Tectono-Sedimentary Evolution of the Cenozoic Basins in the Eastern External Betic Zone (SE Spain)

Total Page:16

File Type:pdf, Size:1020Kb

Tectono-Sedimentary Evolution of the Cenozoic Basins in the Eastern External Betic Zone (SE Spain) geosciences Review Tectono-Sedimentary Evolution of the Cenozoic Basins in the Eastern External Betic Zone (SE Spain) Manuel Martín-Martín 1,* , Francesco Guerrera 2 and Mario Tramontana 3 1 Departamento de Ciencias de la Tierra y Medio Ambiente, University of Alicante, 03080 Alicante, Spain 2 Formerly belonged to the Dipartimento di Scienze della Terra, della Vita e dell’Ambiente (DiSTeVA), Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy; [email protected] 3 Dipartimento di Scienze Pure e Applicate (DiSPeA), Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy; [email protected] * Correspondence: [email protected] Received: 14 September 2020; Accepted: 28 September 2020; Published: 3 October 2020 Abstract: Four main unconformities (1–4) were recognized in the sedimentary record of the Cenozoic basins of the eastern External Betic Zone (SE, Spain). They are located at different stratigraphic levels, as follows: (1) Cretaceous-Paleogene boundary, even if this unconformity was also recorded at the early Paleocene (Murcia sector) and early Eocene (Alicante sector), (2) Eocene-Oligocene boundary, quite synchronous, in the whole considered area, (3) early Burdigalian, quite synchronous (recognized in the Murcia sector) and (4) Middle Tortonian (recognized in Murcia and Alicante sectors). These unconformities correspond to stratigraphic gaps of different temporal extensions and with different controls (tectonic or eustatic), which allowed recognizing minor sedimentary cycles in the Paleocene–Miocene time span. The Cenozoic marine sedimentation started over the oldest unconformity (i.e., the principal one), above the Mesozoic marine deposits. Paleocene-Eocene sedimentation shows numerous tectofacies (such as: turbidites, slumps, olistostromes, mega-olistostromes and pillow-beds) interpreted as related to an early, blind and deep-seated tectonic activity, acting in the more internal subdomains of the External Betic Zone as a result of the geodynamic processes related to the evolution of the westernmost branch of the Tethys. The second unconformity resulted from an Oligocene to Aquitanian sedimentary evolution in the Murcia Sector from marine realms to continental environments. This last time interval is characterized as the previous one by a gentle tectonic activity. On the other hand, the Miocene sedimentation was totally controlled by the development of superficial thrusts and/or strike-slip faults zones, both related to the regional geodynamic evolutionary framework linked to the Mediterranean opening. These strike-slip faults zones created subsidence areas (pull-apart basin-type) and affected the sedimentation lying above the third unconformity. By contrast, the subsidence areas were bounded by structural highs affected by thrusts and folds. After the third unconformity, the Burdigalian-Serravallian sedimentation occurred mainly in shallow- to deep-water marine environments (Tap Fm). During the Late Miocene, after the fourth unconformity, the activation of the strike-slip faults zones caused a shallow marine environment sedimentation in the Murcia sector and a continental (lacustrine and fluvial) deposition in the Alicante sector represented the latter, resulting in alluvial fan deposits. Furthermore, the location of these fans changed over time according to the activation of faults responsible for the tectonic rising of Triassic salt deposits, which fed the fan themselves. Keywords: eastern External Betic Zone; Cenozoic basins; strike-slip tectonics; tectono-sedimentary evolution Geosciences 2020, 10, 394; doi:10.3390/geosciences10100394 www.mdpi.com/journal/geosciences Geosciences 2020, 10, 394 2 of 20 1. Introduction The study area is located in the Murcia and Alicante provinces of the SE Spain (Figure1A), whichGeosciences belong 2020 to the, 10, 394 eastern External Betic Zone (EBZ). This cordillera is included in the2 of 20 Alpine chains of the western Mediterranean (Figure1B), resulting from the continental collision of 1. Introduction the Mesomediterranean Microplate (MM) (Guerrera et al. [1]) at first with the Iberia-Europe Plate (Cretaceous-Paleogene:The study area is located Eo-Alpinein the Murcia phase),and Alicante and provinces subsequently, of the SE Spain (Miocene: (Figure 1A), Neo-Alpine which or Maghrebianbelong