An Integrated Approach to Studying the Trophic Ecology of a Deep-Sea Faunal Assemblage from the Northwest Atlantic

Total Page:16

File Type:pdf, Size:1020Kb

An Integrated Approach to Studying the Trophic Ecology of a Deep-Sea Faunal Assemblage from the Northwest Atlantic AN INTEGRATED APPROACH TO STUDYING THE TROPHIC ECOLOGY OF A DEEP-SEA FAUNAL ASSEMBLAGE FROM THE NORTHWEST ATLANTIC by © Camilla Parzanini A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Marine Biology Department of Ocean Sciences Memorial University September 2018 St. John’s, Newfoundland and Labrador, Canada Alla mia preziosa famiglia i Abstract Despite being the largest ecosystem on Earth, the deep sea is still poorly known. Since the study of food webs allows a better understanding of ecosystems, the current research aimed to provide new insights into trophic relationships and element cycling within a deep-water faunal assemblage sampled in deep-sea areas of eastern Canada (Northwest Atlantic). The faunal assemblage consisted of a broad array of deep-sea taxa (143 species representing 8 phyla) collected within a tight window in space and time (100 km radius, 7 days), but across a large depth range (~1000 m) off insular Newfoundland. Functional diversity was studied along the bathymetric gradient. The integrated use of stable isotope, lipid, elemental, morphometric, and gut content analyses was crucial in obtaining an overall picture of the food web analyzed. Specifically, two major trophic pathways were recognized within the faunal assemblage: a pelagic pathway, relying on sinking organic matter (OM) as the primary food source; and a benthic pathway, in which settled OM constituted the base. A key role in energy and nutrient cycling was highlighted for pelagic vertical migrators and deep-water benthic communities. Vertical migrators actively provide inputs of food to benthic communities; benthic communities bioaccumulate certain energetic and nutritive compounds, and transfer them along the food web. Moreover, type and amount of lipids reflected not only dietary sources, but also environmental conditions typical of the deep sea. Large proportions of wax esters detected in certain species likely provide them with long-term energy reserves in a food-depleted environment. In addition, while the unsaturation level of phospholipid fatty acids increased, sterols diminished along the bathymetric gradient. This finding was interpreted to reflect adaptations of deep-water organisms to cope with increasing pressure and decreasing temperature with depth. Lastly, a preliminary ii analysis of the literature showed the existence of latitudinal trends in the isotopic and fatty acid composition of deep-sea benthic organisms, which exhibited lower C isotope ratios and higher proportions of ω3 fatty acids at temperate and polar latitudes than at tropical ones. This investigation raises concerns about potential effects of global climate change on deep-water communities, and about standardizing analytical methods to enable comparisons. iii Acknowledgements Above all, I would like to thank both my supervisors, Annie Mercier and Chris Parrish, as well as Jean-François Hamel, who co-guided me in this research project. Thank you, Annie, Chris and J-F, not only for providing professional guidance and expertise throughout my PhD, but also for believing in me and providing support during both the toughest and the most satisfying moments of these past 4 years. I have learnt much from you all, from the academic to the personal level, and I will always be grateful for that. I would also like to acknowledge DFO staff, in particular Don Stansbury, Keith Tipple, Dwayne Pittman, Vonda Wareham, and Mariano Koen-Alonso for allowing me to join the crew on board the CCGS Teleost, and for their help with logistics and species identification. Thanks to Evan Edinger as a member of my Supervisory Committee. Thanks to Jeanette Wells for her infinite patience and assistance in the lab, as well as to Allison Pye for technical support. Thanks to Emy Montgomery for sample collection and, above all, for the friendship and support throughout these past years; as well as to Uxue Tilves, Nurgul Ӧzdemír, Laura Cárreon-Palau, Rénald Belley, and Anne Provencher for further assistance with sample collection and data analysis. Thanks to my lab mates Justine, Jenna, Maryam, Sean, Bruno, Jiamin, Janet, and Tomer for all the help and entertainment throughout these PhD years. Thanks to all the lovely people and new friends I met in St. John’s, in particular to Daria, Sebastien, Giorgio, Jacopo, Jess, Ania, Maria, Kristin, Boni, Natalia, and Priscillia. No matter where the future will take us, I will always have you all in my heart. Thanks to Jaqueline, Priscila, and Brianna: wonderful roommates and friends. Thanks to Niccolo’ iv and Nina, who first believed in me and encouraged me to undertake this PhD. A huge thanks to my parents, sister, and friends Stefania, Lidia, Nadia, and Davide for the great support and love from back home; despite all the tears every time I have had to take the plane back to Canada, I have made it through knowing you were always with me. “As for me, I am tormented with an everlasting itch for things remote. I love to sail forbidden seas, and land on barbarous coasts” Herman Melville v Table of Contents Abstract ........................................................................................................................................... ii Acknowledgements ...................................................................................................................... iv Table of Contents .......................................................................................................................... vi List of Tables .................................................................................................................................. x List of Figures............................................................................................................................... xii List of Abbreviations and Symbols ........................................................................................... xiv List of Appendices ....................................................................................................................... xv CHAPTER 1 : INTRODUCTION AND OVERVIEW ........................................... 