PROCEEDINGS of the HAWAIIAN ENTOMOLOGICAL SOCIETY for 1978

Total Page:16

File Type:pdf, Size:1020Kb

PROCEEDINGS of the HAWAIIAN ENTOMOLOGICAL SOCIETY for 1978 PROCEEDINGS of the HAWAIIAN ENTOMOLOGICAL SOCIETY for 1978 VOL XXIII No. 3 February 1981 Information for Contributors Manuscripts for publication, proof, and other editorial matters should be addressed to: Editor: Hawaiian Entomological Society c/o Department of Entomology University of Hawaii 3050 Maile Way, Honolulu, Hawaii 96822 Manuscripts should not exceed 40 typewritten pages, including illustrations (approximately 20 printed pages). Longer manuscripts may be rejected on the basis of length, or be subject to additional page charges. Typing — Manuscripts must be typewritten on one side of white bond paper, &Vi x 11 inches. Double space all text, including tables, footnotes, and reference lists. Margins should be a minimum of one inch. Underscore only where italics are intended in body of text, not in headings. Geographical names, authors names, and names of plants and animals should be spelled out in full. Except for the first time they are used, scientific names of organisms may be abbreviated by using the first letter of the generic name plus the full specific name. Submit original typescript and one copy. Pages should be numbered consecutively. Place footnotes at the bottom of the manuscript page on which they appear, with a dividing line. Place tables separately, not more than one table per manuscript page, at end of manuscript. Make a circled notation in margin of manuscript at approximate location where placement of a table is desired. Use only horizontal lines in tables. Illustrations — Illustrations should be planned to fit the type page of 4'/2 x 7 inches, with appropriate space allowed for captions. Number all figures consecutively with Arabic numerals. If figures are to be subdivided, use capital letters (A, B, C, etc.) to designate sub divisions. Where possible, figures should be grouped compactly into page-size plates. Photo graphic prints should be cropped to eliminate unnecessary margins. All figures should be se curely mounted on stiff posterboard with identifying information (author, title of paper, and figure number(s)) placed on the back. If possible, do not submit original drawings, but reduce photographically and submit prints (glossy or matte) no larger than 9 x 14. The Editor cannot be held responsible for lost art work. Two copies of all illustrative material should be submitted. Figure captions should be typewritten, double-spaced, on a separate page, headed "Captions for Figures," and placed in the manuscript following the list of references. Do not attach figure captions to illustrations. References — Citations in the text should be by author and date. Beginning on a separ ate page at the end of the text, list references cited alphabetically by author. List titles of arti cles as well as journal citations. See article in this issue for proper style in listing references. Examination of articles in this issue will help in conforming to the style of presentation desired. The editorial style of the PROCEEDINGS essentially follows the Council of Biology Editors Style Manual (Third Edition, A.I.B.S., 1972). Manuscripts which fail to adhere to the above standards, although they may be other wise acceptable, will be rejected or returned to authors for correction. Proofs and Reprints — Proofs should be corrected and returned as soon as received, with an abstract on the form provided. All changes in proof, except printers and editorial er rors, will be charged to authors. Reprints may be purchased by contributors. A statement of the cost of reprints and an order form will be sent with the proof. Abstract — An abstract not longer than 3% of the paper should accompany each regular article following the title page. It eliminates the need for a summary. Page Charges — All regular papers will be charged at the rate of $18.00 per printed page. These charges are in addition to reprints. Papers in excess of 10 printed pages may be charged full cost of publication for the excess pages (about $25.00 per page). Member authors who are retired or not affiliated with an institution may request to have page charges waived. Acceptance of papers will be based solely on their scientific merit, without regard to the author's financial support. PROCEEDINGS of the Hawaiian Entomological Society VOL XXIIL NO. 3 FOR THE YEAR 1978 FEBRUARY^^g! JANUARY The 865th meeting of the Hawaiian Entomological Society was called to order by President Ikeda at 2:05 p.m., January 9, 1978, in the Conference Room, Bishop Museum Members Present: Bianchi, B. Brennan, Goff, Higa, Howarth, Ikeda, Joyce, Look, Nishida, Papp, Riotte, Sherman, Steffan, Sugerman, Tenorio. Visitors: Ralph Stoaks, John B. Steinweden. Business: It was moved and passed that the wives and spouses be recog nized as guests for purposes of the Society minutes. Pres. Ikeda announced that names of the Standing Committees for 1978 will be available at the next meeting. Wally Steffan, chairman of the Science Fair Committee, moved