phase)to the eastern with theExternal Africa Betic Plate Zone and (EBZ). due This to thecordillera ocean is closures included drivenin the Alpine by oppositely chains of the oriented western Mediterranean (Figure 1B), resulting from the continental collision of the subductions [1–6]. These processes affected the western branches of the Tethys (Figure1C), generating Mesomediterranean Microplate (MM) (Guerrera et al. [1]) at first with the Iberia-Europe Plate Mesozoic(Cretaceous-Paleogene: to Tertiary successions Eo-Alpine related phase), to several and subs tectono-sedimentaryequently, (Miocene: Neo-Alpine domains [7 or]. TheMaghrebian development of a riftingphase) aff withecting the theAfrica South Plate Iberianand due Marginto the ocean generated closures basinsdriven by with oppositely alpine-like oriented platforms subductions (extended and wide,[1–6]. and These structured processes inaffected horsts the and western grabens), branches characterized of the Tethys by (Figure marine 1C), domains generating which Mesozoic are deeper from northto Tertiary to south, successions forming related the Prebetic to several (to tectono-sedimentary the north) and the Subbeticdomains [7]. (to theThe south)development of the of EBZ a [7–9]. Therifting deposition affecting the in South the Iberian Cenozoic Margin basins generate followedd basins with the alpine-like tectonic platforms inversion (extended (from extensionand to compression)wide, and structured occurring in horsts at theand grabens), latest Cretaceous, characterized beingby marine usually domains marked which are by deeper a generalized from north to south, forming the Prebetic (to the north) and the Subbetic (to the south) of the EBZ [7–9]. unconformity [10]. Sometimes, Paleogenic deposits show paleoenvironmental conditions similar to The deposition in the Cenozoic basins followed the tectonic inversion (from extension to those ofcompression) the Mesozoic occurring successions, at the latest and Cretaceous, sedimentation being usually is a continuation marked by a generalized of the former. unconformity In these cases, shallow[10]. water Sometimes, sediments Paleogenic deposited deposits above show the paleoenvironmental inherited structural conditions highs (horsts), similar to passing those of laterally the to deep realmsMesozoic (grabens). successions, In particular,and sedimentation the deep is a deposits continuation are characterizedof the former. In by these turbidite cases, depositsshallow with olisthostromewater sediments and slumps deposited on the above slope the and inherited more deepstructural areas highs [11 –(horsts),15]. passing laterally to deep Verarealms [16 ,(grabens).17] provided In particular, a general the frameworkdeep deposits of are the characterized Mesozoic toby Cenozoicturbidite deposits sedimentation with of the EBZ,olisthostrome dividing theand slumps stratigraphic on the sl recordope and intomore eight deep areas main [11–15]. sedimentary cycles. Recently, detailed Vera [16,17] provided a general framework of the Mesozoic to Cenozoic sedimentation of the multidisciplinary studies carried out in the eastern EBZ suggested the following remarks about EBZ, dividing the stratigraphic record into eight main sedimentary cycles. Recently, detailed the tectono-sedimentarymultidisciplinary studies evolution carried out of thein the area: eastern (1) EBZ the suggested definition the of following a new andremarks earlier about Paleogene the deformationtectono-sedimentary stage [15,18 ,19evolution], (2) the of Paleogenethe area: (1) deformation the definition was of relateda new and to the earlier Internal Paleogene Betic Zone (IBZ) tectonicsdeformation paleo-geographically stage [15,18,19], (2) the close Paleogene to the deformation IBZ, as proposed was related by Guerrerato the Internal et al. Betic [15 ],Zone Guerrera and Mart(IBZ)ín-Mart tectonicsín paleo-geographically [18] and Guerrera close et al. to [the19 ],IBZ, (3) as the proposed importance by Guerrera of strike-slip et al. [15], MioceneGuerrera fault systemsand [20 Martín-Martín,21] and (4) [18] the and influence Guerrera of et salt al. tectonics[19], (3) the also importance during theof strike-slip Miocene Miocene evolution fault [22 –24]. systems [20,21] and (4) the influence of salt tectonics also during the Miocene evolution [22–24]. Therefore, the knowledge of these Cenozoic basins has been considerably improved because these Therefore, the knowledge of these Cenozoic basins has been considerably improved because these paperspapers