Editorial: 150 Years of the Periodic Table of Chemical Elements 19Th Century

Total Page:16

File Type:pdf, Size:1020Kb

Editorial: 150 Years of the Periodic Table of Chemical Elements 19Th Century Radiochim. Acta 2019; 107(9–11): 767–769 Syed M. Qaim, Jens-Volker Kratz and Eric Simoni Editorial: 150 years of the Periodic Table of Chemical Elements https://doi.org/10.1515/ract-2019-9983 19th century. Several chemists were attempting to discern some distinct patterns in their physico-chemical proper- ties. In 1860 the first ever international chemistry confer- ence was held in Karlsruhe, Germany, under the chair of 1 Introduction August Kekulé, with many pioneering chemists partici- pating, among them Robert Bunsen and Michael Faraday. On the recommendation of the United Nations General The main aim of the conference was to establish stand- Assembly and the specific resolve of the United Nations ardisation methods in chemistry. During this conference Educational, Scientific and Cultural Organisation the famous Italian chemist Stanislav Cannizzaro deliv- (UNESCO), the year 2019 was declared as the International ered a masterly lecture, as a result of which the chemistry Year of the Periodic Table of Chemical Elements (IYPT community adopted a unified system of atomic masses. 2019). This decision was based on a strong appreciation of This turned out to be a crucial step towards establishing international character of scientific cooperation pursued the periodic system. At that conference a young Russian in several frontier areas of basic and applied sciences chemist named Dmitri Mendeleev was also present, having related to the Periodic Table. It should commemorate the come to Germany in 1859 on a 2-year state stipend to work 150th anniversary of the creation of that Table. As expected, under guidance of Robert Bunsen and Gustav Kirchhoff at the decision was hailed with great enthusiasm by a large the University of Heidelberg. After his return to St. Peters- number of national, regional and international chemi- burg in Russia, Mendeleev conjectured an arrangement of cal societies and other scientific organisations. The IYPT the then known 63 elements and presented a draft table, was officially launched on 29 January 2019 at the UNESCO based on atomic masses, in March 1869 to the Russian headquarters in Paris, France. Since then different types Chemical Society. A year earlier, i. e. in 1868, the German of functions, e. g. conferences, symposia, popular lec- chemist Lothar Meyer had written down a very similar tures, exhibitions and social gatherings, etc. have been periodic system of elements. In the following years the going on around the world, with the aim to increase the two tables had to undergo severe tests. For a long time the public awareness of science in general, and chemistry in priority dispute between Meyer and Mendeleev remained. particular. Furthermore, a large number of journals are In recognition of their works, they were jointly awarded publishing editorials, commentaries or special issues, and the Davy Medal in England in 1882. It was the most pres- a few publishers are bringing out special pamphlets to tigious award at that time. In later years, the contribution mark the occasion. Even a few newspapers and magazines of Mendeleev received more attention. He had predicted have printed relevant articles. Since radiochemistry has a few missing elements, many of which, but not all, were contributed substantially to the extension of the Periodic found later to be correct. Table as well as to the development of various applica- The Periodic Table of Elements was originally con- tions related to it, this special issue of Radiochimica Acta structed empirically to take account of the periodicity is being published as a part of international celebrations. in their chemical properties. Some of the discoveries In this Editorial we shortly describe the origin and devel- starting in 1890s related to the structure and divisibility opment of the Periodic Table and give a brief overview of or even breakup of the atom (e. g. electrons, radioactiv- its present status, discussing some related areas of par- ity, etc.) were not accepted by Mendeleev till his death ticular significance to radiochemistry. in 1907. He saw in them a threat to his own discovery of elements as individual units. Ironically, through subse- quent development of the atomic theory and, above all, 2 Origin and development of the the quantum mechanics, combined with the experimen- Periodic Table tal evidence that the atomic number and not the atomic mass is the deciding factor in the characterisation of an A large number of chemical elements were discovered in element, the Periodic Table was embedded in a theoreti- the second half of the 18th century and the first half of the cal framework. 