilton

2 UV pattern type2 UV 2 pa.tenMype* P a«e™‘V^type Species'Species 1 Species 1 3 $ pattern^

G. cavillariscavil/aris l1 Sieboldius albardae 6

G. crassus 2 2 Lindeniin^e

G. descriptus 5 4 IctinogomphusIclinogomphus clavalusclavatus 5

G. diminutusdiminulus 2 I.1. pertinaxperlinax 6

G. exilis 4 4 PETALURIDAE

G. graslinellus 3 7 Petalurinae

G. hodgesi 10 10 TachopteryxTachopteryx thoreyi 2

G. hybridushybridas 2 Tanypteryginae

G. ivae I1 Tanypteryx pryeri 2

G. melaenops 6 CORDULEGASTR1DAE

G. minutusminutas 3 3 Chlorogomphinae

G. oklahomensis 6 ChlrogomphusChlorogomphus b. brunneus 13

G. ozarkensis 7 5 C. brunneus costaliscoslalis 4 7

G. pallidas I1 C. suzukii 5

G. plagiantusplagialus 11 Cordulegastrinae

G. potulentuspolulenlus 11 AnotogasterAnologaster sieboldii 5 7

G. pryeri 7 CordulegasterCordulegasler bidentatusbidenlalus 5

G. sandriussandrius 4 C. bilineata 4

G. septima 7 C. boltonibohoni 5

G. spicatus I1 I1 C. diastatopsdiastalops 5 6

G. townesi 11 C. erronea I1

G. vastus 3 C. maculatus 5 5

G. villosipes I1 C. obliquusobliquas 6

G. 1 G. vulgatissimusvulgalissimus 4 C. sayi I

Hylogomphus abbreviatusahhreviatus 2 CORDULIIDAE

H.H. geminatus I Corduliinae

! amurensis 4 Lanthusjamhas albistylus 3 33 Cordulia aenea amurensis

L.L fujiacus 2 C. shurtleffishunleffi I1 I1

L.L parvuluspan ulus 2 Dorocordulia libera 4 4

Nihonogomphus viridusviridus 4 Epicorduliaprinceps I1

Onychogomphusforcipatusforcipatus I1 EpithecaEpitheta canis 4 5

O. viridicostus 2 E.£ I1 I1 cynosuracynosura

Ophiogomphus carolus 4 E.£. marginata 5

SinogomphusSinvgomphusßavolimbalusflavolimbatus 2 2 E. princeps I1 I1

StylogomphusSlylogomphussuzukii 7 E.£. spinigera 4

Stylurus oculotusoculatus 3 Helocordulia selysia I1

TrigomphusTrigomphuscitimuscilimus tabeitahei 5 2 H. uhleri I1

T. interruptusimerruptus 2 HemicorduliaHemit ordulia okinawensisokinau ensis 5 2

T. melampus 4 4 Neurocordulia alabamensis I1

T. ogumai 2 NA.. xanthosoma 4 4

Gomphoidinae N. yamaskanensis 5 4

AphyllaAphvlla williamsoni 4 Rialla villosa 4

ProgomphusProgumphus belleihellei 1 SomatochloraSomaiochlora alpestrisalpestris 5

S. 4 P. obscurusohscurus 1 S. arcticaarctica

Hageniinac S. clavata 4

HageniusHaxenius brevistylushrevistylus 6 6 S. elongata I1 Ultraviolet in patterns Odonata 343

UV 2 UV 2 pattern typetype’ patternpattem typetype^ Species 11 Species' $<3 92 $<5 2$