1-1 The deep sea: main features ...................................................................................................... 1-2 Food webs and nutrient cycling ................................................................................................ 1-3 Analysis of food webs and trophic interactions ......................................................................... 1-5 Gut content analysis .................................................................................................................. 1-6 Bulk stable isotope analysis ...................................................................................................... 1-7 Lipid and fatty acid analysis ...................................................................................................... 1-8 Further analyses ..................................................................................................................... 1-10 Exploring functional diversity along a depth gradient .......................................................... 1-11 Study area .................................................................................................................................. 1-12 Objectives and chapter structure ............................................................................................ 1-13 References ................................................................................................................................. 1-16 Tables ......................................................................................................................................... 1-23 Figures ....................................................................................................................................... 1-25 Co-authorship statement .......................................................................................................... 1-27 CHAPTER 2 : TROPHIC ECOLOGY OF A DEEP-SEA FISH ASSEMBLAGE IN THE NORTHWEST ATLANTIC ........................................................................ 2-1 Abstract ........................................................................................................................................ 2-2 Introduction ................................................................................................................................. 2-3 vi Methods ........................................................................................................................................ 2-7 Sampling ................................................................................................................................... 2-7 Stable isotope analysis ............................................................................................................. 2-8 Gut content analysis ................................................................................................................ 2-12 Biological data and morphological analysis ............................................................................ 2-13 Statistical analysis ................................................................................................................... 2-14 Results ......................................................................................................................................
Recommended publications
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • IUCN-European-Red-List-Of-Marine
    European Red List of Marine Fishes Ana Nieto, Gina M. Ralph, Mia T. Comeros-Raynal, James Kemp, Mariana García Criado, David J. Allen, Nicholas K. Dulvy, Rachel H.L. Walls, Barry Russell, David Pollard, Silvia García, Matthew Craig, Bruce B. Collette, Riley Pollom, Manuel Biscoito, Ning Labbish Chao, Alvaro Abella, Pedro Afonso, Helena Álvarez, Kent E. Carpenter, Simona Clò, Robin Cook, Maria José Costa, João Delgado, Manuel Dureuil, Jim R. Ellis, Edward D. Farrell, Paul Fernandes, Ann-Britt Florin, Sonja Fordham, Sarah Fowler, Luis Gil de Sola, Juan Gil Herrera, Angela Goodpaster, Michael Harvey, Henk Heessen, Juergen Herler, Armelle Jung, Emma Karmovskaya, Çetin Keskin, Steen W. Knudsen, Stanislav Kobyliansky, Marcelo Kovačić, Julia M. Lawson, Pascal Lorance, Sophy McCully Phillips, Thomas Munroe, Kjell Nedreaas, Jørgen Nielsen, Constantinos Papaconstantinou, Beth Polidoro, Caroline M. Pollock, Adriaan D. Rijnsdorp, Catherine Sayer, Janet Scott, Fabrizio Serena, William F. Smith-Vaniz, Alen Soldo, Emilie Stump and Jeffrey T. Williams European Red List of Marine Fishes Ana Nieto, Gina M. Ralph, Mia T. Comeros-Raynal, James Kemp, Mariana García Criado, David J. Allen, Nicholas K. Dulvy, Rachel H.L. Walls, Barry Russell, David Pollard, Silvia García, Matthew Craig, Bruce B. Collette, Riley Pollom, Manuel Biscoito, Ning Labbish Chao, Alvaro Abella, Pedro Afonso, Helena Álvarez, Kent E. Carpenter, Simona Clò, Robin Cook, Maria José Costa, João Delgado, Manuel Dureuil, Jim R. Ellis, Edward D. Farrell, Paul Fernandes, Ann-Britt Florin, Sonja Fordham, Sarah Fowler, Luis Gil de Sola, Juan Gil Herrera, Angela Goodpaster, Michael Harvey, Henk Heessen, Juergen Herler, Armelle Jung, Emma Karmovskaya, Çetin Keskin, Steen W. Knudsen, Stanislav Kobyliansky, Marcelo Kovačić, Julia M.