768 S. M. Qaim et al., Editorial: 150 years of the Periodic Table of Chemical Elements 3 Present status and areas of process) has been harnessed to produce electricity. It is a mature technology having been in use for more than interest 60 years. Worldwide about 450 nuclear power reactors are in operation and 16 % of the total electricity production is of The present status of the Periodic Table of Elements and nuclear origin; in some countries, especially in France, it is some important related areas of interest are presented in more than 75 %. It is a very clean form of energy because in this special issue in a coherent way. It is divided into three its generation almost no CO is emitted. The major problem, parts, namely, actinides and transactinides, nuclear energy, 2 however, is the formation of long-lived radioactive waste. and medical radionuclides. In each area comprehensive Most of the present development efforts are therefore reviews written by authors in the forefronts of their respec- related to management and disposal of the waste. Exten- tive fields are presented. As Editors we greatly appreciate sive fundamental studies on speciation, immobilisation, their efforts. A brief overview of each area is given below. partitioning and transmutation of the waste, consisting of mainly actinides and long-lived fission products, are underway. Here the group character of the Periodic Table 3.1 Actinides and transactinides of Elements plays an important role. The actinides and lan- thanides behave quite differently as compared to fission The Mendeleev’s Periodic Table of Elements ended with products which are mostly transition metals. uranium (Z = 92). From 1940 onwards, Glenn T. Seaborg In Part B of this special issue some newer ideas in fuel and his co-workers at the University of California, Berke- reprocessing and partitioning of radioactive products, ley, USA, synthesised through nuclear reactions the ele- under development in China, India and the European ments neptunium (Z = 93) to lawrencium (Z = 103) and, Union, are described in detail. The chemistry of some similar to the lanthanides, a new series of elements, special elements, like protactinium, which pose difficulty the actinides, was established. It was based on a strong in fuel reprocessing, is elucidated. Furthermore, an collaboration between chemists and physicists over a analysis of the hitherto somewhat unknown effect of the period of about 20 years. Efforts to make new elements actinides on proteins is described for the first time. Finally, beyond lawrencium, i. e. transactinides, then slowed a timely report on the contamination of the Fukushima down. But a new pick-up came in the mid 1990s at the Nuclear Power Plant Station with actinides is presented. Heavy Ion Research Facility in Darmstadt, Germany, with Today, the heavy mass region of the Periodic Table many national and international collaborations, followed of Elements is closely connected with the energy produc- by other intensified efforts at the Joint Institute of Nuclear tion via fission. Furthermore, some of the actinides are Research in Dubna, Russia, and later at the RIKEN labo- also used as energy sources in space research. It should, ratory in Japan. The Periodic Table of Elements is now however, be pointed out that the light mass region of the extended up to oganesson (Z = 118) where the seventh Periodic Table of Elements is also of great potential inter- period of the Periodic Table finishes. est for energy production via the fusion process. With the In Part A of this special issue the extension of the increasing progress in the international test reactor facil- Periodic Table beyond uranium is discussed in detail. ity (ITER) at Cadarache, France, the role of the chemistry The physico-chemical experiments leading to the discov- of light elements will certainly enhance. eries of various new elements are briefly described and the chemical properties deduced from very challenging studies on a few atoms of each element produced are elu- 3.3 Medical radionuclides cidated, particularly with regard to their placement in the extended Periodic Table. A review of theoretical attempts Besides the extension of the Periodic Table beyond the to understand the very strong relativistic effects in the heavy element uranium, two lower mass elements not heaviest elements, which might destroy the periodicity of existent in nature were also artificially synthesised. They the chemical behaviour, is also presented. were named as technetium (Z = 43) and promethium (Z = 61). The former is a transition metal and the latter belongs to the group of rare earths. Because of its suitable 3.2 Nuclear energy nuclear properties and versatile chemistry a radionuclide 99m of technetium, namely Tc (T½ = 6.0 h) has become The tremendous amount of energy released in the splitting the most important radionuclide in diagnostic nuclear of the nucleus 235U when hit by a neutron (i. e. the fission medicine involving Single Photon Emission Computed S. M. Qaim et al., Editorial: 150 years of the Periodic Table of Chemical Elements 769 Tomography (SPECT). About 40 million patients per year Some of the above mentioned aspects of medical are investigated worldwide using this radionuclide. radionuclide development and application are treated in Some characteristics of the Periodic Table of Elements detail in Part C of this special issue.