show show their their tectono-sedimentary tectono-sedimentary evolution. evolution. FigureFigure 1. The 1. BeticThe Betic Cordillera Cordillera (after (after Reference Reference [[19];19]; modified). modified). (A) ( AGeological) Geological map mapof the of Betic the Betic CordilleraCordillera with thewith location the location of Cenozoicof Cenozoic Basins Basins of the the eastern eastern External External Betic Betic Zone Zone (EBZ) (EBZ) (study (study area), area), the Murcia (Figure 2) and Alicante (Figure 3) sectors. (B) Geographic location of the Betic Cordillera the Murcia (Figure2) and Alicante (Figure3) sectors. ( B) Geographic location of the Betic Cordillera in in the context of the
Recommended publications
  • 46.2 Comparison Between Formations Drilled
    Le Pichon, X., Pautot, G., Auzende, J. M, and Olivet, J. L., Ryan, W. F. B., Hsü, K. J., et al., 1973. Initial Reports of the 1971. La Méditerranée occidentale depuis 1'Oligocène. Deep Sea Drilling Project, Volume 13: Washington (U. S. Schema d'evolution: Earth Planet. Sci. Lett., v. 13, p. 145- Government Printing Office). 152. Stoeckinger, W. T., 1976. Valencia Gulf. Offer Deadline Mauffret, A., 1976. Etude géodyamique de la marge des iles nears: Oil Gas J., March, p. 197-204; April, p. 181-183. Baléares. 46.2. COMPARISON BETWEEN FORMATIONS DRILLED AT DSDP SITE 372 IN THE WESTERN MEDITERRANEAN AND EXPOSED SERIES OF LAND G. Bizon and J. J. Bizon, Bureau d'Etudes Industrielles et Cooperation de 1'Institute Français du Pétrole, 92500 Rueil Malmaison, France and B. Biju-Duval, Institut Français du Pétrole, 92500 Rueill-Malmaison ABSTRACT Formations penetrated at Site 372 are compared with series cropping out on land in the Balearic Islands, Southern Spain, and Sardinia. The comparison is extended to wells drilled in the Gulf of Lion. The margin at Menorca and the North Balearic Provencal Basin appear to be at least of Burdigalian age. The entire Miocene is undisturbed at Site 372 in contrast to Mallorca and continental Spain where important tectonic events occurred during middle and upper Miocene. INTRODUCTION By comparing these rocks with those of Mallorca, Bourrouilh considered the age of tectonism to be Because DSDP Site 372 is located only 40 km from middle Miocene. This conclusion is questionable con- the Balearic Islands, it is logical to compare the series sidering that at Site 372 the entire Miocene is undis- penetrated at the site with land equivalents, particu- turbed.
    [Show full text]
  • The Stratigraphic Architecture and Evolution of the Burdigalian Carbonate—Siliciclastic Sedimentary Systems of the Mut Basin, Turkey
    The stratigraphic architecture and evolution of the Burdigalian carbonate—siliciclastic sedimentary systems of the Mut Basin, Turkey P. Bassanta,*, F.S.P. Van Buchema, A. Strasserb,N.Gfru¨rc aInstitut Franc¸ais du Pe´trole, Rueil-Malmaison, France bUniversity of Fribourg, Switzerland cIstanbul Technical University, Istanbul, Turkey Received 17 February 2003; received in revised form 18 November 2003; accepted 21 January 2004 Abstract This study describes the coeval development of the depositional environments in three areas across the Mut Basin (Southern Turkey) throughout the Late Burdigalian (early Miocene). Antecedent topography and rapid high-amplitude sea-level change are the main controlling factors on stratigraphic architecture and sediment type. Stratigraphic evidence is observed for two high- amplitude (100–150 m) sea-level cycles in the Late Burdigalian to Langhian. These cycles are interpreted to be eustatic in nature and driven by the long-term 400-Ka orbital eccentricity-cycle-changing ice volumes in the nascent Antarctic icecap. We propose that the Mut Basin is an exemplary case study area for guiding lithostratigraphic predictions in early Miocene shallow- marine carbonate and mixed environments elsewhere in the world. The Late Burdigalian in the Mut Basin was a time of relative tectonic quiescence, during which a complex relict basin topography was flooded by a rapid marine transgression. This area was chosen for study because it presents extraordinary large- scale 3D outcrops and a large diversity of depositional environments throughout the basin. Three study transects were constructed by combining stratal geometries and facies observations into a high-resolution sequence stratigraphic framework. 3346 m of section were logged, 400 thin sections were studied, and 145 biostratigraphic samples were analysed for nannoplankton dates (Bassant, P., 1999.
