Masten Flight Systems Works Toward First Launch of a NASA Payload For

Total Page:16

File Type:pdf, Size:1020Kb

Masten Flight Systems Works Toward First Launch of a NASA Payload For The National Aeronautics and Space Administration Desert Thunder! Masten Flight Systems works toward first launch of a NASA payload for Flight Opportunities office Cover Story Welcome to Aerovations Flight Opportunities This is an exciting time within NASA for innovation Resources 16 The newly established Office of the and technology. With the Chief Technologist seeks to match NASA Ronald Young, creation of the NASA Office Dryden Innovative and science community launch needs of the Chief Technologist, Partnerships Office with companies capable of getting the and the selection of its chief, 661-276-3741 experiments aloft to flight conditions Bobby Braun, a new agency champion has emerged The Office of the Chief to re-vitalize NASA as a Technologist: http://www. preeminent research and 30 Holland helps nasa.gov/offices/oct/home/ 24 Fiber optic development organization. index.html News protect ideas, Expanding on initiatives 4 Dryden Center systems commercialize tech of the former Innovative SBIR and STTR Innovation Fund Partnerships Program, information: http://sbir. new models are nurturing gsfc.nasa.gov/SBIR/SBIR. selectees named 6 Allen Parker’s ED11 0115-05 NASA Photo by Tom Tschida Concepts innovations inside and html 11 Dryden researcher algorithm shatters a outside of NASA. In fact, The Innovative Partnerships Office staff includes, from left, Jason Han- technology barrier as part of the OCT, all of son, Ron Young, Julie Holland, Greg Poteat and Elizabeth Newcamp. submits winning idea for 9 New launch Dryden IPP website: the IPP – now called the http://www.nasa. office is formulated from two previous projects. Ames Research future space treadmills technology idea 6 Dryden, 4DSP enter Innovative Partnerships gov/centers/dryden/ Center, Moffett Field, Calif., began the Commercial Reusable gains ground Office – has been adopted Suborbital Research, or CRuSR, activity for the agency’s Science OCT structure is licensing agreement about/Organizations/ 17 and its work continued. Technology/ Mission Directorate. A second project is the Facilitated Access to focused on technology Flight experiments Competitive partnership the Space Environment for Technology, or FAST, which originated 13 opportunities such as the in the former IPP office. Flight Opportunities officials will seek 7 Dryden fiber optic validated ‘hot film’ sensors. sensor work honored successful Small Business Innovative Research and Small Business and foster capabilities and services from the commercial sector, 20 Dryden helps Now, the challenge is to Technology Transfer programs continue as part of the OCT initially for suborbital flight services. determine whether move the technology Space Technology programs. Ten such programs are organized As with all change, some has been seamless and some has been sonic booms will People to the next level under three divisions: early-stage innovations, game-changing challenging. At Dryden, a valued member of the IPO staff, Russ create false alarms technologies and crosscutting technology demonstrations. The Barber, recently passed away. Barber participated in analyzing and 4 Center chief individual programs are detailed elsewhere in this publication. assessing emerging commercial space markets that would foster a 13 Fly-by-feel systems The Innovative Partnerships Office is managing all former viable commercial industry, bringing these data into NASA’s Space technologist has a vision SBIR represent the next IPP responsibilities for the Space Technology programs. David Technology strategy and selection process. Additionally, in work revolution in aircraft Voracek, Dryden center chief technologist, provides oversight with a nascent commercial flight-service community, Barber’s 9 Eight Small Business 15 Mangalam brings controls and serves as a representative to Braun’s office. Center chief many years of NASA project management experience and insights Innovative Research Dryden ideas, technology technologists guide their respective center’s participation in were greatly respected on Flight Opportunities programmatic the Space Technology programs, and will provide each center’s challenges. Russ will be sorely missed in a number of ways. agreements approved 24 New tool could for Phase II funding “bottom-up” input to the agency’s innovation and technology It also is expected to be a year of achievement. The Xaero launch 22 Students contribute