that the Society provide a $25 award for the best entomological exhibit displayed at the fair. The motion was approved. Notes and Exhibitions Cothonaspis n. sp.: A number of this recently introduced leafminer parasite (Cynipidae) from Texas (R. Burkhart, June 1976) was recovered from leafminer infested tomato and cucumber plants from Waimanalo, Mikilua and Waianae during surveys conducted in June, September and October 1977. In 1977 about 60,000 adult parasites were released on Oahu. S. Higa. Chrysonotomyia (Achrysochareila) agromyzae (Crawford): Large numbers of this leafminer parasite (Eulophidae) introduced from Linares, Mexico by R. Burkhart in June 1976 were recovered from tomato and cucumber plants at Mikilua and Waianae by P. D. Mothershead during September and October 1977. A single release of this parasite was made in Lualualei in May 1977. This parasite along with a closely related species, C. punctivenths (Crawford), were introduced and released in 1977 under the generic name Achrysochareila. According to C. M. Yoshimoto, Canada Dept. of Agriculture, Z. Boucek, Chalcidolpgist with the Commonwealth Institute of Entomology, British Museum (Natural History), London, has reviewed the group and has concluded that Achrysochareila Girault is a subgenus of Chrysonotomyia Ashmead, a discovery of an earlier name, thus the new combination. S. Higa Antrocephalus sp.: One male specimen of this chalcid wasp was col lected for the first time from the island of Hawaii, at Wailea near Hilo, by S. Matayoshi on October 24, 1977, a new island record. It was previously identified and reported by Dr. J. W. Beardsley from Oahu in 1974 (Proc. Haw. Ent. Soc. Vol. 22 (2): 164). This insect, probably a parasite of lepidop- terous pupae, is quite distinct from A. pertorvus (Girault) which has been in Hawaii for many years. S. Higa. 310 Proceedings, Hawaiian Entomological Society Psilogramma menephron (Cramer): Two larvae of the gray hawk moth were collected from African olive (Olea africana) on November 10, 1977 at Salt Lake, Oahu by J. Kajiwara. Identification was made by Father J. C. E. Riotte, Bishop Museum. According to Bell and Scott (The Fauna of British India, Vol. V, June 1937) its distribution is "Throughout the Indian sub-region, China, and eastward to the Solomon Islands. Widely distributed and locally common, in both forests and open country, up to 6,000' elevation". Dupont and Roepke (Heterocera Javanica, 1941) also list Japan through S. E. Asia, the Archipelago, N. Australia, and New Caledonia. Host plants in both volumes and F. G. Browne's (Pest and Dis eases of Forest Plantation Trees, 1968) include Casuarina spp. (Casuarinaceae); Melia azedarach (Meliaceae); Pangium edule (Flacour- tiaceae); Orxylum indicum and Apathodea campanulata (Bignoniaceae); Olea dioicum, Jasminum, Ligustrumand Nyctanthes arbor-tristis (Oleaceae); and Tectona grandis, Clerodendron infortunatum, C. villosum, Vitex negundo, Callicarpa arborea, and Gmelina arborea (Verbenaceae). All genera are represented in Hawaii as forest and shade trees or ornamentals, including the commercially grown pikake. S. Higa. Parasitization of Tenodera angustipennis Saussure: An ootheca of the mantid Tenodera angustipennis Saussure was collected by K. Adee (U. S. Forest Service) on an African tulip tree, Spathodea campanulata Beauv., on October 17,1977 in Hilo, Hawaii. On October 21, torymid wasps subse quently identified as Podagrion mantis (Ashmead) began emerging from the ootheca. By October 31, 40 mantids had emerged from the ootheca. Parasites, however, continued to emerge until November 28, reaching a total of 13 males and 56 females (sex ratio 1:4.3). Tenodera angustipennis is a native of China, Japan and Java, and was first reported from the island of Hawaii in 1900 (Perkins, Fauna Hawaiien- sis, David Sharp, ed., Cambridge Univ. Press, 2(6):687-690). Zimmer man (1948, Insects of Hawaii, Vol 2, Univ. Hawaii Press, 475pp) lists Podagrion mantis as a parasite of T. angustipennis, but gives no details on its biology. Both species were identified by F. G. Howarth of the Bishop Mu seum. R. P. Papp. Observations on the Cerambycid Plagithmysus varians Sharp in its host Acacia koa Gray: On August 1, 1977,1 examined several large koa logs (Acacia koa Gray) in the Blair Ltd. lumberyard in Hilo, Hawaii. The logs had recently been removed from logging area above Laupahoehoe at an elevation of 1646 m. On July 29 Mr. Nelson Kunitake of the Hawaii State Division of Forestry had noticed many beetle larvae under the bark of the logs, and had brought specimens to me. Upon examining the logs I found that much of the bark had unfor tunately been damaged or destroyed in the logging operation. With the help of two employees at the yard, we were able to remove several intact sections of bark. In the cambium beneath one section measuring 36 x 51 cm2, 68 cerambycid larvae were counted (1 larva per 27 cm2 of log suface). A large number of abortive larval galleries was also uncovered, but since they continually crossed and recrossed each other, an accurate estimate of the total number was precluded.