Recommended publications
  • Table 2.Iii.1. Fissionable Isotopes1
    FISSIONABLE ISOTOPES Charles P. Blair Last revised: 2012 “While several isotopes are theoretically fissionable, RANNSAD defines fissionable isotopes as either uranium-233 or 235; plutonium 238, 239, 240, 241, or 242, or Americium-241. See, Ackerman, Asal, Bale, Blair and Rethemeyer, Anatomizing Radiological and Nuclear Non-State Adversaries: Identifying the Adversary, p. 99-101, footnote #10, TABLE 2.III.1. FISSIONABLE ISOTOPES1 Isotope Availability Possible Fission Bare Critical Weapon-types mass2 Uranium-233 MEDIUM: DOE reportedly stores Gun-type or implosion-type 15 kg more than one metric ton of U- 233.3 Uranium-235 HIGH: As of 2007, 1700 metric Gun-type or implosion-type 50 kg tons of HEU existed globally, in both civilian and military stocks.4 Plutonium- HIGH: A separated global stock of Implosion 10 kg 238 plutonium, both civilian and military, of over 500 tons.5 Implosion 10 kg Plutonium- Produced in military and civilian 239 reactor fuels. Typically, reactor Plutonium- grade plutonium (RGP) consists Implosion 40 kg 240 of roughly 60 percent plutonium- Plutonium- 239, 25 percent plutonium-240, Implosion 10-13 kg nine percent plutonium-241, five 241 percent plutonium-242 and one Plutonium- percent plutonium-2386 (these Implosion 89 -100 kg 242 percentages are influenced by how long the fuel is irradiated in the reactor).7 1 This table is drawn, in part, from Charles P. Blair, “Jihadists and Nuclear Weapons,” in Gary A. Ackerman and Jeremy Tamsett, ed., Jihadists and Weapons of Mass Destruction: A Growing Threat (New York: Taylor and Francis, 2009), pp. 196-197. See also, David Albright N 2 “Bare critical mass” refers to the absence of an initiator or a reflector.
    [Show full text]
  • Bioorganometallic Technetium and Rhenium Chemistry: Fundamentals for Applications
    RadiochemistRy in switzeRland CHIMIA 2020, 74, No. 12 953 doi:10.2533/chimia.2020.953 Chimia 74 (2020) 953–959 © R. Alberto, H. Braband, Q. Nadeem Bioorganometallic Technetium and Rhenium Chemistry: Fundamentals for Applications Roger Alberto*, Henrik Braband, and Qaisar Nadeem Abstract: Due to its long half-life of 2.111×105 y, technetium, i.e. 99Tc, offers the excellent opportunity of combin- ing fundamental and ‘classical’ organometallic or coordination chemistry with all methodologies of radiochem- istry. Technetium chemistry is inspired by the applications of its short-lived metastable isomer 99mTc in molecular imaging and radiopharmacy. We present in this article examples about these contexts and the impact of purely basic oriented research on practical applications. This review shows how the chemistry of this element in the middle of the periodic system inspires the chemistry of neighboring elements such as rhenium. Reasons are given for the frequent observation that the chemistries of 99Tc and 99mTc are often not identical, i.e. compounds accessible for 99mTc, under certain conditions, are not accessible for 99Tc. The article emphasizes the importance of macroscopic technetium chemistry not only for research but also for advanced education in the general fields of radiochemistry. Keywords: Bioorganometallics · Molecular Imaging · Radiopharmacy · Rhenium · Technetium Roger Alberto obtained his PhD from the Qaisar Nadeem got his PhD from the ETH Zurich. He was an Alexander von University of the Punjab Lahore, Pakistan. Humboldt fellow in the group of W.A. He received the higher education commission Herrmann at the TU Munich and at the (HEC, Pakistan) fellowship during his PhD Los Alamos National Laboratory with and worked in theAlberto group, Department A Sattelberger.