S51. ßavomaculalaflavomaculata 4 LL. hudsonica iI I1

S. forcipata 4 L.L intactaIntacta Ii I1

S. franklini 7 LL. proximaproximo Ii I1

S. graeseri aureola 4 I1 L.L rubicundarubicunda I1

S. hudsonica 4 4 Libellulinae

linearis S. 5 UbellulaLibellula angelina iI

S. S. metallicamelallica 4 4 L.L axilena i

S. minor S. minor I1 1 LL. comanche iI

S. semicircularis 4 5 L.L fulva iI

S. tenebrosalenebrosa I1 4 L.L julia Ii I1

S. uchidai 11 L.L luctuosa I1

S. viridiaenea 4 4 LL. lydiaIvdia iI I1

costaliscoslalis TetragoneuriaTeiragoneuria 1 L. pulchella iI I1

T T. spinosa I L.L quadrimaculataquadrimaculala iI I1

Gomphomacromiinae LL. asahinai I q. i I1

Gomphomacromia Lokia coryndoni iI I

paradoxa 4 2 Lyriothemis elegantissimaeleganlissima Ii I1

MACROMIIDAE L.L pachygastra 2 2

Didymops floridensis I1 OrthemisOrlhemis ferruginae 4

D. transversa I1 I1 OrthetrumOnhelrum albistylumalbisn lum

EpophthalmiaEpophlhalmiaelegans 4 speciosum I1 4

Macromia a. amphigenaamphigena 6 O. cancellatumcancellalum I1 I1

M. georgina I1 O. coerulescens 4

illinoiensis M. 1 O. j.j.japonicumjaponicum 44 4

SYNTHEMISTIDAE O. luzonicum 66

euslralacla Synthemis eustralacta I1 4 O. pruinosum neglectum I1

LIBELLULIDAELIBELLUL1DAE O. s. sabinasahina I1

Brachydiplacinae O. triangularetrianguläre melania 5 5

Brachydiplax chalybeachalyhea Sympetrinae

flavobittaflavohitta 5 AcisomaAcisuma I p. panorpoides 1

1 1 ChalcostephiaChalcoslephiaflavifrons Brachythemis contaminatacontanunata 9 4

Micrathyria hypodidyma I Crocothemis serviliaservi/ia I1 4

Nannophyapygmaea II II Deielia phaon 4

Uracis fastigialfastigiataa 5 I1 Diplacodes trivialis I1 I1

Leucorrhiniinae ErythemisErylhemis simplicicollis I1 4

Cannacria batesihatesi 4 ErythrodiplaxErylhrodiplaxfunereafunerea I1

CelithemisCelilhemis berthaherlha I1 E.E fusca I1

C. elisa I1 E.£. umbrata I1 4

C. C. eponina 13 13 Lepthemis vesiculosa I1

C. •verna I1 verna Neurothemis r. ramburiramhuri I1 I1

Leuœrrhinia Leucorrhinia albifronsalhifrons I1 I1 Pachydiplax longipennis 4 4

borealishurealis LL. I1 I1 SympetrumSympetrwn bacchahaccha

L.L dubiaduhia I1 I1 matutinum I1 I1

L. d. orientalis 1 S. 1 S. coscostiferumliferum 4 4

LL. frigidafrigida I1 2 S. croceolumcroceotum II II

L. glacialis I1 I1 S. danae I1 I1 344 D.F.J. Hilton

2 UV UV pattern type 2 _ patternpattern type , „ SpeciesSpecies'' Spec.es'Species' <5 9 <3 9$

S. darwinianum iI I1 S.5. uniforme 5

S.S. depressiusculumdepressiusculum 4 I1 S. vicinum 5 44

S. 44 I1 S.S. e. eroticumerolicum I1 2 S. vulgavulgaiumtum

S. flaveolum II Trithemistinae

S.S. frequens I1 I1 Dythemis veloxvelo.x I I1

S. gracile I1 I1 Macrothemi.sMacrothemis imitansimitons 4

S. infuscatum 11 4 Pseudothemis zonata 4 4

S. internum 4 4 Trithemis aurora I1

S. kunckeli I1 2 Palpopleurinae

S. maculatummaculalum 4 4 Palpopleura lucia portia I1 I1

S. obtrusumohlrusum I1 I1 Perithemis domitiaJomilia 13

S. occidentale fasciatumfascialum IlII II P. seminole 13 I1

S. pallipes I1 I1 Trameinae

S. parvulum 2 2 Miathyria marcella 44 4

S. pedemontanumpedemomanum I1 I1 PantalaPanlala flavescens I 1 4

4 I1 I1 S. p. elatumelalum 5 Rhyothemis fuliginosa

risi R. 13 13 S. r. 5 R. variegatavariegata imperatriximperatrix 13 13

rubicundulumruhk undulum 12 12 S. I1 TholymisTho/ymis Itillargaillarya

S. sanguineum I1 Urothemistinae

S. semicinctum IlII II MacrodiplaxMacrodipla.x balteatahalleala I1 I1

S. 4 I S. s. speciosumspedosum 1 Zygonychinae

S. striolatum I1 I1 ZigonyxZygonyx takasagotakasago I1

S. s.s. imitoidesimiioides 5 I1

most ), whereas

species like Pachydiplax longi- pennis and Gomphus hodgesi

exhibit sexual dimorphism in

body UV-reflectance and wing

UV-absorbanee, respectively.