Recommended publications
  • Floristic and Ecological Characterization of Habitat Types on an Inselberg in Minas Gerais, Southeastern Brazil
    Acta Botanica Brasilica - 31(2): 199-211. April-June 2017. doi: 10.1590/0102-33062016abb0409 Floristic and ecological characterization of habitat types on an inselberg in Minas Gerais, southeastern Brazil Luiza F. A. de Paula1*, Nara F. O. Mota2, Pedro L. Viana2 and João R. Stehmann3 Received: November 21, 2016 Accepted: March 2, 2017 . ABSTRACT Inselbergs are granitic or gneissic rock outcrops, distributed mainly in tropical and subtropical regions. Th ey are considered terrestrial islands because of their strong spatial and ecological isolation, thus harboring a set of distinct plant communities that diff er from the surrounding matrix. In Brazil, inselbergs scattered in the Atlantic Forest contain unusually high levels of plant species richness and endemism. Th is study aimed to inventory species of vascular plants and to describe the main habitat types found on an inselberg located in the state of Minas Gerais, in southeastern Brazil. A total of 89 species of vascular plants were recorded (belonging to 37 families), of which six were new to science. Th e richest family was Bromeliaceae (10 spp.), followed by Cyperaceae (seven spp.), Orchidaceae and Poaceae (six spp. each). Life forms were distributed in diff erent proportions between habitats, which suggested distinct microenvironments on the inselberg. In general, habitats under similar environmental stress shared common species and life-form proportions. We argue that fl oristic inventories are still necessary for the development of conservation strategies and management of the unique vegetation on inselbergs in Brazil. Keywords: endemism, granitic and gneissic rock outcrops, life forms, terrestrial islands, vascular plants occurring on rock outcrops within the Atlantic Forest Introduction domain, 416 are endemic to these formations (Stehmann et al.