    [Show full text]
  • Protocols of the EU Bottom Trawl Survey of Flemish Cap
    NORTHWEST ATLANTIC FISHERIES ORGANIZATION Scientific Council Studies Number 46 Protocols of the EU bottom trawl survey of Flemish Cap 2014 creative cc commons COMMONS DEED Attribution-NonCommercial 2.5 Canada You are free to copy and distribute the work and to make derivative works under the following conditions: Attribution. You must attribute the work in the manner specified by the author or licensor. Noncommercial. You may not use this work for commercial purposes. Any of these conditions can be waived if you get permission from the copyright holder. Your fair dealing and other rights are in no way affected by the above. http://creativecommons.org/licenses/by/2.5/ca/legalcode.en ISSN-0250-6432 Sci. Council Studies, No. 46, 2014, 1–42 Publication (Upload) date: 21 May 2014 Protocols of the EU bottom trawl survey of Flemish Cap Antonio Vázquez1, José Miguel Casas2 and Ricardo Alpoim3 1Instituto de Investigaciones Marinas, Muelle de Bouzas, Vigo, Spain, Email: [email protected] 2Instituto Español de Oceanografía, Apdo. 1552, 36200 Vigo, Spain, Email: [email protected] 3Instituto Português do Mar e da Atmosfera. Av. Brasília, 1400 Lisboa, Portugal, Email: [email protected] Vázquez, A., J. Miguel Casas, R. Alpoim. 2014. Protocols of the EU bottom trawl survey of Flemish Cap. Scientific Council Studies, 46: 1–42. doi:10.2960/S.v46.m1 Abstract Methods and procedures used in the EU bottom trawl survey of Flemish Cap (NAFO Division 3M) are described in detail. The objectives of publicizing these protocols are to achieve a better understanding of its results, and to contribute to the routines being unaltered.
    [Show full text]
  • "Especies, Ensamblajes Y Paisajes De Los Bloques
    “ESPECIES, ENSAMBLAJES Y PAISAJES DE LOS BLOQUES MARINOS SUJETOS A EXPLORACIÓN DE HIDROCARBUROS” CARACTERIZACIÓN DE LA MEGAFAUNA Y EL PLANCTON DEL PACÍFICO COLOMBIANO Convenio específico de cooperación No. 008 de 2008 INFORME DE ACTIVIDADES INVEMAR – ANH Fase III - Pacífico Vinculado al Ministerio de Ambiente, Vivienda y Desarrollo Territorial Santa Marta, Octubre 31 de 2010 “ESPECIES, ENSAMBLAJES Y PAISAJES DE LOS BLOQUES MARINOS SUJETOS A EXPLORACIÓN DE HIDROCARBUROS” CARACTERIZACIÓN DE LA MEGAFAUNA Y EL PLANCTON DEL PACÍFICO COLOMBIANO INFORME DE ACTIVIDADES Directivos INVEMAR Coordinación INVEMAR Francisco A. Arias Isaza, M. Sc, Dr. Director General David A. Alonso Carvajal, M. Sc. Francisco Armando Arias Isaza Milena Benavides Serrato., M. Sc. Subdir ector Coordinación ANH Coordinación de Investigaciones Boris Navarro Jesús Antonio Garay Tinoco GRUPO DE INVESTIGACIÓN Subdirector Componente de biodiversidad Recursos y Apoyo a la Investigación Carlos Augusto Pinilla González Adriana Gracia, M. Sc. Biología Marina Andrea Polanco, M. Sc. Biología Marina Coordinador Programa Andrés Merchán, M. Sc. Biología Marina Biodiversidad y Ecosistemas Marinos Christian Díaz, B. Sc. Biología Marina David A. Alonso Carvajal Erika Montoya C., B. Sc. Biología Marina Erlenis Fontalvo, B. Sc. Biología Johanna Medellín, B. Sc. B iología Marina Coordinadora Programa Martha Díaz Ruíz, M. Sc. Biología Marina Investigación para la Gestión Marina y Milena Benavides, M. Sc. Biología Marina Costera Manuel Garrido Linares, B. Sc. Biología Paula Cristina Sierra Correa Paola Flórez, B. Sc. Biología Marina Componente análisis áreas significativas Luis A. Mejía, B. Sc. Biología Marina para la biodiversidad Ana M. Lagos, Estudiante. Biología Coordinadora Programa Vanesa Izquierdo, Estudiante Biología David A. Alonso Carvajal, M. Sc.
