Late Neogene Chronology: New Perspectives in High-Resolution Stratigraphy

Total Page:16

File Type:pdf, Size:1020Kb

Late Neogene Chronology: New Perspectives in High-Resolution Stratigraphy View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Columbia University Academic Commons Late Neogene chronology: New perspectives in high-resolution stratigraphy W. A. Berggren Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 F. J. Hilgen Institute of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands C. G. Langereis } D. V. Kent Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964 J. D. Obradovich Isotope Geology Branch, U.S. Geological Survey, Denver, Colorado 80225 Isabella Raffi Facolta di Scienze MM.FF.NN, Universita ‘‘G. D’Annunzio’’, ‘‘Chieti’’, Italy M. E. Raymo Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 N. J. Shackleton Godwin Laboratory of Quaternary Research, Free School Lane, Cambridge University, Cambridge CB2 3RS, United Kingdom ABSTRACT (Calabria, Italy), is located near the top of working group with the task of investigat- the Olduvai (C2n) Magnetic Polarity Sub- ing and resolving the age disagreements in We present an integrated geochronology chronozone with an estimated age of 1.81 the then-nascent late Neogene chronologic for late Neogene time (Pliocene, Pleisto- Ma. The 13 calcareous nannoplankton schemes being developed by means of as- cene, and Holocene Epochs) based on an and 48 planktonic foraminiferal datum tronomical/climatic proxies (Hilgen, 1987; analysis of data from stable isotopes, mag- events for the Pliocene, and 12 calcareous Hilgen and Langereis, 1988, 1989; Shackle- netostratigraphy, radiochronology, and cal- nannoplankton and 10 planktonic foram- ton et al., 1990) and the classical radiometric careous plankton biostratigraphy. Dis- iniferal datum events for the Pleistocene, age calibration of the GPTS (Mankinen and crepancies between recently formulated are calibrated to the newly revised late Dalrymple, 1979). Accordingly, a working astronomical chronologies and magneto- Neogene astronomical/geomagnetic polar- group was established (refer to authorship chronologies for the past 6 m.y. have been ity time scale. of this paper), assignments made, and the resolved on the basis of new, high-precision work initiated. The extended period re- Ar/Ar ages in the younger part of this in- INTRODUCTION quired to complete this work reflects the terval, the so-called Brunhes, Matuyama, intense activity in the field of Neogene and Gauss Epochs ( Chrons C1n–C2An; The past decade has witnessed a signifi- 5 geochronology during the past 5 yr and, in 0–3.58 Ma), and revised analysis of sea cant improvement in the precision and ac- particular, resolution of the apparent dis- floor anomalies in the Pacific Ocean in the curacy of late Neogene geochronology. This crepancies between the astronomical time older part, the so-called Gilbert Epoch has been achieved through the merging of scale and GPTS in 1993. This resolution (5 Chron C2Ar–C3r; 3.58–5.89 Ma). The improved radiochronologic dating tech- was achieved primarily by means of new, magneto- and astrochronologies are now niques and astronomical tuning methods high-precision Ar/Ar ages on the younger concordant back to the Chron C3r/C3An with the already familiar and classical boundary at 5.89 Ma. K-Ar method and geomagnetic polarity part of the stratigraphic interval treated The Neogene (Miocene, Pliocene, Pleisto- time scale (GPTS). The application of new here and by means of revised interpreta- cene, and Holocene) and Paleogene are techniques to old problems in geochronol- tions of sea floor anomaly patterns in the treated here as period/system subdivisions ogy, however, has resulted in a paradox; Pacific Ocean in the older part of the Plio- of the Cenozoic Era/Erathem, replacements namely, discrepancies between radiomet- cene–Pleistocene record. for the antiquated terms Tertiary and Qua- rically based and astronomically based In this paper we review the historical ternary. The boundary between the Miocene time scales for the later part of the Neo- framework and recent evolution of studies and Pliocene Series (Messinian/Zanclean gene. It is a consideration of these prob- in magnetostratigraphy, isotopic radiochro- Stages), whose global stratotype section and lems (and their resolution) that forms the nology, and astrochronology on late Neo- point (GSSP) is currently proposed to be in focus of this paper. gene geochronology. We then discuss the