    [Show full text]
  • Stigmaphyllon Caatingicola (Malpighiaceae), a New Species from Seasonally Dry Tropical Forests in Brazil
    Phytotaxa 174 (2): 082–088 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.174.2.2 Stigmaphyllon caatingicola (Malpighiaceae), a new species from Seasonally Dry Tropical Forests in Brazil RAFAEL FELIPE DE ALMEIDA1* & ANDRÉ MÁRCIO AMORIM1,2,3 1 Programa de Pós-Graduação em Botânica, Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina s/n, 44036-900, Feira de Santana, Bahia, Brazil 2 Departamento de Ciências Biológicas. Universidade Estadual de Santa Cruz, Km 16 rod. Ilhéus-Itabuna, 45600-970, Ilhéus, Bahia, Brazil 3 Herbário Centro de Pesquisas do Cacau, CEPEC, Rodovia Ilhéus-Itabuna, Km 22, 45650-000, Ilhéus, Bahia, Brazil * Corresponding author:[email protected] Abstract Stigmaphyllon caatingicola is described and illustrated. We also provide a distribution map, and comments on species dis- tributions, conservation and taxonomy. This species is distinguished from Stigmaphyllon urenifolium by its deciduous leaves when flowering, lamina membranaceous, entire to apically trilobed, abaxially tomentose, with hairs deciduous in patches, one latero-anterior petal with reddish macula, sepals with darkish hairs, styles glabrous, stigma foliolate, and samaroid meri- carps densely sericeous, with a dorsal wing horizontally orientated. Key words: Caatinga, Malpighiales, Ryssopterys, Taxonomy Resumo Stigmaphyllon caatingicola é descrito e ilustrado. Em adição,
    [Show full text]
  • Pu'u Wa'awa'a Biological Assessment
    PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9
    [Show full text]
  • Malpighiaceae De Colombia: Patrones De Distribución, Riqueza, Endemismo Y Diversidad Filogenética
    DARWINIANA, nueva serie 9(1): 39-54. 2021 Versión de registro, efectivamente publicada el 16 de marzo de 2021 DOI: 10.14522/darwiniana.2021.91.923 ISSN 0011-6793 impresa - ISSN 1850-1699 en línea MALPIGHIACEAE DE COLOMBIA: PATRONES DE DISTRIBUCIÓN, RIQUEZA, ENDEMISMO Y DIVERSIDAD FILOGENÉTICA Diego Giraldo-Cañas ID Herbario Nacional Colombiano (COL), Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D. C., Colombia; [email protected] (autor corresponsal). Abstract. Giraldo-Cañas, D. 2021. Malpighiaceae from Colombia: Patterns of distribution, richness, endemism, and phylogenetic diversity. Darwiniana, nueva serie 9(1): 39-54. Malpighiaceae constitutes a family of 77 genera and ca. 1300 species, distributed in tropical and subtropical regions of both hemispheres. They are mainly diversified in the American continent and distributed in a wide range of habitats and altitudinal gradients. For this reason, this family can be a model plant group to ecological and biogeographical analyses, as well as evolutive studies. In this context, an analysis of distribution, richness, endemism and phylogenetic diversity of Malpighiaceae in natural regions and their altitudinal gradients was undertaken. Malpighiaceae are represented in Colombia by 34 genera and 246 species (19.1% of endemism). Thus, Colombia and Brazil (44 genera, 584 species, 61% of endemism) are the two richest countries on species of this family. The highest species richness and endemism in Colombia is found in the lowlands (0-500 m a.s.l.: 212 species, 28 endemics); only ten species are distributed on highlands (2500-3200 m a.s.l.). Of the Malpighiaceae species in Colombia, Heteropterys leona and Stigmaphyllon bannisterioides have a disjunct amphi-Atlantic distribution, and six other species show intra-American disjunctions.
    [Show full text]
  • The Sphingidae (Lepidoptera) of the Philippines
    ©Entomologischer Verein Apollo e.V. Frankfurt am Main; download unter www.zobodat.at Nachr. entomol. Ver. Apollo, Suppl. 17: 17-132 (1998) 17 The Sphingidae (Lepidoptera) of the Philippines Willem H o g e n e s and Colin G. T r e a d a w a y Willem Hogenes, Zoologisch Museum Amsterdam, Afd. Entomologie, Plantage Middenlaan 64, NL-1018 DH Amsterdam, The Netherlands Colin G. T readaway, Entomologie II, Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany Abstract: This publication covers all Sphingidae known from the Philippines at this time in the form of an annotated checklist. (A concise checklist of the species can be found in Table 4, page 120.) Distribution maps are included as well as 18 colour plates covering all but one species. Where no specimens of a particular spe­ cies from the Philippines were available to us, illustrations are given of specimens from outside the Philippines. In total we have listed 117 species (with 5 additional subspecies where more than one subspecies of a species exists in the Philippines). Four tables are provided: 1) a breakdown of the number of species and endemic species/subspecies for each subfamily, tribe and genus of Philippine Sphingidae; 2) an evaluation of the number of species as well as endemic species/subspecies per island for the nine largest islands of the Philippines plus one small island group for comparison; 3) an evaluation of the Sphingidae endemicity for each of Vane-Wright’s (1990) faunal regions. From these tables it can be readily deduced that the highest species counts can be encountered on the islands of Palawan (73 species), Luzon (72), Mindanao, Leyte and Negros (62 each).