    [Show full text]
  • Episodes 149 September 2009 Published by the International Union of Geological Sciences Vol.32, No.3
    Contents Episodes 149 September 2009 Published by the International Union of Geological Sciences Vol.32, No.3 Editorial 150 IUGS: 2008-2009 Status Report by Alberto Riccardi Articles 152 The Global Stratotype Section and Point (GSSP) of the Serravallian Stage (Middle Miocene) by F.J. Hilgen, H.A. Abels, S. Iaccarino, W. Krijgsman, I. Raffi, R. Sprovieri, E. Turco and W.J. Zachariasse 167 Using carbon, hydrogen and helium isotopes to unravel the origin of hydrocarbons in the Wujiaweizi area of the Songliao Basin, China by Zhijun Jin, Liuping Zhang, Yang Wang, Yongqiang Cui and Katherine Milla 177 Geoconservation of Springs in Poland by Maria Bascik, Wojciech Chelmicki and Jan Urban 186 Worldwide outlook of geology journals: Challenges in South America by Susana E. Damborenea 194 The 20th International Geological Congress, Mexico (1956) by Luis Felipe Mazadiego Martínez and Octavio Puche Riart English translation by John Stevenson Conference Reports 208 The Third and Final Workshop of IGCP-524: Continent-Island Arc Collisions: How Anomalous is the Macquarie Arc? 210 Pre-congress Meeting of the Fifth Conference of the African Association of Women in Geosciences entitled “Women and Geosciences for Peace”. 212 World Summit on Ancient Microfossils. 214 News from the Geological Society of Africa. Book Reviews 216 The Geology of India. 217 Reservoir Geomechanics. 218 Calendar Cover The Ras il Pellegrin section on Malta. The Global Stratotype Section and Point (GSSP) of the Serravallian Stage (Miocene) is now formally defined at the boundary between the more indurated yellowish limestones of the Globigerina Limestone Formation at the base of the section and the softer greyish marls and clays of the Blue Clay Formation.
    [Show full text]
  • The Phylogenetic and Palaeographic Evolution of the Miogypsinid Larger Benthic Foraminifera
    The phylogenetic and palaeographic evolution of the miogypsinid larger benthic foraminifera MARCELLE K. BOUDAGHER-FADEL AND G. DAVID PRICE Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK Abstract One of the notable features of the Oligocene oceans was the appearance in Tethys of American lineages of larger benthic foraminifera, including the miogypsinids. They were reef-forming, and became very widespread and diverse, and so they play an important role in defining the Late Paleogene and Early Neogene biostratigraphy of the carbonates of the Mediterranean and the Indo-Pacific Tethyan sub-provinces. Until now, however, it has not been possible to develop an effective global view of the evolution of the miogypsinids, as the descriptions of specimens from Africa were rudimentary, and the stratigraphic ranges of genera of Tethyan forms appear to be highly dependent on palaeography. Here we present descriptions of new samples from offshore South Africa, and from outcrops in Corsica, Cyprus, Syria and Sumatra, which enable a systematic and biostratigraphic comparison of the miogypsinids from the Tethyan sub-provinces of the Mediterranean-West Africa and the Indo-Pacific, and for the first time from South Africa, which we show forms a distinct bio- province. The 116 specimens illustrated include 7 new species from the Far East, Neorotalia tethyana, Miogypsinella bornea, Miogypsina subiensis, M. niasiensis, M. regularia, M. samuelia, Miolepidocyclina banneri, 1 new species from Cyprus, Miogypsinella cyprea and 4 new species from South Africa, Miogypsina mcmillania, M. africana, M. ianmacmilliana, M. southernia. We infer that sea level, tectonic and climatic changes determined and constrained in turn the palaeogeographic distribution, evolution and eventual extinctions of the miogypsinid.