Sicily, is located within the reversed interval This study resulted from a request in 1991 chronostratigraphic framework of the late just below the Thvera (C3n.4n) Magnetic by M. B. Cita (University of Milan and chair Neogene and conclude with a tabulation of Polarity Subchronozone with an estimated of the International Union of Geological regional and global biostratigraphic datum age of 5.32 Ma. The Pliocene/Pleistocene Sciences Subcommission on Neogene Stra- events that have been calibrated to the newly boundary, whose GSSP is located at Vrica tigraphy) to one of us (Berggren) to chair a proposed astro-magneto-radiochronology. GSA Bulletin; November 1995; v. 107; no. 11; p. 1272–1287; 5 figures; 6 tables. 1272 LATE NEOGENE CHRONOLOGY ASTROCHRONOLOGY When the first deep-sea sediment d18O records were presented by Emiliani (1955), he proposed that the quasi-cyclic variations in d18O were due to astronomical forcing at the 41 000 yr tilt frequency. Although this has proven to be the case for the interval prior to 1 m.y. B.P. (Pisias and Moore, 1981; Ruddiman et al., 1986), better time control (Shackleton and Opdyke, 1973; Hays et al., 1976) demonstrated that climate records since then have been dominated by a 100 000 yr cycle, although the shorter orbital cycles of tilt and precession are also pre- served. The first step toward astrochronol- ogy was taken by Hays et al. (1976), who proposed that a modest adjustment to their initial time scale, well within geological con- straints, would bring the peak variance of the obliquity cycles to exactly the same fre- quency calculated for obliquity by astro- physicists (i.e., 41 000 yr). Moreover, after making this adjustment they found im- proved agreement between the shorter cy- cles and the orbital precessional frequencies at 19 000 and 23 000 yr. Thus, the method of ‘‘tuning’’ time scales was established. By the middle 1980s, the large number of oxygen isotope records that had been gen- erated were being used to further refine the ‘‘orbital’’ time scale (Prell et al., 1986; Pisias et al., 1984; Imbrie et al. 1984; Martinson et al., 1987), which, for the past 300 000 yr, was proposed to be accurate to within 5000 yr (Martinson et al., 1987). The astronomically calibrated time scale was extended to ca. 800 000 yr B.P., still without generating any conflict with published geological con- straints (Imbrie et al., 1984). These time scales proved extremely popular because they proposed ages for many characteristic features of the late Pleistocene d18O record that are easily recognizable in deep-sea Figure 1. Oxygen isotope records from Deep Sea Drilling Project Sites 552A and 607, and records (e.g., isotopic stages; Fig. 1). Ocean Drilling Program Site 677, for the interval spanning isotope stages 24–35. Shaded Initial attempts at extending the orbital intervals indicate depth range within which the Jaramillo magnetic reversals (top and chronology back to the Pliocene (Pisias and bottom) fall in Sites 552 and 607 (after Shackleton et al., 1990). Moore, 1981; Williams et al., 1988) were hampered by the relatively poor quality of the available core material. The develop- lated the ages of magnetic reversals back to reversals (Shackleton et al., 1990; hereafter ment of the hydraulic piston corer by the the top of the Gauss Chron. Once again, the SBP90). In favor of the SBP90 time scale Deep Sea Drilling Project, which allowed study posed no serious conflicts with prior was the significant improvement in the co- the recovery of continuous, high-sedimenta- radioisotopic estimates other than a signif- herency of the planktonic isotopic records tion-rate sections, led to the generation of icantly shorter Olduvai event (170 000 yr as with the highly modulated record of orbital continuous, high-resolution isotopic records compared with the published duration of precession. Hilgen (1991a), simultaneously back to the middle Pliocene (and by now 220 000 yr). examining Pliocene sedimentary sections in back to the Miocene). Using a continuous Shortly after this, a ‘‘radical’’ orbital time southern Italy, also proposed an astronom- and orbitally tuned d18O record from Deep scale was proposed, which required a signif- ical chronology with the age of the Matu- Sea Drilling Project Site 607, Ruddiman et icant ('6%) adjustment to the published yama/Gauss boundary 6% older than the ac- al. (1989) and Raymo et al. (1989) recalcu- ages of the Pliocene–Pleistocene magnetic cepted value. Geological Society of America