accurately assess strategies and goals. of the first NASA payload by Masten Flight Systems of Mojave, to Dryden researcher’s adaptive flight control Selecting and investing in a large number of highly creative Calif., for the Flight Opportunities program will be a major 21 Dryden SBIR work and gain insight software in flight activities with potential for disruptive, or game-changing, step toward demonstrating reliable flight services for additional work results in a new into engineering careers technology breakthroughs will generate excitement about NASA’s technology demonstrations and scientific payloads. The flight also generation of carbon- work. Drawing from private industry, colleges and universities, marks a new era of cooperation with our commercial partners. carbon fasteners 28 DIMM is a bright idea. a wave of creative ideas will foster innovations that will engage Although the name of the office has changed, its mission has 26 TPS chief test pilot a new generation of researchers and technologists. Partnerships not. Partnerships are still part of the office name and a key part says Dryden partnership such as those available through SBIR and STTR are models of what we do. We seek out partnerships with industry, academia 25 SBIR opportunities energized students for other collaborations aimed at reinvigorating technology for and other NASA and government entities to continue raising the help tech innovation NASA as well as at stimulating commercial applications, market readiness level of emerging technologies, identifying new sources 30 CPP students aid in expansion and investment in future technologies. of innovation to address NASA’s technology needs that will not Dryden also was selected to manage the Space Technology’s only resolve the agency’s technical challenges, but also benefit the new-tech evaluation Flight Opportunities program under NASA Headquarters nation and the general public through technology transfer for new Inside Aerovations Inside The Masten Flight Systems tethered rocket test on the cover was Stories by X-Press Editor Jay program executive Laguduva Kubendran, a former member of commercial applications. photographed by Tom Tschida (NASA Photo ED11 0139-49) Levine except where noted. Dryden’s technical management staff. Dryden’s John Kelly is the Flight Opportunities program manager. The Flight Opportunities Ron Young, Dryden Innovative Partnerships Office August 2011 Aerovations Aerovations August 2011 Innovation ... from page 4 and aircraft efficiency. from the central nervous system allow a person to react to what is Seeding innovation New aerospace vehicle designs will happening, as it’s happening. If Brenner is successful, as an aircraft depend on such an integrated system flies, information from the sensors will be fed into the flight controls Dryden Center Innovation Fund selectees named that can gather information from an and allow the aircraft to adapt to flight conditions. aircraft’s sensors and feed it into the flight Called Distributive Adaptive Aeroservoelastic Control Utilizing control computer. What’s potentially Physics-Based Aerodynamic Sensing, the new technology will be A new Center Innovation Fund seeded through the NASA Office of the commercial sector would then incorporate into new generations revolutionary is then having the flight used in pinpointing flow bifurcation points – areas where the airflow the Chief Technologist became available when the federal 2011 fiscal of airplanes. Toward that goal, Barraclough earned funding for control system use new algorithms in characteristics change significantly – to define a relationship between year budget passed in April. The goal of the new initiative, funds from electric aircraft system technology development that dovetails with harnessing that information to alleviate different key parameters. which are being offered to agency researchers at each of NASA’s field Aeronautics Research Mission Directorate visions for less noisy, more aerodynamic forces and achieve different For example, information on the leading-edge stagnation point, centers, is to stimulate new ideas and encourage pursuit of promising fuel efficient and environmentally friendly system goals, said Dryden researcher Marty Brenner with angle-of-attack or flow separation point and aerodynamic lift technologies. future aircraft. Marty Brenner. The research focus will alternately be on coefficient, could be used in the control system for decisions on Dryden researchers submitted their proposals at the beginning of the Barraclough, an electrical engineer, is handling quality performance, gust-load alleviation and how to control the aircraft. The system also would help minimize fiscal year to David Voracek, Dryden Chief Technologist. So selections specifically interested in electric propulsion, aerostructural stability. transitions on the aircraft, such as those from laminar-to-turbulent could be made from the submissions as soon as funding became which he said he believes can dramatically Brenner equates the sensors and their information on an and attached-to-separated airflow, and shock waves. available, a group composed of two members