    [Show full text]
  • LATE MIOCENE FISHES of the CACHE VALLEY MEMBER, SALT LAKE FORMATION, UTAH and IDAHO By
    LATE MIOCENE FISHES OF THE CACHE VALLEY MEMBER, SALT LAKE FORMATION, UTAH AND IDAHO by PATRICK H. MCCLELLAN AND GERALD R. SMITH MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, 208 Ann Arbor, December 17, 2020 ISSN 0076-8405 P U B L I C A T I O N S O F T H E MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN NO. 208 GERALD SMITH, Editor The publications of the Museum of Zoology, The University of Michigan, consist primarily of two series—the Miscellaneous Publications and the Occasional Papers. Both series were founded by Dr. Bryant Walker, Mr. Bradshaw H. Swales, and Dr. W. W. Newcomb. Occasionally the Museum publishes contributions outside of these series. Beginning in 1990 these are titled Special Publications and Circulars and each is sequentially numbered. All submitted manuscripts to any of the Museum’s publications receive external peer review. The Occasional Papers, begun in 1913, serve as a medium for original studies based principally upon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to make a volume, a title page, table of contents, and an index are supplied to libraries and individuals on the mailing list for the series. The Miscellaneous Publications, initiated in 1916, include monographic studies, papers on field and museum techniques, and other contributions not within the scope of the Occasional Papers, and are published separately. Each number has a title page and, when necessary, a table of contents. A complete list of publications on Mammals, Birds, Reptiles and Amphibians, Fishes, I nsects, Mollusks, and other topics is available.
    [Show full text]
  • Late Neogene Chronology: New Perspectives in High-Resolution Stratigraphy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Columbia University Academic Commons Late Neogene chronology: New perspectives in high-resolution stratigraphy W. A. Berggren Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 F. J. Hilgen Institute of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands C. G. Langereis } D. V. Kent Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964 J. D. Obradovich Isotope Geology Branch, U.S. Geological Survey, Denver, Colorado 80225 Isabella Raffi Facolta di Scienze MM.FF.NN, Universita ‘‘G. D’Annunzio’’, ‘‘Chieti’’, Italy M. E. Raymo Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 N. J. Shackleton Godwin Laboratory of Quaternary Research, Free School Lane, Cambridge University, Cambridge CB2 3RS, United Kingdom ABSTRACT (Calabria, Italy), is located near the top of working group with the task of investigat- the Olduvai (C2n) Magnetic Polarity Sub- ing and resolving the age disagreements in We present an integrated geochronology chronozone with an estimated age of 1.81 the then-nascent late Neogene chronologic for late Neogene time (Pliocene, Pleisto- Ma. The 13 calcareous nannoplankton schemes being developed by means of as- cene, and Holocene Epochs) based on an and 48 planktonic foraminiferal datum tronomical/climatic proxies (Hilgen, 1987; analysis of data from stable isotopes, mag- events for the Pliocene, and 12 calcareous Hilgen and Langereis, 1988, 1989; Shackle- netostratigraphy, radiochronology, and cal- nannoplankton and 10 planktonic foram- ton et al., 1990) and the classical radiometric careous plankton biostratigraphy.