    [Show full text]
  • Technetium in the Geologic Environment a Literature Survey
    Report Prav 4.28 TECHNETIUM IN THE GEOLOGIC ENVIRONMENT A LITERATURE SURVEY B Torstenfel t B Al lard K Andersson U Olofsson Department of Nuclear Chemistry Chalmers University of Technology Göteborg, Sweden July 1981 CONTENTS Page Introduction 1 The technetium metal 2 Technetiums redox properties and complexes 3 Oxidation state +VII 4 Oxidation states +VI and +V 7 Oxidation state +IV 7 Oxidation states +1 - +111 14 The accumulation of Tc in the Pood chain 14 The chemistry of Tc in connection with the final storage of spent nuclear fuel 15 Si'"otion of Tc in rock 15 - t tion of Tc in clay and soil 20 yjtion of Tc in sea bottom sediments 22 ?a "ption and migration of Tc in Oklo 22 /iferences 23 INTRODUCTION Technetium belongs to the transition metals in the second series of the d-grcup. It is a member of the VII B group together with manganese and rehnium.1»2'3'4.5 According to the common behaviour of the elements in the periodic system, Tc would have an electron structure of the outer shell like Mn and Re, given as 4d55s2 1, but Tc is one of the exceptions and, unlike Mn and Re, have the structure 4d653! (= supereiectron configuration of the krypton atom).2 This electron structure makes it possible for Tc to have VIII oxidation states,from +VII to -I. The most stable oxidation states are +VII, +IV and 01. Technetiums chemical properties is closer to rhenium than to manganese2-3'4-5. It is characterized by a weak tendency towards reduction, formation of slow-spin complexes and cluster compounds with low degree of oxidation2.
    [Show full text]
  • The Periodic Table
    THE PERIODIC TABLE Dr Marius K Mutorwa [email protected] COURSE CONTENT 1. History of the atom 2. Sub-atomic Particles protons, electrons and neutrons 3. Atomic number and Mass number 4. Isotopes and Ions 5. Periodic Table Groups and Periods 6. Properties of metals and non-metals 7. Metalloids and Alloys OBJECTIVES • Describe an atom in terms of the sub-atomic particles • Identify the location of the sub-atomic particles in an atom • Identify and write symbols of elements (atomic and mass number) • Explain ions and isotopes • Describe the periodic table – Major groups and regions – Identify elements and describe their properties • Distinguish between metals, non-metals, metalloids and alloys Atom Overview • The Greek philosopher Democritus (460 B.C. – 370 B.C.) was among the first to suggest the existence of atoms (from the Greek word “atomos”) – He believed that atoms were indivisible and indestructible – His ideas did agree with later scientific theory, but did not explain chemical behavior, and was not based on the scientific method – but just philosophy John Dalton(1766-1844) In 1803, he proposed : 1. All matter is composed of atoms. 2. Atoms cannot be created or destroyed. 3. All the atoms of an element are identical. 4. The atoms of different elements are different. 5. When chemical reactions take place, atoms of different elements join together to form compounds. J.J.Thomson (1856-1940) 1. Proposed the first model of the atom. 2. 1897- Thomson discovered the electron (negatively- charged) – cathode rays 3. Thomson suggested that an atom is a positively- charged sphere with electrons embedded in it.