    [Show full text]
  • Lepidoptera: Sphingidae)
    Nachr. entomol. Ver. Apollo, N. F. 31 (4): 227–230 (2011) 227 A new species of Psilogramma Rothschild & Jordan, 1903 from northern Australia (Lepidoptera: Sphingidae) David Lane, Maxwell S. Moulds and James P. Tuttle David Lane, 3 Janda Street, Atherton, Qld 4883, Australia; [email protected] Maxwell S. Moulds, Entomology Dept., Australian Museum, 6 College Street, Sydney, NSW 2010, Australia; [email protected] James P. Tuttle, 57 Inkerman Street, St Kilda, Vic 3182, Australia; [email protected] Abstract: Psilogramma penumbra sp. n. is recorded from 1 ♂, 1 ♀, Black Point, Cobourg Peninsula, 17. & 19. ii. 2007, north­eastern Western Australia, and coastal areas of the leg. D. A. Lane; 1 ♀ (Fig. 4), same data, but 18. ii. 2007, North ern Territory. It is here described, figured, and com­ molecular voucher BC­LTM­146 (MSM). 1 ♂ (Fig. 2), 1 ♀ par ed with the closely related species Psilogramma me ne­ (Fig. 3), Milikapiti, Snake Bay, Melville Island, 16. iii. 2010, phron (Cramer, 1780) from eastern Queensland. The life leg. D. A. Lane; 2 ♂♂, 1 ♀, same data, but 16. iii. 2010. his tory of P. penumbra is currently unknown. The de scrip­ All these in CDAL. 1 ♂, Black Point, Cobourg Penin sula, tion of P. penumbra brings the total number of Psilo gram ma Northern Territory, 18. ii. 2007, leg. D. A. Lane, mo le cu lar species recorded from Australia to seven. voucher BC­LTM­145, CMSM. 1 ♂, 16.03° S, 130.24° E, 8 km Key words: Monsoon forest, DNA sequence, Northern Ter­ N Bullita, Gregory Nat. Pk., 21.
    [Show full text]
  • Notes on Hawk Moths ( Lepidoptera — Sphingidae )
    Colemania, Number 33, pp. 1-16 1 Published : 30 January 2013 ISSN 0970-3292 © Kumar Ghorpadé Notes on Hawk Moths (Lepidoptera—Sphingidae) in the Karwar-Dharwar transect, peninsular India: a tribute to T.R.D. Bell (1863-1948)1 KUMAR GHORPADÉ Post-Graduate Teacher and Research Associate in Systematic Entomology, University of Agricultural Sciences, P.O. Box 221, K.C. Park P.O., Dharwar 580 008, India. E-mail: [email protected] R.R. PATIL Professor and Head, Department of Agricultural Entomology, University of Agricultural Sciences, Krishi Nagar, Dharwar 580 005, India. E-mail: [email protected] MALLAPPA K. CHANDARAGI Doctoral student, Department of Agricultural Entomology, University of Agricultural Sciences, Krishi Nagar, Dharwar 580 005, India. E-mail: [email protected] Abstract. This is an update of the Hawk-Moths flying in the transect between the cities of Karwar and Dharwar in northern Karnataka state, peninsular India, based on and following up on the previous fairly detailed study made by T.R.D. Bell around Karwar and summarized in the 1937 FAUNA OF BRITISH INDIA volume on Sphingidae. A total of 69 species of 27 genera are listed. The Western Ghats ‘Hot Spot’ separates these towns, one that lies on the coast of the Arabian Sea and the other further east, leeward of the ghats, on the Deccan Plateau. The intervening tract exhibits a wide range of habitats and altitudes, lying in the North Kanara and Dharwar districts of Karnataka. This paper is also an update and summary of Sphingidae flying in peninsular India. Limited field sampling was done; collections submitted by students of the Agricultural University at Dharwar were also examined and are cited here .