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0133788 A1 Mungas Et Al
    US 200901.33788A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0133788 A1 Mungas et al. (43) Pub. Date: May 28, 2009 (54) NITROUS OXIDE FUEL BLEND Related U.S. Application Data MONOPROPELLANTS (60) Provisional application No. 60/986,991, filed on Nov. 9, 2007. (75) Inventors: Gregory Mungas, Arcadia, CA Publication Classification (US); David J. Fisher, Denver, CO (US); Christopher Mungas, (51) Int. Cl. Plymouth, CA (US); Benjamin C06B 47/04 (2006.01) Carryer, Denver, CO (US) (52) U.S. Cl. .......................................................... 149/74 (57) ABSTRACT Correspondence Address: Compositions and methods herein provide monopropellants HENSLEY KIM & HOLZER, LLC comprising nitrous oxide mixed with organic fuels in particu 1660 LINCOLN STREET, SUITE 3000 lar proportions creating stable, storable, monopropellants DENVER, CO 80264 (US) which demonstrate high ISP performance. Due to physical properties of the nitrous molecule, fuel/nitrous blends dem (73) Assignee: Firestar Engineering, LLC, onstrate high degrees of miscibility as well as excellent Broomfield, CO (US) chemical stability. While the monopropellants are particu larly well Suited for use as propulsion propellants, they also lend themselves well to power generation in demanding situ (21) Appl. No.: 12/268,266 ations where some specific cycle creates useable work and for providing gas pressure and/or heat for inflating deployable (22) Filed: Nov. 10, 2008 materials. Isp (NOFB3X at 100 psia Chamber Pressure) vs OF (To=298 K) ----------arrarilla-rule 2001 F --vacuum Eq v 2001 Ed T-ch T-th EQUBRUM { % - 4% 9%. 8. sash;94 -ko's -8%xxxx was wi:8%. g. gzge 8% is es: 8 as: 8 Patent Application Publication May 28, 2009 Sheet 1 of 17 US 2009/0133788A1 isp (NOFB3X at 100 psia Chamber Pressure) vs OF (To=298 K) --vacuum F -e-2001 F --vacuum Eq.- 2001 Ed T-ch T-th ------- 3500 350 d ..
    [Show full text]
  • United States Patent (1O) Patent No.: US 8,572,946 B2 Mungas Et Al
    11111111111111111111111111111111111111111111111111111111111111111111111111 (12) United States Patent (1o) Patent No.: US 8,572,946 B2 Mungas et al. (45) Date of Patent: Nov. 5, 2013 (54) MICROFLUIDIC FLAME BARRIER 1,103,503 A 7/1914 Goddard 1,586,195 A 5/1926 Hall (75) Inventors: Gregory S. Mungas, Mojave, CA (US); 2,609,281 A 9/1952 Smith 2,714,563 A 2/1955 Norman et al. David J. Fisher, Tehachapi, CA (US); 3,243,272 A3/1966 Schmitz Christopher Mungas, Plymouth, CA 3,266,241 A * 8/1966 Jennings ......................... 60/258 (US) 3,512,556 A 5/1970 McKhann 3,719,046 A 3/1973 Sutherland et al. (73) Assignee: Firestar Engineering, LLC, Mojave, 3,779,714 A 12/1973 Nadkarni et al. CA (US) (Continued) (*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. EP 1500880 1/2005 EP 1500880 A2 1/2005 (21) Appl. No.: 13/549,027 (Continued) (22) Filed: Jul. 13, 2012 OTHER PUBLICATIONS "aRocket", an amateur rocketry discussion forum onhttp://exrocktry . (65) Prior Publication Data net/mailman/listinfo/arocket, Dec. 31, 2009. US 2012/0279196 Al Nov. 8, 2012 (Continued) Related U.S. Application Data Primary Examiner Phutthiwat Wongwian (63) Continuation-in-part of application No. 11/950,174, filed on Dec. 4, 2007, now Pat. No. 8,230,672, and a (74) Attorney, Agent, or Firm HolzerIPLaw, PC continuation of application No. 12/613,188, filed on Nov. 5, 2009, now Pat. No. 8,230,673. (57) ABSTRACT (60) Provisional application No.
    [Show full text]
  • The NASA In-Space Propulsion Technology Project's Current
    NASA In-Space Propulsion Technologies and Their Infusion Potential David J. Anderson,1 Eric J. Pencil,2 Todd Peterson3 and Daniel Vento4 NASA Glenn Research Center, Cleveland, OH 44135 Michelle M. Munk5 and Louis J. Glaab6 NASA Langley Research Center, Hampton, VA 23681 and John W. Dankanich7 AeroDank, Inc., Cleveland, OH 44135 The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA’s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions.