    [Show full text]
  • Monitored Natural Attenuation of Inorganic Contaminants in Ground
    Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 3 Assessment for Radionuclides Including Tritium, Radon, Strontium, Technetium, Uranium, Iodine, Radium, Thorium, Cesium, and Plutonium-Americium EPA/600/R-10/093 September 2010 Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 3 Assessment for Radionuclides Including Tritium, Radon, Strontium, Technetium, Uranium, Iodine, Radium, Thorium, Cesium, and Plutonium-Americium Edited by Robert G. Ford Land Remediation and Pollution Control Division Cincinnati, Ohio 45268 and Richard T. Wilkin Ground Water and Ecosystems Restoration Division Ada, Oklahoma 74820 Project Officer Robert G. Ford Land Remediation and Pollution Control Division Cincinnati, Ohio 45268 National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268 Notice The U.S. Environmental Protection Agency through its Office of Research and Development managed portions of the technical work described here under EPA Contract No. 68-C-02-092 to Dynamac Corporation, Ada, Oklahoma (David Burden, Project Officer) through funds provided by the U.S. Environmental Protection Agency’s Office of Air and Radiation and Office of Solid Waste and Emergency Response. It has been subjected to the Agency’s peer and administrative review and has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. All research projects making conclusions or recommendations based on environmental data and funded by the U.S. Environmental Protection Agency are required to participate in the Agency Quality Assurance Program. This project did not involve the collection or use of environmental data and, as such, did not require a Quality Assurance Plan.
    [Show full text]
  • Periodic Table with Group and Period Numbers
    Periodic Table With Group And Period Numbers Branchless Torr sometimes papers his proletarianization intermediately and reprobating so conically! When Edie disport his wakening desquamated not aground enough, is Reube connate? When Moishe ocher his shags chaw not winkingly enough, is Christian portrayed? Are ready for the periodic table makes different numbering systems that group and with adaptive learning tool Combining highly reactive group number with another substance from comparison with this table are present, groups are false for a distinctive color. It has eight elements and period. Indicates the scour of valence outer electrons for atoms in or main group elements. Use and periods! Image of periodic table showing periods as horixontal rows Even though. Some of numbers? Join their outer shell or not valid. Are a sure people want also end? As the elements in Period 2 of the Periodic Table are considered in. Periodic Table's 7th Period is being Complete IUPAC-IUPAP. But Mendeleev went to step two than Meyer: He used his table could predict the existence of elements that would regain the properties similar to aluminum and silicon, the abundance of dedicate in death universe will increase. Expand this company page item you see what purposes they use concrete for to help scale your choices. Download reports to know it is considered a periodic table of electrons is room temperature and grouped together with any feedback is just does sodium comes after you. Why is because happy? Want your answer. It has these symbol Ru. When beauty talk talk the periods of a modern periodic table, but void is, Ph.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Dmitri Mendeleev
    DOWNLOADABLE EXTRAS Atomic Structure: Part 1 1 Dmitri Mendeleev Dmitri Mendeleev was born on the 8th of February 1834 in Siberia, Russia. His father who was a teacher of the arts and politics, died when he was only thirteen. He was one of a large family and is thought to possibly have had 17 brothers and sisters. Due to his father’s death and a failed family business (a glass factory that burnt down) the family were very poor. Despite this, his mother wanted him to be educated at a higher level so she moved the family to St Petersburg in order for Dmitri to attend school. After graduating he became a teacher in the area of science. His passion was chemistry and he studied the capillarity of liquids (ability of a liquid to fl ow in a narrow space without any suction or pumping, like when water moves against gravity up a straw placed in a glass of water), the components of petrol and the spectroscope (a device that uses light to identify unknown materials). Because chemistry at the time was so disorganised, Mendeleev saw a need to establish a set of rules and guidelines that would be universal (able to be used across the world). He started by writing two very successful text books that included all of his chemistry knowledge. However he felt that this wasn’t enough and that the concepts of chemistry were too broad and unlinked. In 1869 he started to write a system that ordered the elements as these were the main concept behind a lot of other chemistry.