Bulletin, November 1995 1273 BERGGREN ET AL. The orbitally tuned time scale of SBP90 duced variations in climate (e.g., Ryan, was based on the premise that one can cor- 1972; Cita et al., 1978; Vergnaud-Grazzini et relate specific cycles in d18O records to spe- al., 1977; Calvert, 1983; Rossignol-Strick, cific well-dated orbital variations. The great- 1983; Thunell et al., 1984; Rohling and est potential for error in such an exercise Gieskes, 1989). arises from the possibility that one might not In southern Italy, sapropel-bearing se- recognize all the orbitally forced ‘‘cycles’’ in quences are found in the upper Pliocene– the sedimentary record, either because of lower Pleistocene Narbone Formation natural sedimentation rate perturbations (Fig. 2). As in upper Pleistocene piston or because of a hiatus due to natural causes cores, sapropels in the Narbone Formation or the coring process. The possibility of are not distributed evenly in the stratigraph- overlooking a cycle increases in the older ic record but occur in clusters on various sections where fewer high-resolution records scales: large-scale clusters commonly com- exist for intercomparison.
Recommended publications
  • Cambrian Phytoplankton of the Brunovistulicum – Taxonomy and Biostratigraphy
    MONIKA JACHOWICZ-ZDANOWSKA Cambrian phytoplankton of the Brunovistulicum – taxonomy and biostratigraphy Polish Geological Institute Special Papers,28 WARSZAWA 2013 CONTENTS Introduction...........................................................6 Geological setting and lithostratigraphy.............................................8 Summary of Cambrian chronostratigraphy and acritarch biostratigraphy ...........................13 Review of previous palynological studies ...........................................17 Applied techniques and material studied............................................18 Biostratigraphy ........................................................23 BAMA I – Pulvinosphaeridium antiquum–Pseudotasmanites Assemblage Zone ....................25 BAMA II – Asteridium tornatum–Comasphaeridium velvetum Assemblage Zone ...................27 BAMA III – Ichnosphaera flexuosa–Comasphaeridium molliculum Assemblage Zone – Acme Zone .........30 BAMA IV – Skiagia–Eklundia campanula Assemblage Zone ..............................39 BAMA V – Skiagia–Eklundia varia Assemblage Zone .................................39 BAMA VI – Volkovia dentifera–Liepaina plana Assemblage Zone (Moczyd³owska, 1991) ..............40 BAMA VII – Ammonidium bellulum–Ammonidium notatum Assemblage Zone ....................40 BAMA VIII – Turrisphaeridium semireticulatum Assemblage Zone – Acme Zone...................41 BAMA IX – Adara alea–Multiplicisphaeridium llynense Assemblage Zone – Acme Zone...............42 Regional significance of the biostratigraphic
    [Show full text]
  • Chapter 30. Latest Oligocene Through Early Miocene Isotopic Stratigraphy
    Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J. (Eds.), 1997 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 154 30. LATEST OLIGOCENE THROUGH EARLY MIOCENE ISOTOPIC STRATIGRAPHY AND DEEP-WATER PALEOCEANOGRAPHY OF THE WESTERN EQUATORIAL ATLANTIC: SITES 926 AND 9291 B.P. Flower,2 J.C. Zachos,2 and E. Martin3 ABSTRACT Stable isotopic (d18O and d13C) and strontium isotopic (87Sr/86Sr) data generated from Ocean Drilling Program (ODP) Sites 926 and 929 on Ceara Rise provide a detailed chemostratigraphy for the latest Oligocene through early Miocene of the western Equatorial Atlantic. Oxygen isotopic data based on the benthic foraminifer Cibicidoides mundulus exhibit four distinct d18O excursions of more than 0.5ä, including event Mi1 near the Oligocene/Miocene boundary from 23.9 to 22.9 Ma and increases at about 21.5, 18 and 16.5 Ma, probably reßecting episodes of early Miocene Antarctic glaciation events (Mi1a, Mi1b, and Mi2). Carbon isotopic data exhibit well-known d13C increases near the Oligocene/Miocene boundary (~23.8 to 22.6 Ma) and near the early/middle Miocene boundary (~17.5 to 16 Ma). Strontium isotopic data reveal an unconformity in the Hole 926A sequence at about 304 meters below sea ßoor (mbsf); no such unconformity is observed at Site 929. The age of the unconfor- mity is estimated as 17.9 to 16.3 Ma based on a magnetostratigraphic calibration of the 87Sr/86Sr seawater curve, and as 17.4 to 15.8 Ma based on a biostratigraphic calibration. Shipboard biostratigraphic data are more consistent with the biostratigraphic calibration.