    [Show full text]
  • An Analysis of Green Propulsion Applied to NASA Missions
    An Analysis of Green Propulsion Applied to NASA Missions Presented at Space Propulsion 2014 Cologne, GERMANY May 19-22nd, 2014 Eric H. Cardiff1, Henry W. Mulkey2, and Caitlin E. Bacha3, NASA Goddard Space Flight Center, Greenbelt, MD 20771 The advantages of green propulsion for five mission classes are examined, including a Low Earth Orbit (LEO) mission (GPM), a Geosynchronous Earth Orbit (GEO) mission (SDO), a High Earth Orbit (HEO) mission (MMS), a lunar mission (LRO), and a planetary mission (MAVEN). The propellant mass benefits are considered for all five missions, as well as the effects on the tanks, propellant loading, thruster throughput, thermal considerations, and range requirements for both the AF-M315E and LMP-103S propellants. Nomenclature ACS = Attitude Control System MMH = Monomethyl Hydrazine CDR = Critical Design Review MMS = Magnetospheric Multi Scale mission ECAPS = Ecological Advanced Propulsion NASA = National Aeronautics and Space Systems Administration GEO = Geosynchronous Orbit NOFBX = Nitrous Oxide Fuel Blend GSFC = Goddard Space Flight Center NTO = Nitrogen Tetroxide GPIM = Green Propellant Infusion Mission PRISMA = Prototype Research Instruments and GPM = Global Precipitation Measurement Space Mission Advancement HEO = High Earth Orbit RE = Earth Radii IA = International Agreement SCAPE = Self-Contained Atmospheric Protective Isp = Specific Impulse (s) Ensemble LEO = Low Earth Orbit SDO = Solar Dynamics Observatory LRO = Lunar Reconnaissance Orbiter SNSB = Swedish National Space Board mf = Spacecraft final (or dry) mass STMD = Space Technology Mission Directorate mi = Spacecraft initial (or wet) mass TDRSS = Tracking and Data Relay Satellite MAVEN = Mars Atmosphere and Volatile System Evolution mission TRL = Technology Readiness Level ME = Main Engine (for SDO) I. Introduction Interest in green propulsion has rekindled in recent years due to the ultimate success of catalytic ignition systems for multiple high-performance formulations.
    [Show full text]
  • Electric Feed Systems for Liquid-Propellant Rockets
    Research Report. ELECTRIC FEED SYSTEMS FOR LIQUID PROPELLANT ROCKET ENGINES. Pablo Rachov, Hernán Tacca y Diego Lentini. Cita: Pablo Rachov, Hernán Tacca y Diego Lentini (2010). ELECTRIC FEED SYSTEMS FOR LIQUID PROPELLANT ROCKET ENGINES. Research Report. Dirección estable: https://www.aacademica.org/hernan.emilio.tacca/9 Esta obra está bajo una licencia de Creative Commons. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es. Acta Académica es un proyecto académico sin fines de lucro enmarcado en la iniciativa de acceso abierto. Acta Académica fue creado para facilitar a investigadores de todo el mundo el compartir su producción académica. Para crear un perfil gratuitamente o acceder a otros trabajos visite: http://www.aacademica.org. RESEARCH REPORTS ELECTRIC FEED SYSTEMS FOR LIQUID PROPELLANT ROCKET ENGINES Pablo RACHOV LABORATORIO DE CONTROL DE ACCIONAMIENTOS, TRACCIÓN Y POTENCIA (LABCATYP) Departamento de Electrónica Facultad de Ingeniería UNIVERSIDAD DE BUENOS AIRES Directors: Prof. Hernán TACCA, University of Buenos Aires, Argentina Prof. Diego LENTINI, University of Roma “La Sapienza”, Italy Buenos Aires, December 6th, 2010. DOI: 10.13140/2.1.4431.9042 Comparison of Liquid Propellant Rocket Engine Feed Systems - 1 - 1 REPORT N o 1 COMPARISON OF LIQUID PROPELLANT ROCKET ENGINE FEED SYSTEMS Pablo RACHOV LABORATORIO DE CONTROL DE ACCIONAMIENTOS, TRACCIÓN Y POTENCIA (LABCATYP) Departamento de Electrónica Facultad de Ingeniería UNIVERSIDAD DE BUENOS AIRES Directors: Prof. Hernán TACCA, University of Buenos Aires, Argentine Prof. Diego LENTINI, University of Roma “La Sapienza”, Italy Buenos Aires, December 6th, 2010. Comparison of Liquid Propellant Rocket Engine Feed Systems - 1 - 2 CONTENTS I.