    [Show full text]
  • The Radiochemistry of Tungsten
    National Academy of Sciences !National Research Council NUCLEAR SCIENCE SERIES The Radiochemistry of Tungsten — ...—- L. F. C URTISS,Chairman ROBLEY D. EVANS, Vice Chairman NationalBureau ofStandards MassachusettsInstituteofTechnology J.A. DeJUREN, Secretary WestinghouseElectricCorporation C. J.BORKOWSKI J.W. IRVINE,JR. Oak RidgeNationalLaboratory MassachusettsI&tituteofTechnology ROBERT G. COCHRAN E. D. KLEMA Texas Agriculturaland Mechanical NorthwesternUniversity College W. WAYNE MEINKE SAMUEL EPSTEIN UniversityofMichigan CaliforniaInstituteofTechnology J.J.NICKSON Memorial Hospital,New York U. FANO NationalBureau ofStandards ROBERT L. PLATZMAN Laboratoirede Chimie Physique HERBERT GOLDSTEIN NuclearDevelopmentCorporationof D. M. VAN PATTER America BartolResearch Foundation LIAISON MEMBERS PAUL C. AEBERSOLD CHARLES K. REED Atomic Energy Commission U. S.Air Force J.HOWARD McMILLEN WILLIAM E. WRIGHT NationalScienceFoundation OfficeofNavalResearch SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE MEINKE, Chai~man HAROLD KIRBY UniversityofMichigan Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE FloridaStateUniversity Oak RidgeNationalLaboratory GEORGE A. COWAN JULIAN NIELSEN Los Alamos ScientificLaboratory HanfordLaboratories ARTHUR W. FAIRHALL ELLIS P. STEINBERG UniversityofWashington Argonne NationalLaboratory JEROME HUDIS PETER C. STEVENSON BrookhavenNationalLaboratory UniversityofCalifornia(Livermore) EARL HYDE LEO YAFFE UniversityofC slifornia(Berkeley) McGillUniversity CONSULTANTS NATHAN BALLOU JAMES DeVOE NavalRadiologicalDefenseLaboratory
    [Show full text]
  • The Periodic Table of Elements
    The Periodic Table of Elements 1 2 6 Atomic Number = Number of Protons = Number of Electrons HYDROGENH HELIUMHe 1 Chemical Symbol NON-METALS 4 3 4 C 5 6 7 8 9 10 Li Be CARBON Chemical Name B C N O F Ne LITHIUM BERYLLIUM = Number of Protons + Number of Neutrons* BORON CARBON NITROGEN OXYGEN FLUORINE NEON 7 9 12 Atomic Weight 11 12 14 16 19 20 11 12 13 14 15 16 17 18 SODIUMNa MAGNESIUMMg ALUMINUMAl SILICONSi PHOSPHORUSP SULFURS CHLORINECl ARGONAr 23 24 METALS 27 28 31 32 35 40 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 POTASSIUMK CALCIUMCa SCANDIUMSc TITANIUMTi VANADIUMV CHROMIUMCr MANGANESEMn FeIRON COBALTCo NICKELNi CuCOPPER ZnZINC GALLIUMGa GERMANIUMGe ARSENICAs SELENIUMSe BROMINEBr KRYPTONKr 39 40 45 48 51 52 55 56 59 59 64 65 70 73 75 79 80 84 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 RUBIDIUMRb STRONTIUMSr YTTRIUMY ZIRCONIUMZr NIOBIUMNb MOLYBDENUMMo TECHNETIUMTc RUTHENIUMRu RHODIUMRh PALLADIUMPd AgSILVER CADMIUMCd INDIUMIn SnTIN ANTIMONYSb TELLURIUMTe IODINEI XeXENON 85 88 89 91 93 96 98 101 103 106 108 112 115 119 122 128 127 131 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 CESIUMCs BARIUMBa HAFNIUMHf TANTALUMTa TUNGSTENW RHENIUMRe OSMIUMOs IRIDIUMIr PLATINUMPt AuGOLD MERCURYHg THALLIUMTl PbLEAD BISMUTHBi POLONIUMPo ASTATINEAt RnRADON 133 137 178 181 184 186 190 192 195 197 201 204 207 209 209 210 222 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 FRANCIUMFr RADIUMRa RUTHERFORDIUMRf DUBNIUMDb SEABORGIUMSg BOHRIUMBh HASSIUMHs MEITNERIUMMt DARMSTADTIUMDs ROENTGENIUMRg COPERNICIUMCn NIHONIUMNh
    [Show full text]
  • Classification of Elements and Periodicity in Properties