    [Show full text]
  • Astronomical Calibration of the Serravallian/Tortonian Case Pelacani Section (Sicily, Italy)
    Italiana di Paleontologia e Stratigrafia volume 108 numero 2 pagtne 297-3a6 Luglio 2002 ASTRONOMICAL CALIBRATION OF THE SERRAVALLIAN/TORTONIAN CASE PELACANI SECTION (SICILY, ITALY) ANTONIO CARUSO I,, MARIO SPROVIERI2 , ANGELO BONANNO 3 E. RODOLFO SPROVIERIIb Receioecl Jwly 1 5, 20A1; accepted Juanwary 26, 2AA2 Keyuords : Serravallian/Tortonian boundary, cyclostratigraph;r, the signal of the classic Milankovitch frequencies (precession, obliqui- astronomical timescale ty and eccentricity). Correiation of the lithological patterns and of the different fre- Riassunto: Uno studio ciclostratigrafico è stato condotto su quency bands extracted by numerical filtering from the faunal record una sequenza sedimentaria (sezione di Case Pelacani) affiorante nella with the same components modulating the insolation curve provided zona sud-orientale della Sicilia (Italia) e ricoprente l'intervallo strati- an astronomic calibration of the sedimentary record and, consequent- grafico Serravalliano superiore/Tortoniano inferiore. Dati biostrati- ly, a precise age for all the calcareous plankton bioevents recognized grafici a plancton calcareo riportati in un altro lavoro dimostrano che throughout the studied interval. tutti gli eventi generalmente riconosciuti poco al di sotto e al di sopra del limite S/T sono presenti nella successione studiata. Essi hanno per- messo una dettagliata comparazione con Ia sezione di Gibliscemi. I dati preliminari relativi allo studio magnetostratigrafico dei sedimenti sug- lntroduction geriscono una forte componente dt rimagnetizzazione secondaria che rende difficile il riconoscimento della corretta sequenza di "chrons" A reliable astrochronological time scale from the paleomagnetici lungo l'ìntervallo sedimentario considerato. Tortonian (Hilgen et al. 1,995; Krijsgman et al. 1995) to Lo studio combinato della ciclicità litologica lungo la succes- the middle Serravallian (Hilgen et al.
    [Show full text]
  • A Small Cichlid Species Flock from the Upper Miocene (9–10 MYA)
    Hydrobiologia https://doi.org/10.1007/s10750-020-04358-z (0123456789().,-volV)(0123456789().,-volV) ADVANCES IN CICHLID RESEARCH IV A small cichlid species flock from the Upper Miocene (9–10 MYA) of Central Kenya Melanie Altner . Bettina Reichenbacher Received: 22 March 2020 / Revised: 16 June 2020 / Accepted: 13 July 2020 Ó The Author(s) 2020 Abstract Fossil cichlids from East Africa offer indicate that they represent an ancient small species unique insights into the evolutionary history and flock. Possible modern analogues of palaeolake Waril ancient diversity of the family on the African conti- and its species flock are discussed. The three species nent. Here we present three fossil species of the extinct of Baringochromis may have begun to subdivide haplotilapiine cichlid Baringochromis gen. nov. from their initial habitat by trophic differentiation. Possible the upper Miocene of the palaeolake Waril in Central sources of food could have been plant remains and Kenya, based on the analysis of a total of 78 articulated insects, as their fossilized remains are known from the skeletons. Baringochromis senutae sp. nov., B. same place where Baringochromis was found. sonyii sp. nov. and B. tallamae sp. nov. are super- ficially similar, but differ from each other in oral-tooth Keywords Cichlid fossils Á Pseudocrenilabrinae Á dentition and morphometric characters related to the Palaeolake Á Small species flock Á Late Miocene head, dorsal fin base and body depth. These findings Guest editors: S. Koblmu¨ller, R. C. Albertson, M. J. Genner, Introduction K. M. Sefc & T. Takahashi / Advances in Cichlid Research IV: Behavior, Ecology and Evolutionary Biology. The tropical freshwater fish family Cichlidae and its Electronic supplementary material The online version of estimated 2285 species is famous for its high degree of this article (https://doi.org/10.1007/s10750-020-04358-z) con- phenotypic diversity, trophic adaptations and special- tains supplementary material, which is available to authorized users.
    [Show full text]
  • Article (PDF, 13515
    J. Micropalaeontology, 38, 189–229, 2019 https://doi.org/10.5194/jm-38-189-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Latest Oligocene to earliest Pliocene deep-sea benthic foraminifera from Ocean Drilling Program (ODP) Sites 752, 1168 and 1139, southern Indian Ocean Dana Ridha, Ian Boomer, and Kirsty M. Edgar Earth Sciences, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK Correspondence: Ian Boomer ([email protected]) Received: 26 July 2019 – Revised: 1 November 2019 – Accepted: 11 November 2019 – Published: 16 December 2019 Abstract. Deep-sea benthic foraminifera provide important markers of environmental conditions in the deep- ocean basins where their assemblage composition and test chemistry are influenced by ambient physical and chemical conditions in bottom-water masses. However, all foraminiferal studies must be underpinned by robust taxonomic approaches. Although many parts of the world’s oceans have been examined, over a range of geolog- ical timescales, the Neogene benthic foraminifera from the southern Indian Ocean have only been recorded from a few isolated sites. In this study, we have examined 97 samples from Neogene sediments recovered from three ODP sites in the southern Indian Ocean (Sites 752, Broken Ridge; 1139, Kerguelan Plateau; 1168, west Tasma- nia). These data cover a range of palaeolatitudes and water depths during the Miocene. More than 200 species of benthic foraminifera were recorded at each site and, despite their geographic and bathymetric separation, the most abundant taxa were similar at all three sites. Many of these species range from late Oligocene to early Pliocene demonstrating relatively little faunal turnover of the most abundant taxa during the key palaeoclimatic shifts of the Miocene.