    [Show full text]
  • Article 57 (Protozoa 8)
    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS ARTICLE 57 (PROTOZOA 8) LATE NEOGENE PLANKTONIC FORAMINIFERS IN THE CARIBBEAN, GULF OF MEXICO, AND ITALIAN STRATOTYPES JAMES L. LAMB AND JOHN H. BEARD Esso Production Research Company, Houston, Texas The University of Kansas Paleontological Institute HAROLD NORMAN FISK MEMORIAL PAPERS Humble Oil & Refining Company THE UNIVERSITY OF KANSAS PUBLICATIONS FEBRUARY 10, 1972 THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS Article 57 (Protozoa 8), 67 Pages, 25 Figures, 36 Plates, 2 Tables LATE NEOGENE PLANKTONIC FORAMINIFERS IN THE CARIBBEAN, GULF OF MEXICO, AND ITALIAN STRATOTYPES JAMES L. LAMB AND JOHN H. BEARD Esso Production Research Company, Houston, Texas CONTENTS PAGE PAGE ABSTRACT 7 Sphaeroidinello psis sphaeroides Subzone 45 Pliocene 45 INTRODUCTION 7 Globorotalia margaritae Zone 45 Acknowledgments 8 Globorotalia multicamerata Subzone 45 PLANKTONIC SUCCESSION WITHIN STANDARD Pulleniatina primalis Subzone 45 REFERENCE SECTIONS 8 Pulleniatina obliquiloculata Zone 46 Italy 8 Pleistocene 46 General 8 Globorotalia truncatulinoides Zone 46 Tortonian Stage (late Miocene) 8 Globorotalia tosaensis Subzone 46 Messinian Stage (late Miocene) 11 Globo quadrina dutertrei Subzone 46 Tabianian, Plaisancian, and Astian Stages Pulleniatina finalis Subzone 46 (early, middle, and late Pliocene) 13 Holocene 46 Calabrian Stage (early Pleistocene) 17 Globorotalia tumida Zone 46 Le CasteIla section 20 Summary of Italian late Neogene planktonic SYSTEMATIC PALEONTOLOGY 47 succession 25 Candeina D ' ORBIGNY 47 Caribbean and Gulf of Mexico 26 C. nitida D ' ORBIGNY 47 General 26 Globigerina D ' ORBIGNY 47 No. 1 Cubagua, Venezuela 28 G. bulloides D ' ORBIGNY 47 Coastal Group, Jamaica, West Indies 31 G. nepenthes TODD 47 Sigsbee Knolls core, central Gulf of Mexico 32 G.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • 21. BRYOZOA from SITE 282 WEST of TASMANIA Robin E
    21. BRYOZOA FROM SITE 282 WEST OF TASMANIA Robin E. Wass and J. J. Yoo, Department of Geology and Geophysics, University of Sydney, Australia ABSTRACT More than 15,000 bryozoan fragments have been identified from 17 samples in the late Miocene and late Pleistocene sediments at Site 282, Leg 29, Deep Sea Drilling Project, off the west coast of Tas- mania (lat 42°14.76'S, long 143°29.18'E). Bryozoa are referable to the Orders Cyclostomata and Cheilostomata and represent 79 species belonging to 48 genera. Both late Miocene and late Pleisto- cene assemblages are closely related to assemblages found in the Tertiary of southern Australia, and the Recent of the southern Aus- tralian continental shelf. INTRODUCTION The bryozoan fauna is small relative to that found in the late