    [Show full text]
  • Introduction to Fertilizers Industries
    Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org ADANA UNIVERSTY – INDUSTRY JOINT RESEARCH CENTER INTRODUCTIN TO FERTILIZER INDUSTRIES BY TAREK ISMAIL KAKHIA 1 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org ADANA UNIVERSTY – INDUSTRY JOINT RESEARCH CENTER page Item 3 Fertilizer 71 N - P - K rating 17 Fertilizers Inorganic Acids: 21 Sulfur 53 Sulfur Dioxide 11 Sulfur Trioxide 44 Sulfuric Acid 35 Nitrogen 35 Liquid Nitrogen 37 Nitrogen Cycle 51 Nitrogen Oxide 53 Nitric oxide ( NOX ) 22 Nitrogen Di Oxide 27 Nitrous Oxide 111 Nitric Oxide 121 Di Nitrogen Pent oxide 714 Nitric Acid 151 Phosphate Minerals ( Phosphate Rock (Phospharite ٌ 157 155 Phosphorus 132 Phosphorus Oxide 171 Phosphorus Tri Oxide 172 Phosphorus Pent Oxide 711 Phosphoric Acid 137 Phospho Gypsum 711 Fertilizers Alkalizes: 787 Ammonia 211 Ammonia Production 211 Amine Gas Treating 171 Ammonium Hydroxide 212 Category : Ammonium Compounds 221 Potassium 253 Potassium Hydroxide 211 Fertilizers Salts 215 Ammonium Ferric Citrate 2 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org ADANA UNIVERSTY – INDUSTRY JOINT RESEARCH CENTER 211 Ammonium Nitrate 215 Di Ammonium Phosphate 212 Tri Ammonium Phosphate 231 Ammonium Sulfate 232 Calcium Nitrate 231 Calcium Phosphate 233 Mono Calcium Phosphate 271 Di Calcium Phosphate 271 Tri Calcium Phosphate 271 Sodium Nitrate 267 Magnesium Phosphate 275 Di Magnesium Phosphate 272 Magnesium Sulfate 235 Potassium Chloride 235 Potassium Citrate 251 Potassium Nitrate 253 Potassium Phosphate 257 Mono Potassium Phosphate 255 Di Potassium Phosphate 252 Tri Potassium Phosphate 221 Potassium Sulfate 221 Borax 511 Organic Fertilizers: 515 Compost 513 Composting 521 Urea 555 Urea Cycle 555 Urea Phosphate 331 Extension & Supplements 511 Macronutrient & Micronutrient Fertilizers 535 Category : Phosphate minerals 533 Pozzolan 535 Pumice 5 Copyright © Tarek Kakhia.
    [Show full text]
  • Propulsion Systems Design • Rocket Engine Basics • Survey of the Technologies • Propellant Feed Systems • Propulsion Systems Design
    Propulsion Systems Design • Rocket engine basics • Survey of the technologies • Propellant feed systems • Propulsion systems design © 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu U N I V E R S I T Y O F Rocket Propulsion MARYLAND 1 ENAE 791 - Launch and Entry Vehicle Design Liquid Rocket Engine Cutaway U N I V E R S I T Y O F Rocket Propulsion MARYLAND 2 ENAE 791 - Launch and Entry Vehicle Design Thermal Rocket Exhaust Velocity • Exhaust velocity is ! + γ −1. 2γ ℜT - % p ( γ 0 ! 0 ' e * Ve = -1 −' * 0 γ −1 M - & p ) 0 ! , 0 / where M ≡ average molecular weight of exhaust Joules ℜ ≡ universal gas const.= 8314.3 mole°K γ ≡ ratio of specific heats ≈1.2 U N I V E R S I T Y O F Rocket Propulsion MARYLAND 3 ENAE 791 - Launch and Entry Vehicle Design €€ € € Ideal Thermal Rocket Exhaust Velocity • Ideal exhaust velocity is ! 2γ ℜT V = 0 ! e γ −1 M • Tis corresponds to an ideally expanded nozzle • All thermal energy converted to kinetic energy of exhaust • Only a function of temperature and molecular weight! U N I V E R S I T Y O F Rocket Propulsion MARYLAND 4 ENAE 791 - Launch and Entry Vehicle Design € Thermal Rocket Performance • Trust is ! T = m˙ Ve + ( pe − pamb)Ae • Effective exhaust velocity ! A " c % T m˙ c c V p p e $ I = ' ! = ⇒ = e + ( e − amb) $ sp ' m˙ # g0 & • Expansion ratio 1 1 * γ −1- γ −1# & γ # & γ At # γ +1& pe γ +1, pe / = % ( % ( ,1 −% ( / A $ 2 ' $ p ' γ −1, $ p ' / e 0 + 0 .