    [Show full text]
  • Pests Attacking Medicinal and Aromatic Plants in India
    Journal of Entomology and Zoology Studies 2018; 6(5): 201-205 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Pests attacking medicinal and aromatic plants in JEZS 2018; 6(5): 201-205 © 2018 JEZS India: A review Received: 03-07-2018 Accepted: 04-08-2018 Suchithra Kumari MH Suchithra Kumari MH and Srinivas MP Assistant Professor, Department of Entomology, Abstract College of Horticulture, Mudigere, Chikkamagaluru, Several medicinal and aromatic crops that are used to cure specific ailments since time immemorial are Karnataka, India being cultivated in the fields now-a-days to meet the increasing demand for pharmaceutical industries. Like any other plants, medicinal and aromatic plants too are attacked by different species of insect-pests Srinivas MP including mites and limits the successful cultivation of the crops. Sometimes the devastating nature of Department of Entomology, few pests leaves the crop plant completely destroyed. Practically, so far not much attention has been paid College of Horticulture, on the incidence of the pests attacking the medicinal and aromatic plants in India. The research on pests Mudigere, Chikkamagaluru, of medicinal and aromatic plants helps in understanding their role and developing the management Karnataka, India strategies. This review summarizes the diversity of pests occurring on medicinal and aromatic plants, and also provides a brief overview of their incidence and injury caused on different medicinal and aromatic plants. Keywords: Medicinal, aromatic, pests, incidence, diversity, injury 1. Introduction The ancient Indians had vast knowledge and expertise of medicinal and aromatic plants that have been used to cure specific ailments. The oldest literature on medicinal properties of plants dates back to Rigveda, which was supposed to be written between 4500 BC and 1600 BC.
    [Show full text]
  • Movement of Plastic-Baled Garbage and Regulated (Domestic) Garbage from Hawaii to Landfills in Oregon, Idaho, and Washington
    Movement of Plastic-baled Garbage and Regulated (Domestic) Garbage from Hawaii to Landfills in Oregon, Idaho, and Washington. Final Biological Assessment, February 2008 Table of Contents I. Introduction and Background on Proposed Action 3 II. Listed Species and Program Assessments 28 Appendix A. Compliance Agreements 85 Appendix B. Marine Mammal Protection Act 150 Appendix C. Risk of Introduction of Pests to the Continental United States via Municipal Solid Waste from Hawaii. 159 Appendix D. Risk of Introduction of Pests to Washington State via Municipal Solid Waste from Hawaii 205 Appendix E. Risk of Introduction of Pests to Oregon via Municipal Solid Waste from Hawaii. 214 Appendix F. Risk of Introduction of Pests to Idaho via Municipal Solid Waste from Hawaii. 233 2 I. Introduction and Background on Proposed Action This biological assessment (BA) has been prepared by the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS) to evaluate the potential effects on federally-listed threatened and endangered species and designated critical habitat from the movement of baled garbage and regulated (domestic) garbage (GRG) from the State of Hawaii for disposal at landfills in Oregon, Idaho, and Washington. Specifically, garbage is defined as urban (commercial and residential) solid waste from municipalities in Hawaii, excluding incinerator ash and collections of agricultural waste and yard waste. Regulated (domestic) garbage refers to articles generated in Hawaii that are restricted from movement to the continental United States under various quarantine regulations established to prevent the spread of plant pests (including insects, disease, and weeds) into areas where the pests are not prevalent.
    [Show full text]
  • Insect Feeding on Sugarcane Smut in Hawaii1 2
    CORE Metadata, citation and similar papers at core.ac.uk Provided by ScholarSpace at University of Hawai'i at Manoa Vol. XXII, No. 3, December, 1977 451 Insect Feeding on Sugarcane Smut in Hawaii1 2 P. A. Bowler\ E. E. Trujillch, and J. W. Beardsley, Jr.* The insect fauna associated with sugarcane smut whips is not well understood. Although various insects have been reported (Hayward, 1943), only Phalacrus immarginatus Champion has been well documented as a predator feeding on chlamydospores (Agarwal, 1956). In India this species spends its entire life cycle on the host plant; within smut whips during development (egg and larva) and on the leaves when mature. Extensive insect damage to smut whips on rattoon crops and older stands with secondary lateral whip formation was observed in experimental plots of infected sugarcane in Hawaii. The smut fungus, Ustilago scitaminea Syd., is a recent accidental introduction to the Hawaiian Islands (Byther, Steiner, and Wismer, 1971), and this study was undertaken as one of a series of investigations of dispersal and mechanical vectors of the disease. Materials and Methods To assess the extent of insect damage to smut whips, fifty whips in each of three approximately one-half acre plots were examined and insect damage was recorded. Insects captured on whips were dissected after being cleaned with repeated ethanol wipes, and their viscera were microscopically observed to determine if chlamydospores were present. Representatives of species containing spores were eviscerated and their stomach contents were plated on the smut selective medium of Anderson and Trujillo (1975). The smut selective medium is prepared with 200 ml.