Pleistocene sediments and relative to records of Recent and Tertiary bryozoan faunas from southern late Miocene Bryozoa from southeastern Australia. The Australia have been documented for more than a late Miocene Bryozoa in the Tertiary of southeastern century. The dominant works have been by MacGilli- Australia are also greatly diminished when compared vray (1879, 1895), Maplestone (1898), Stach (1933), and with the middle Miocene faunas. Few studies have been Brown (1958). Brown's monograph (1952) on the New made of Pliocene bryozoa in southeastern Australia, but Zealand Tertiary Bryozoa, recorded genera and species apparently bryozoans are fewer in number than in the from the Recent and Tertiary of southern Australia. late Miocene. While a great deal of work has been done, there are still The fauna observed at Site 282 is composed almost a large number of studies which have to be completed entirely of four zoarial types—catenicelliform, cellari- before the bryozoan faunas are properly understood.
    [Show full text]
  • The Astronomical Theory of Climate and the Age of the Brunhes-Matuyama Magnetic Reversal
    EPSL ELSEVIER Earth and Planetary Science Letters 126 (1994) 91-108 The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal Franck C. Bassinot a,1, Laurent D. Labeyrie b, Edith Vincent a, Xavier Quidelleur c Nicholas J. Shackleton d, Yves Lancelot a a Laboratoire de Gdologie du Quaternaire, CNRS-Luminy, Case 907, 13288 Marseille cddex 09, France b Centre des Faibles Radioactivit&, CNRS/CEA, Avenue de la Terrasse, BP 1, 91198 Gif-sur-Yvette, France c Institut de Physique du Globe, Laboratoire de Pal~omagn&isme, 4 Place Jussieu, 75252 Paris c~dex 05, France d Department of Quaternary Research, The Godwin Laboratory, Free School Lane, Cambridge CB2 3RS, UK Received 3 November 1993; revision accepted 30 May 1994 Abstract Below oxygen isotope stage 16, the orbitally derived time-scale developed by Shackleton et al. [1] from ODP site 677 in the equatorial Pacific differs significantly from previous ones [e.g., 2-5], yielding estimated ages for the last Earth magnetic reversals that are 5-7% older than the K/Ar values [6-8] but are in good agreement with recent Ar/Ar dating [9-11]. These results suggest that in the lower Brunhes and upper Matuyama chronozones most deep-sea climatic records retrieved so far apparently missed or misinterpreted several oscillations predicted by the astronomical theory of climate. To test this hypothesis, we studied a high-resolution oxygen isotope record from giant piston core MD900963 (Maldives area, tropical Indian Ocean) in which precession-related oscillations in t~180 are particularly well expressed, owing to the superimposition of a local salinity signal on the global ice volume signal [12].