    [Show full text]
  • Excea Dolum Cum Audaerionsed Que Exerum Ni Bea Vel Issint Eaqui
    ISSN 1742-5689 | Volume 12 | Issue 102 | 6 January 2015 J. R. Soc. Interface | R. Soc. Interface J. The Royal Society is a self-governing Fellowship of many of the world’s most distinguished scientists 12 Volume drawn from all areas of science, engineering, and medicine. The Society’s fundamental purpose, as it has been since its foundation in 1660, is to recognise, | promote, and support excellence in science and to Issue 102 encourage the development and use of science for Excea dolum cum audaerionsed Puda entiberro et acerchit quibus Sum vel intiberume nonsequam the benefi t of humanity. que exerum ni bea vel issint eaqui et molupta nostis eriorrumquis experci tatquiatias et quid rerupta ipic totaquiat doluptibu. eium, simporitas maximen moluptatur arunt doluptibus quibus | The Society’s strategic priorities emphasise its 6 January 2015 commitment to the highest quality science, to doluptibu diaerendi re magnisquist, net occus est, curiosity-driven research, and to the development and use of science for the benefi t of society. These priorities are: • Promoting science and its benefi ts • Recognising excellence in science • Supporting outstanding science • Providing scientifi c advice for policy • Fostering international and global cooperation • Education and public engagement For further information on the Royal Society The Royal Society 6 – 9 Carlton House Terrace London SW1Y 5AG T +44 20 7451 2500 W royalsociety.org For further information on Journal of the Royal Society Interface T +44 20 7451 2633 E [email protected] W rsif.royalsocietypublishing.org 1742-5689(201501)12:102 ISSN 1742-5689 The Royal Society Registered Charity No 207043 SUBSCRIPTIONS In 2015 J.
    [Show full text]
  • Nofbx™ Mars Ascent Vehicle: a Single Stage to Orbit Approach J
    Concepts and Approaches for Mars Exploration (2012) 4353.pdf NOFBX™ MARS ASCENT VEHICLE: A SINGLE STAGE TO ORBIT APPROACH J. M. Vozoff1, D. J. Fisher2, and G. S. Mungas3, 1mv2space, 2Firestar Technologies, 3 Firestar Technologies, 1122 Flight Line Street #76, Mojave, CA 93501, [email protected]. Introduction: Nitrous Oxide Fuel Blend ing TRL 6, having successfully begun testing in a vac- (NOFBX™) is a nitrous-oxide-based mono-propulsion uum test facility. technology developed specifically for a Mars Ascent NOFBX™ technology is more than the propellants Vehicle (MAV) application by Firestar Technologies. themselves: it is also the essential surrounding tech- This development was funded primarily by the NASA nologies that enable this propellant to be safely and Mars Program Office, NASA Small Business Innova- effectively employed to generate thrust in spacecraft tion Research (SBIR), and NASA International Space and rocket propulsion applications. Some examples Station (ISS). NOFBX™ propulsion system specific are flashback arrestor technologies, porous media in- impulse performance equals or exceeds state-of-the-art jectorhead technology, microfluidic regererative thrust nitrogen textroxide/ monomethyl hydrazine chamber technology and the associated thin-film fabri- (NTO/MMH) systems, with the added advantages of cation technique, Firestar’s developments to-date have restartability via spark ignition, deep throttleability demonstrated practical application of the technology (100:1), and high thrust-to-weight ratio. For a Mars
    [Show full text]
  • Chemistry 1 Stokiometry Contents
    chemistry 1 stokiometry Contents 1 John Dalton 1 1.1 Early life ................................................ 1 1.2 Early careers .............................................. 1 1.3 Scientific contributions ........................................ 1 1.3.1 Meteorology ......................................... 1 1.3.2 Colour blindness ....................................... 1 1.3.3 Measuring mountains in the Lake District .......................... 2 1.3.4 Gas laws ............................................ 2 1.3.5 Atomic theory ......................................... 2 1.3.6 Atomic weights ........................................ 3 1.3.7 Other investigations ...................................... 3 1.3.8 Experimental approach .................................... 4 1.4 Other publications ........................................... 4 1.5 Public life ............................................... 4 1.6 Personal life .............................................. 5 1.7 Disability and death .......................................... 5 1.8 Legacy ................................................. 5 1.9 See also ................................................ 6 1.10 References ............................................... 6 1.11 Sources ................................................ 7 1.12 External links ............................................. 8 2 Atomic theory 9 2.1 History ................................................. 9 2.1.1 Philosophical atomism .................................... 9 2.1.2 Dalton ............................................