    [Show full text]
  • Australian Sphingidae – DNA Barcodes Challenge Current Species Boundaries and Distributions
    Australian Sphingidae – DNA Barcodes Challenge Current Species Boundaries and Distributions Rodolphe Rougerie1*¤, Ian J. Kitching2, Jean Haxaire3, Scott E. Miller4, Axel Hausmann5, Paul D. N. Hebert1 1 University of Guelph, Biodiversity Institute of Ontario, Guelph, Ontario, Canada, 2 Natural History Museum, Department of Life Sciences, London, United Kingdom, 3 Honorary Attache´, Muse´um National d’Histoire Naturelle de Paris, Le Roc, Laplume, France, 4 National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America, 5 Bavarian State Collection of Zoology, Section Lepidoptera, Munich, Germany Abstract Main Objective: We examine the extent of taxonomic and biogeographical uncertainty in a well-studied group of Australian Lepidoptera, the hawkmoths (Sphingidae). Methods: We analysed the diversity of Australian sphingids through the comparative analysis of their DNA barcodes, supplemented by morphological re-examinations and sequence information from a nuclear marker in selected cases. The results from the analysis of Australian sphingids were placed in a broader context by including conspecifics and closely related taxa from outside Australia to test taxonomic boundaries. Results: Our results led to the discovery of six new species in Australia, one case of erroneously synonymized species, and three cases of synonymy. As a result, we establish the occurrence of 75 species of hawkmoths on the continent. The analysis of records from outside Australia also challenges the validity of current taxonomic boundaries in as many as 18 species, including Agrius convolvuli (Linnaeus, 1758), a common species that has gained adoption as a model system. Our work has revealed a higher level of endemism than previously recognized. Most (90%) Australian sphingids are endemic to the continent (45%) or to Australia, the Pacific Islands and the Papuan and Wallacean regions (45%).
    [Show full text]
  • (Lepidoptera: Heterocera : Sphingidae) of Dalma Wildlife Sanctuary, Jharkhand
    Rec. zool. Surv. India: l11(Part-l) : 25-30, 2011 STUDIES ON THE SPHINGID FAUNA (LEPIDOPTERA: HETEROCERA : SPHINGIDAE) OF DALMA WILDLIFE SANCTUARY, JHARKHAND S. SAMBATH Zoological Survey of India Central Zone Regional Centre, Jabalpur-4B2 002 E-mail: [email protected] INTRODUCTION DIVISION: ASEMANOPHORAE Sphingidae is a family of moths (Lepidoptera), Subfamily ACHERONTIINAE commonly called hawk moths, sphinx moths and Tribe ACHERONTIINI hornworms, and are known to travel long distances on Genus Acherontia Laspeyres migration; some species have been encountered at mid­ 1. Acherontia lachesis (Fabr.) sea by ships (Kehimkar, 1997). They are moderate to large in size and are distinguished among other moths 1798. Sphinx lachesis Fabricius, Syst. Ent. Supp 1. , : 434. by their rapid, sustained flying ability (ScobIe, 1995).The 1937. Acherontia lachesis, Bell & Scott, Fauna Brit. India, stout and cigar shaped body and long and narrow Moths, 5 : 55. forewings are clearly adaptated for rapid flight. The Diagnosis : Head and thorax blackish, powdered possession of long proboscis makes them ideal and with white, yellow and blue-grey scales. The skull mark distinct pollinators for flowers with long tubular corolla on the dorsum of the thorax more conspicuous. Fore (Barlow, 1982). The family comprises of roughly 1,354 wing blackish, powdered with white, yellow and bluish species reported worldwide, out of which about 204 grey scales. Hind wing upper side with the basal third species are distributed in India (Bell & Scott, 1937; D' marked with black. Abdomen black with a broad, Abrera, 1986). interrupted, grey-blue dorsal stripe and small yellow The earlier studies revealed that little works have side patches on the four proximal segments.
    [Show full text]