    [Show full text]
  • Of the Serravallian Stage (Middle Miocene)
    152 152 Articles by F.J. Hilgen1, H.A. Abels1, S. Iaccarino2, W. Krijgsman3, I. Raffi4, R. Sprovieri5, E. Turco2 and W.J. Zachariasse1 The Global Stratotype Section and Point (GSSP) of the Serravallian Stage (Middle Miocene) 1Department of Earth Sciences, Faculty of Geosciences, Utrecht University, The Netherlands. Email: [email protected] 2Dipartimento di Scienze della Terra, Università degli Studi di Parma, Parma, Italy. 3Paleomagnetic Laboratory “Fort Hoofddijk”, Budapestlaan 17, 3584 CD Utrecht, The Netherlands. 4Dipartimento di Geotecnologie per l’Ambiente e il Territorio, Università “G. d’Annunzio”, Chieti, Italy. 5Dipartimento di Geologia e Gedesia della Terra, Università degli Studi di Palermo, Palermo, Italy. The Global Stratotype Section and Point (GSSP) for point in a continuous marine section facilitates communication among the Base of the Serravallian Stage (Middle Miocene) is Earth Scientists as it permits to export the boundary as a timeline away from the GSSP, using multiple stratigraphic tools. defined in the Ras il Pellegrin section located in the During the last decade, much progress has been made in the coastal cliffs along the Fomm Ir-Rih Bay on the west Neogene by defining GSSPs of the Zanclean (Van Couvering et al., coast of Malta (35°54'50"N, 14°20'10"E). The GSSP is 2000), Piacenzian (Castradori et al., 1998) and Gelasian (Rio et al., at the base of the Blue Clay Formation (i.e., top of the 1998) Stages of the Pliocene, and the Messininan and Tortonian Stages transitional bed of the uppermost Globigerina of the (Upper) Miocene (Hilgen et al., 2000a; Hilgen et al., 2005).
    [Show full text]
  • The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars
    Heavenly Mathematics: The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars Helmer Aslaksen Department of Mathematics National University of Singapore [email protected] www.math.nus.edu.sg/aslaksen/ www.chinesecalendar.net 1 Public Holidays There are 11 public holidays in Singapore. Three of them are secular. 1. New Year’s Day 2. Labour Day 3. National Day The remaining eight cultural, racial or reli- gious holidays consist of two Chinese, two Muslim, two Indian and two Christian. 2 Cultural, Racial or Religious Holidays 1. Chinese New Year and day after 2. Good Friday 3. Vesak Day 4. Deepavali 5. Christmas Day 6. Hari Raya Puasa 7. Hari Raya Haji Listed in order, except for the Muslim hol- idays, which can occur anytime during the year. Christmas Day falls on a fixed date, but all the others move. 3 A Quick Course in Astronomy The Earth revolves counterclockwise around the Sun in an elliptical orbit. The Earth ro- tates counterclockwise around an axis that is tilted 23.5 degrees. March equinox June December solstice solstice September equinox E E N S N S W W June equi Dec June equi Dec sol sol sol sol Beijing Singapore In the northern hemisphere, the day will be longest at the June solstice and shortest at the December solstice. At the two equinoxes day and night will be equally long. The equi- noxes and solstices are called the seasonal markers. 4 The Year The tropical year (or solar year) is the time from one March equinox to the next. The mean value is 365.2422 days.
    [Show full text]
  • Neogene Stratigraphy of the Langenboom Locality (Noord-Brabant, the Netherlands)
    Netherlands Journal of Geosciences — Geologie en Mijnbouw | 87 - 2 | 165 - 180 | 2008 Neogene stratigraphy of the Langenboom locality (Noord-Brabant, the Netherlands) E. Wijnker1'*, T.J. Bor2, F.P. Wesselingh3, D.K. Munsterman4, H. Brinkhiris5, A.W. Burger6, H.B. Vonhof7, K. Post8, K. Hoedemakers9, A.C. Janse10 & N. Taverne11 1 Laboratory of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, the Netherlands. 2 Prinsenweer 54, 3363 JK Sliedrecht, the Netherlands. 3 Naturalis, P.O. Box 9517, 2300 RA Leiden, the Netherlands. 4 TN0 B&0 - National Geological Survey, P.O. Box 80015, 3508 TA Utrecht, the Netherlands. 5 Palaeocecology, Inst. Environmental Biology, Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, the Netherlands. 6 P. Soutmanlaan 18, 1701 MC Heerhugowaard, the Netherlands. 7 Faculty Earth and Life Sciences, Vrije Universiteit, de Boelelaan 1085, 1081 EH Amsterdam, the Netherlands. 8 Natuurmuseum Rotterdam, P.O. Box 23452, 3001 KL Rotterdam, the Netherlands. 9 Minervastraat 23, B 2640 Mortsel, Belgium. 10 Gerard van Voornestraat 165, 3232 BE Brielle, the Netherlands. 11 Snipweg 14, 5451 VP Mill, the Netherlands. * corresponding author. Email: [email protected] Manuscript received: February 2007; accepted: March 2008 Abstract The locality of Langenboom (eastern Noord-Brabant, the Netherlands), also known as Mill, is famous for its Neogene molluscs, shark teeth, teleost remains, birds and marine mammals. The stratigraphic context of the fossils, which have been collected from sand suppletions, was hitherto poorly understood. Here we report on a section which has been sampled by divers in the adjacent flooded sandpit 'De Kuilen' from which the Langenboom sands have been extracted.