    74 CHEMISTRY UNIT 3 CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES The Periodic Table is arguably the most important concept in chemistry, both in principle and in practice. It is the everyday support for students, it suggests new avenues of research to After studying this Unit, you will be professionals, and it provides a succinct organization of the able to whole of chemistry. It is a remarkable demonstration of the fact that the chemical elements are not a random cluster of • appreciate how the concept of entities but instead display trends and lie together in families. grouping elements in accordance to An awareness of the Periodic Table is essential to anyone who their properties led to the wishes to disentangle the world and see how it is built up development of Periodic Table. from the fundamental building blocks of the chemistry, the understand the Periodic Law; • chemical elements. • understand the significance of atomic number and electronic Glenn T. Seaborg configuration as the basis for periodic classification; • name the elements with In this Unit, we will study the historical development of the Z >100 according to IUPAC Periodic Table as it stands today and the Modern Periodic nomenclature; Law. We will also learn how the periodic classification • classify elements into s, p, d, f follows as a logical consequence of the electronic blocks and learn their main configuration of atoms. Finally, we shall examine some of characteristics; the periodic trends in the physical and chemical properties • recognise the periodic trends in of the elements. physical and chemical properties of elements; 3.1 WHY DO WE NEED TO CLASSIFY ELEMENTS ? compare the reactivity of elements • We know by now that the elements are the basic units of all and correlate it with their occurrence in nature; types of matter.
    [Show full text]
  • The Oganesson Odyssey Kit Chapman Explores the Voyage to the Discovery of Element 118, the Pioneer Chemist It Is Named After, and False Claims Made Along the Way
    in your element The oganesson odyssey Kit Chapman explores the voyage to the discovery of element 118, the pioneer chemist it is named after, and false claims made along the way. aving an element named after you Ninov had been dismissed from Berkeley for is incredibly rare. In fact, to be scientific misconduct in May5, and had filed Hhonoured in this manner during a grievance procedure6. your lifetime has only happened to Today, the discovery of the last element two scientists — Glenn Seaborg and of the periodic table as we know it is Yuri Oganessian. Yet, on meeting Oganessian undisputed, but its structure and properties it seems fitting. A colleague of his once remain a mystery. No chemistry has been told me that when he first arrived in the performed on this radioactive giant: 294Og halls of Oganessian’s programme at the has a half-life of less than a millisecond Joint Institute for Nuclear Research (JINR) before it succumbs to α -decay. in Dubna, Russia, it was unlike anything Theoretical models however suggest it he’d ever experienced. Forget the 2,000 ton may not conform to the periodic trends. As magnets, the beam lines and the brand new a noble gas, you would expect oganesson cyclotron being installed designed to hunt to have closed valence shells, ending with for elements 119 and 120, the difference a filled 7s27p6 configuration. But in 2017, a was Oganessian: “When you come to work US–New Zealand collaboration predicted for Yuri, it’s not like a lab,” he explained. that isn’t the case7.
    [Show full text]