    [Show full text]
  • Mediterranean Sea
    OVERVIEW OF THE CONSERVATION STATUS OF THE MARINE FISHES OF THE MEDITERRANEAN SEA Compiled by Dania Abdul Malak, Suzanne R. Livingstone, David Pollard, Beth A. Polidoro, Annabelle Cuttelod, Michel Bariche, Murat Bilecenoglu, Kent E. Carpenter, Bruce B. Collette, Patrice Francour, Menachem Goren, Mohamed Hichem Kara, Enric Massutí, Costas Papaconstantinou and Leonardo Tunesi MEDITERRANEAN The IUCN Red List of Threatened Species™ – Regional Assessment OVERVIEW OF THE CONSERVATION STATUS OF THE MARINE FISHES OF THE MEDITERRANEAN SEA Compiled by Dania Abdul Malak, Suzanne R. Livingstone, David Pollard, Beth A. Polidoro, Annabelle Cuttelod, Michel Bariche, Murat Bilecenoglu, Kent E. Carpenter, Bruce B. Collette, Patrice Francour, Menachem Goren, Mohamed Hichem Kara, Enric Massutí, Costas Papaconstantinou and Leonardo Tunesi The IUCN Red List of Threatened Species™ – Regional Assessment Compilers: Dania Abdul Malak Mediterranean Species Programme, IUCN Centre for Mediterranean Cooperation, calle Marie Curie 22, 29590 Campanillas (Parque Tecnológico de Andalucía), Málaga, Spain Suzanne R. Livingstone Global Marine Species Assessment, Marine Biodiversity Unit, IUCN Species Programme, c/o Conservation International, Arlington, VA 22202, USA David Pollard Applied Marine Conservation Ecology, 7/86 Darling Street, Balmain East, New South Wales 2041, Australia; Research Associate, Department of Ichthyology, Australian Museum, Sydney, Australia Beth A. Polidoro Global Marine Species Assessment, Marine Biodiversity Unit, IUCN Species Programme, Old Dominion University, Norfolk, VA 23529, USA Annabelle Cuttelod Red List Unit, IUCN Species Programme, 219c Huntingdon Road, Cambridge CB3 0DL,UK Michel Bariche Biology Departement, American University of Beirut, Beirut, Lebanon Murat Bilecenoglu Department of Biology, Faculty of Arts and Sciences, Adnan Menderes University, 09010 Aydin, Turkey Kent E. Carpenter Global Marine Species Assessment, Marine Biodiversity Unit, IUCN Species Programme, Old Dominion University, Norfolk, VA 23529, USA Bruce B.
    [Show full text]
  • Biogeographic Atlas of the Southern Ocean
    Census of Antarctic Marine Life SCAR-Marine Biodiversity Information Network BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN CHAPTER 7. BIOGEOGRAPHIC PATTERNS OF FISH. Duhamel G., Hulley P.-A, Causse R., Koubbi P., Vacchi M., Pruvost P., Vigetta S., Irisson J.-O., Mormède S., Belchier M., Dettai A., Detrich H.W., Gutt J., Jones C.D., Kock K.-H., Lopez Abellan L.J., Van de Putte A.P., 2014. In: De Broyer C., Koubbi P., Griffiths H.J., Raymond B., Udekem d’Acoz C. d’, et al. (eds.). Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp. 328-362. EDITED BY: Claude DE BROYER & Philippe KOUBBI (chief editors) with Huw GRIFFITHS, Ben RAYMOND, Cédric d’UDEKEM d’ACOZ, Anton VAN DE PUTTE, Bruno DANIS, Bruno DAVID, Susie GRANT, Julian GUTT, Christoph HELD, Graham HOSIE, Falk HUETTMANN, Alexandra POST & Yan ROPERT-COUDERT SCIENTIFIC COMMITTEE ON ANTARCTIC RESEARCH THE BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN The “Biogeographic Atlas of the Southern Ocean” is a legacy of the International Polar Year 2007-2009 (www.ipy.org) and of the Census of Marine Life 2000-2010 (www.coml.org), contributed by the Census of Antarctic Marine Life (www.caml.aq) and the SCAR Marine Biodiversity Information Network (www.scarmarbin.be; www.biodiversity.aq). The “Biogeographic Atlas” is a contribution to the SCAR programmes Ant-ECO (State of the Antarctic Ecosystem) and AnT-ERA (Antarctic Thresholds- Ecosys- tem Resilience and Adaptation) (www.scar.org/science-themes/ecosystems). Edited by: Claude De Broyer (Royal Belgian Institute
    [Show full text]
  • First Record of Paracaristius Maderensis from the Central North Pacific and a Second Specimen of Platyberyx Rhyton (Perciformes: Caristiidae)