    [Show full text]
  • Review of State-Of-The-Art Green Monopropellants: for Propulsion Systems Analysts and Designers
    aerospace Review Review of State-of-the-Art Green Monopropellants: For Propulsion Systems Analysts and Designers Ahmed E. S. Nosseir 1,2,*, Angelo Cervone 1,* and Angelo Pasini 2 1 Department of Space Engineering, Faculty of Aerospace Engineering, Delft University of Technology (TU Delft), 2629 HS Delft, The Netherlands 2 Sede di Ingegneria Aerospaziale, Dipartimento di Ingegneria Civile e Industriale, Università di Pisa (UniPi), 56122 Pisa, Italy; [email protected] * Correspondence: [email protected] or [email protected] (A.E.S.N.); [email protected] (A.C.) Abstract: Current research trends have advanced the use of “green propellants” on a wide scale for spacecraft in various space missions; mainly for environmental sustainability and safety concerns. Small satellites, particularly micro and nanosatellites, evolved from passive planetary-orbiting to being able to perform active orbital operations that may require high-thrust impulsive capabilities. Thus, onboard primary and auxiliary propulsion systems capable of performing such orbital op- erations are required. Novelty in primary propulsion systems design calls for specific attention to miniaturization, which can be achieved, along the above-mentioned orbital transfer capabilities, by utilizing green monopropellants due to their relative high performance together with simplicity, and better storability when compared to gaseous and bi-propellants, especially for miniaturized systems. Owing to the ongoing rapid research activities in the green-propulsion field, it was necessary to extensively study and collect various data of green monopropellants properties and performance that would further assist analysts and designers in the research and development of liquid propulsion sys- tems.
    [Show full text]
  • Research on Future Orbital Propulsion Systems and Scramjet Engines
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications 70th International Astronautical Congress, Washington, USA. Copyright 2019 by German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms. IAC-19,C4,9,1,x49899 TEST COMPLEX M11: RESEARCH ON FUTURE ORBITAL PROPULSION SYSTEMS AND SCRAMJET ENGINES Wilhelm, M.*, Werling, L., Strauss, F., Lauck, F., Kirchberger, C., Ciezki, H., Schlechtriem, S. German Aerospace Center (DLR), Institute of Space Propulsion, Hardthausen, Germany * Corresponding Author: [email protected] Basic research activities and thrust chamber oriented technology development for rocket and air-breathing (Ram-/SCRamjet) propulsion systems are conducted at Test Complex M11. History of M11 dates back to the year 1966, when the first building was constructed. Since its existence, lots of scientific results could be elaborated in the multifarious working areas and have been published in a large number of publications in journals and on conferences. Today’s research and development activities are focused on combustion, ignition, cooling and chamber processes of advanced green propellants for rockets, satellites and orbital propulsion systems. Furthermore material testing as well as propellant synthesis and analysis are performed. This publication gives a short overview of the history of the test complex and delivers an inside into current research activities. 1. HISTORICAL ACTIVITIES [1] (STudentenRaketeN). Fig. 2 shows the current view of Test Complex M11 at DLR site Lampoldshausen the M11 with the student test field M11.5 on the left was built in the 60s of the 20th century.
    [Show full text]