    [Show full text]
  • Low-Cost Epoch-Based Correlation Prefetching for Commercial Applications Yuan Chou Architecture Technology Group Microelectronics Division
    Low-Cost Epoch-Based Correlation Prefetching for Commercial Applications Yuan Chou Architecture Technology Group Microelectronics Division 1 Motivation Performance of many commercial applications limited by processor stalls due to off-chip cache misses Applications characterized by irregular control-flow and complex data access patterns Software prefetching and simple stride-based hardware prefetching ineffective Hardware correlation prefetching more promising - can remember complex recurring data access patterns Current correlation prefetchers have severe drawbacks but we think we can overcome them 2 Talk Outline Traditional Correlation Prefetching Epoch-Based Correlation Prefetching Experimental Results Summary 3 Traditional Correlation Prefetching Basic idea: use current miss address M to predict N future miss addresses F ...F (where N = prefetch depth) 1 N Miss address sequence: A B C D E F G H I assume N=2 Use A to prefetch B C Use D to prefetch E F Use G to prefetch H I Correlations recorded in correlation table Correlation table size proportional to application working set 4 Correlation Prefetching Drawbacks Very large correlation tables needed for commercial apps - impractical to store on-chip No attempt to eliminate all naturally overlapped misses Miss address sequence: A B C D E F G H I time A C F H B D G I E compute off-chip access 5 Correlation Prefetching Drawbacks Very large correlation tables needed for commercial apps - impractical to store on-chip No attempt to eliminate all naturally overlapped misses Miss address sequence:
    [Show full text]
  • Calendar Year Age Estimates of Allerød-Younger Dryas Sea-Level
    JOURNAL OF QUATERNARY SCIENCE (2004) 19(5) 443–464 Copyright ß 2004 John Wiley & Sons, Ltd. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jqs.846 Calendar year age estimates of Allerød–Younger Dryas sea-level oscillations at Os, western Norway ØYSTEIN S. LOHNE,1,2* STEIN BONDEVIK,3 JAN MANGERUD1,2 and HANS SCHRADER1 1 Department of Earth Science, Alle´gaten 41, N-5007 Bergen, Norway 2 The Bjerknes Centre for Climate Research, University of Bergen, Norway 3 Department of Geology, University of Tromsø, Dramsveien 201, N-9037 Tromsø, Norway Lohne, Ø. S., Bondevik, S., Mangerud, J. and Schrader, H. 2004. Calendar year age estimates of Allerød—Younger Dryas sea-level oscillations at Os, western Norway. J. Quaternary Sci., Vol. 19 pp. 443–464. ISSN 0267-8179. Received 30 September 2003; Revised 2 February 2004; Accepted 17 February 2004 ABSTRACT: A detailed shoreline displacement curve documents the Younger Dryas transgression in western Norway. The relative sea-level rise was more than 9 m in an area which subsequently experienced an emergence of almost 60 m. The sea-level curve is based on the stratigraphy of six isolation basins with bedrock thresholds. Effort has been made to establish an accurate chronology using a calendar year time-scale by 14C wiggle matching and the use of time synchronic markers (the Vedde Ash Bed and the post-glacial rise in Betula (birch) pollen). The sea-level curve demonstrates that the Younger Dryas transgression started close to the Allerød–Younger Dryas transition and that the high stand was reached only 200 yr before the Younger Dryas–Holocene boundary.
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]