    Biogeography 16. 23–29.Sep. 20, 2014 First record of Paracaristius maderensis from the central North Pacific and a second specimen of Platyberyx rhyton (Perciformes: Caristiidae) Makoto Okamoto1*, Duane E. Stevenson2 and Hiroyuki Motomura3 1 Seikai National Fisheries Research Institute, 1551-8 Taira-machi, Nagasaki 851-2213, Japan 2 National Marine Fisheries Service, Alaska Fisheries Science Center, Resource Assessment and Conservation Engineering Division, 7600 Sand Point Way NE, Seattle, Washington 98115, USA 3 The Kagoshima University Museum, 1-21-30 Korimoto, Kagoshima 890-0065, Japan Abstract. Two significant specimens of the perciform fish family Caristiidae were recently collected in the North Pacific near Japan. One of these, identified as Paracaristius maderensis (Maul, 1949), was collected from the Kinmei Seamount, in the Emperor Seamount chain. This specimen represents the first record of the species from the central North Pacific. Another specimen, collected from off Iwate Prefecture, northeastern Japan, is only the second known specimen of Platyberyx rhyton Stevenson and Kenaley, 2013. Here we report morphological details of these two specimens, propose a new Japanese name for Pl. rhyton, and provide a key to the species of Caristiidae known from Japan. Key words: Caristiidae, manefish, distribution, North Pacific, new record. Introduction chain, identified as Paracaristius maderensis (Maul, 1949), and a single specimen from off northeastern The mesopelagic fish family Caristiidae, com- Japan, identified as Platyberyx rhyton Stevenson & monly known as manefishes or veilfins, is currently Kenaley, 2013. These specimens represent the first comprised of four genera and about 18 species, record of Pa. maderensis from the central North which occurs in tropical, temperate and subarctic Pacific and only the second known specimen of Pl.
    [Show full text]
  • And Bathypelagic Fish Interactions with Seamounts and Mid-Ocean Ridges
    Meso- and bathypelagic fish interactions with seamounts and mid-ocean ridges Tracey T. Sutton1, Filipe M. Porteiro2, John K. Horne3 and Cairistiona I. H. Anderson3 1 Harbor Branch Oceanographic Institution, 5600 US Hwy. 1 N, Fort Pierce FL, 34946, USA (Current address: Virginia Institute of Marine Science, P.O.Box 1346, Gloucester Point, Virginia 23062-1346) 2 DOP, University of the Azores, Horta, Faial, the Azores 3 School of Aquatic and Fishery Sciences, University of Washington, Seattle WA, 98195, USA Contact e-mail (Sutton): [email protected]"[email protected] Tracey T. Sutton T. Tracey Abstract The World Ocean's midwaters contain the vast majority of Earth's vertebrates in the form of meso- and bathypelagic ('deep-pelagic,' in the combined sense) fishes. Understanding the ecology and variability of deep-pelagic ecosystems has increased substantially in the past few decades due to advances in sampling/observation technology. Researchers have discovered that the deep sea hosts a complex assemblage of organisms adapted to a “harsh” environment by terrestrial standards (i.e., dark, cold, high pressure). We have learned that despite the lack of physical barriers, the deep-sea realm is not a homogeneous ecosystem, but is spatially and temporally variable on multiple scales. While there is a well-documented reduction of biomass as a function of depth (and thus distance from the sun, ergo primary production) in the open ocean, recent surveys have shown that pelagic fish abundance and biomass can 'peak' deep in the water column in association with abrupt topographic features such as seamounts and mid-ocean ridges. We review the current knowledge on deep-pelagic fish interactions with these features, as well as effects of these interactions on ecosystem functioning.