    [Show full text]
  • Integrated Stratigraphy and Astronomical Calibration of the Serravallian=Tortonian Boundary Section at Monte Gibliscemi (Sicily, Italy)
    ELSEVIER Marine Micropaleontology 38 (2000) 181±211 www.elsevier.com/locate/marmicro Integrated stratigraphy and astronomical calibration of the Serravallian=Tortonian boundary section at Monte Gibliscemi (Sicily, Italy) F.J. Hilgen a,Ł, W. Krijgsman b,I.Raf®c,E.Turcoa, W.J. Zachariasse a a Department of Geology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Paleomagnetic Laboratory, Fort Hoofddijk, Budapestlaan 17, 3584 CD Utrecht, The Netherlands c Dip. di Scienze della Terra, Univ. G. D'Annunzio, via dei Vestini 31, 66013 Chieti Scalo, Italy Received 12 May 1999; revised version received 20 December 1999; accepted 26 December 1999 Abstract Results are presented of an integrated stratigraphic (calcareous plankton biostratigraphy, cyclostratigraphy and magne- tostratigraphy) study of the Serravallian=Tortonian (S=T) boundary section of Monte Gibliscemi (Sicily, Italy). Astronomi- cal calibration of the sedimentary cycles provides absolute ages for calcareous plankton bio-events in the interval between 9.8 and 12.1 Ma. The ®rst occurrence (FO) of Neogloboquadrina acostaensis, usually taken to delimit the S=T boundary, is dated astronomically at 11.781 Ma, pre-dating the migratory arrival of the species at low latitudes in the Atlantic by almost 2 million years. In contrast to delayed low-latitude arrival of N. acostaensis, Paragloborotalia mayeri shows a delayed low-latitude extinction of slightly more than 0.7 million years with respect to the Mediterranean (last occurrence (LO) at 10.49 Ma at Ceara Rise; LO at 11.205 Ma in the Mediterranean). The Discoaster hamatus FO, dated at 10.150 Ma, is clearly delayed with respect to the open ocean.
    [Show full text]
  • Constraining Neogene Temperature and Precipitation Histories in The
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences Spring 4-21-2016 Constraining Neogene temperature and precipitation histories in the Central Great Plains using the fossil record of Alligator Evan Whiting University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/geoscidiss Part of the Climate Commons, Other Ecology and Evolutionary Biology Commons, Paleobiology Commons, and the Paleontology Commons Whiting, Evan, "Constraining Neogene temperature and precipitation histories in the Central Great Plains using the fossil record of Alligator" (2016). Dissertations & Theses in Earth and Atmospheric Sciences. 79. http://digitalcommons.unl.edu/geoscidiss/79 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. CONSTRAINING NEOGENE TEMPERATURE AND PRECIPITATION HISTORIES IN THE CENTRAL GREAT PLAINS USING THE FOSSIL RECORD OF ALLIGATOR by Evan T. Whiting A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Sherilyn C. Fritz Lincoln, Nebraska April, 2016 i CONSTRAINING NEOGENE TEMPERATURE AND PRECIPITATION HISTORIES IN THE CENTRAL GREAT PLAINS USING THE FOSSIL RECORD OF ALLIGATOR Evan Tyler Whiting, M.S. University of Nebraska, 2016 Advisor: Sherilyn C. Fritz Most amphibians and reptiles (excluding birds) are poikilothermic; their internal body temperature varies with that of their external environment.
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]