One would expect such species

to utilizeU V patterns in aspects

of their mating behavior, just

as ROBEY (1975) has shown

for Pachydiplax longipennis.

Figs 13-14. Daylight (D) and ultra-

violet (U) patterns of: (13) Calopteryx

amatum (F); (14) Euphaea am-

phicyana (M). Ultraviolet patterns in Odonata 345

REFERENCES

BREHM, B.G. & D. KRELL, 1975. Flavonoid localization in epidermal papillaeof flower petals:

Science 190: a specialized adaptation for ultraviolet absorption. 1221-1223.

1975. blue and surface white of J. Insect BYERS, J.R., Tyndall tent caterpillars, Malacosoma spp.

Physiol. 21: 401-415.

DAVIES, D.A.L., 1981. A synopsis of the extant genera oftheOdonata. Soc. Inf. Odonatol. rapid

Comm. 3: XIV + 66 pp.

EGUCH1, E., 1971. Fine structure and spectral sensitivities of retinular cells in the dorsal sector of

the Aeschna. Z. compound eyes in vergl. Physiol. 7; 201-218.

EGUCHI, E. & V.B. MEYER-ROCHOW, 1983. Ultraviolet photography of fortythree species of

Lepidoptera representing ten families. Annolnes zool. jap. 56: 10-18, 4 pis excl.

FERRIS, C.D., 1972. Ultraviolet photography as an adjunct to . J. tepid. Soc. 26;

210-215.

FRANTSEVICH, L.I. & P.A. MOKRUSHOV, 1984. Visual stimuli releasing attack ofa territorial

male in Sympetrum (Anisoptera; ). Odonalologica 13: 335-350.

GHIRADELLA, H., 1984. Structure ofiridescent lepidopteranscales: variations on several themes.

Ann. enl Soc. Am. 77: 637-645.

GHIRADELLA. H., D. ANESHANSLEY, T. EISNER, R E. SILBERGLIED& H.E. HINTON,

male color caused 1972. Ultraviolet reflection of a butterfly; interference by thin-layerelabo-

ration of wing scales. Science 178: 1214-1216.

GOLDSMITH, T.H. & G.D, BERNARD, 1974. The visual system of insects. Chap. 5. In:

M. Rockstein, (Ed.), The physiology of insecta, Vol. 2. Academic Press, New York.

in- HILL, R.J., 1977. Technical note: ultraviolet reflectance-absorbance photography; an easy,

expensive research tool. Brinonia 29: 382-390.

HINTON, H.E., 1973. Some recent work on thecolours of insects and their likelysignificance. Proc.

Br. Em. nat. Hist. Soc. 6: 43-54.

MENZEL, R., 1979. Spectral sensitivity and color vision in invertebrates. Chap. 9. In: H.V. Autrum,

(Ed.), Comparative physiology and evolution of vision in invertebrates. A: Invertebrate

photoreceptors. Springer, New York.

R.D. & 1977. A beetles. POPE, H.E. HINTON, preliminary survey of ultraviolet reflectance in Biol.

J. Linn. Soc. 9; 331-348.

ROBEY, C.W., 1975. Observations on breeding behavior of Pachydiplax longipennis (Odonata:

Libellulidae). Psyche 82: 89-%.

ROBERTSON, H.M., 1984. Pruinosity in odonates reflects U.V. Notui odonatol. 2; 68-69.

1981. Sexual the checkered RUTOWSK1, R.L., discrimination using visual cues in white butterfly

(Pieris protodice). 2. Tierpsychol. 55: 325-334.

SATO, Y., 1984. Transmissivity of damselfy wings. Insectarium 21: 12-15. (Jap. with Engl.

captions).

SCOTT, J.A., 1973. Survey of ultraviolet reflectance of Nearctic butterflies. J. Res. Lepid. 12: 151-

-160.

SILBERGLIED, R.E.. 1979. Communication in the ultraviolet. A. Rev. Ecol. Syst. 10: 373-398.

THOMPSON, W.R., J. MEINWALD. D ANESHANSLEY & T. EISNER, 1972. Flavonols:

pigments responsible for ultraviolet absorption in nectar guide of flower. Science 177;

528-530.