    [Show full text]
  • Phylogenetic Interrelationships of the Stomiid Fishes (Teleostei: Stomiiformes)
    MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, THE UNIVERSITY OF MICHIGAN NO. 171 Phylogenetic Interrelationships of the Stomiid Fishes (Teleostei: Stomiiformes) by William L. Fink Division of Biological Sciences and Museum of Zoology The University of Michigan Ann Arbor, Michigan 48 109-1079 Ann Arbor MUSEUM OF ZOOLOGY, THE UNIVERSITY OF MICHIGAN December 3 1, 1985 MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN NO. 171 The publications of the Museum of Zoology, The University of Michigan, consist of two series-the Occasional Papers and the Miscellaneous Publications. Both series were founded by Dr. Bryant Walker, Mr. Bradshaw H. Swales, and Dr. W. W. Newcomb. The Occasional Papers, initiated in 1913, serve as a medium for original studies based principally upon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to form a volume, the Museum will supply a title page, table of contents, and an index to libraries and individuals on the mailing list for the series. The Miscellaneous Publications, which include papers on field and museum techniques, monographic studies, and other contributions not within the scope of the Occasional Papers, were established in 1916 and are published separately. It is not intended that they be grouped into volumes. Each number has a title page and, when necessary, a table of contents. A complete list of publications on Birds, Fishes, Insects, Mammals, Mollusks, and Reptiles and Amphibians is available. Address inquiries to the Director, Museum of Zoology, Ann Arbor, Michigan 48109-1079. MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOI,OGY, THE UNIVERSITY OF MICHIGAN NO.
    [Show full text]
  • Fasciole Pathways in Spatangoid Echinoids: a New Source of Phylogenetically Informative Characters
    Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2005? 2005 144? 1535 Original Article SPATANGOID FASCIOLE PATHWAYSA. B. SMITH and B. STOCKLEY Zoological Journal of the Linnean Society, 2005, 144, 15–35. With 8 figures Fasciole pathways in spatangoid echinoids: a new source of phylogenetically informative characters ANDREW B. SMITH FLS* and BRUCE STOCKLEY Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Received February 2004; accepted for publication November 2004 Fascioles are important early-forming structures that play a key role in allowing irregular echinoids to burrow. They have traditionally been grouped into a small number of types according to their general position on the test, but this masks some significant differences that exist. The precise course that fasciole bands follow over the test plating has been mapped in detail for 89 species of spatangoid echinoids, representing the great majority of fasciole-bearing gen- era both living and fossil. Within each fasciole type, discrete and conserved patterns can be distinguished, differing both in which plates they are initiated on, and on whether they cross plate growth centres or are late-stage bands positioned towards the edge of the plate. Fasciole position is most highly conserved in the anterior and lateral inter- ambulacral plates and on the earliest forming bands. The existence of different subanal fasciole patterns in the Micrasteridae and Brissidae suggests that these may have evolved independently. Schizasterid and hemiasterine spatangoids can each be subdivided into two major clades, and brissid spatangoids into three clades based on detailed patterns of their fascioles.
    [Show full text]
  • Locomotion and Functional Spine Morphology of the Heart Urchin Brisaster Fragilis, with Comparisons to B. Latifrons
    Hindawi Publishing Corporation Journal of Marine Biology Volume 2014, Article ID 297631, 9 pages http://dx.doi.org/10.1155/2014/297631 Research Article Locomotion and Functional Spine Morphology of the Heart Urchin Brisaster fragilis, with Comparisons to B. latifrons Danielle E. Walker1 and Jean-Marc Gagnon2 1 Interdisciplinary Office/Biomedical Science Program, Faculty of Science, University of Ottawa, Gendron Hall, 30 Marie Curie, Room 081, Ottawa, ON, Canada K1N 6N5 2 Research & Collections, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, ON, Canada K1P 6P4 Correspondence should be addressed to Jean-Marc Gagnon; [email protected] Received 20 May 2014; Accepted 28 August 2014; Published 22 September 2014 Academic Editor: Robert A. Patzner Copyright © 2014 D. E. Walker and J.-M. Gagnon. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The heart urchin Brisaster fragilis is an important bioturbator found in the Estuary and Gulf of St. Lawrence. Several adaptations allow it to move within fine sediments (e.g., test shape, spine morphology, and distribution), which are compared here to those ofits Pacific sibling species B. latifrons.Whileventralspatulatespinesanddorsalandanterolateral curvilinear spines are similar between the two species, anterior spines differ significantly: sigmoid-shaped for B. fragilis and curvilinear for B. latifrons. This morphological difference, in addition to a narrower plastron for B. fragilis, suggests a different digging strategy. In situ video observations of B. fragilis show a “dig and move” strategy: anterior spines “dig” forward at the sediment while the plastron spines “move” the urchin into the newly created space.
    [Show full text]