Electric Feed Systems for Liquid-Propellant Rockets

Total Page:16

File Type:pdf, Size:1020Kb

Electric Feed Systems for Liquid-Propellant Rockets Research Report. ELECTRIC FEED SYSTEMS FOR LIQUID PROPELLANT ROCKET ENGINES. Pablo Rachov, Hernán Tacca y Diego Lentini. Cita: Pablo Rachov, Hernán Tacca y Diego Lentini (2010). ELECTRIC FEED SYSTEMS FOR LIQUID PROPELLANT ROCKET ENGINES. Research Report. Dirección estable: https://www.aacademica.org/hernan.emilio.tacca/9 Esta obra está bajo una licencia de Creative Commons. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es. Acta Académica es un proyecto académico sin fines de lucro enmarcado en la iniciativa de acceso abierto. Acta Académica fue creado para facilitar a investigadores de todo el mundo el compartir su producción académica. Para crear un perfil gratuitamente o acceder a otros trabajos visite: http://www.aacademica.org. RESEARCH REPORTS ELECTRIC FEED SYSTEMS FOR LIQUID PROPELLANT ROCKET ENGINES Pablo RACHOV LABORATORIO DE CONTROL DE ACCIONAMIENTOS, TRACCIÓN Y POTENCIA (LABCATYP) Departamento de Electrónica Facultad de Ingeniería UNIVERSIDAD DE BUENOS AIRES Directors: Prof. Hernán TACCA, University of Buenos Aires, Argentina Prof. Diego LENTINI, University of Roma “La Sapienza”, Italy Buenos Aires, December 6th, 2010. DOI: 10.13140/2.1.4431.9042 Comparison of Liquid Propellant Rocket Engine Feed Systems - 1 - 1 REPORT N o 1 COMPARISON OF LIQUID PROPELLANT ROCKET ENGINE FEED SYSTEMS Pablo RACHOV LABORATORIO DE CONTROL DE ACCIONAMIENTOS, TRACCIÓN Y POTENCIA (LABCATYP) Departamento de Electrónica Facultad de Ingeniería UNIVERSIDAD DE BUENOS AIRES Directors: Prof. Hernán TACCA, University of Buenos Aires, Argentine Prof. Diego LENTINI, University of Roma “La Sapienza”, Italy Buenos Aires, December 6th, 2010. Comparison of Liquid Propellant Rocket Engine Feed Systems - 1 - 2 CONTENTS I. INTRODUCTION................................................................................................ 3 II. ANALYTICAL DEVELOPMENT................................................................... 4 III. DATA ESTIMATION..................................................................................... 14 IV. RESULTS........................................................................................................ 19 V. CONCLUSIONS.............................................................................................. 34 VI. REFERENCES................................................................................................ 36 VII. APPENDIX.................................................................................................... 37 Comparison of Liquid Propellant Rocket Engine Feed Systems - 1 - 3 I. INTRODUCTION Since several decades the systems to impel propellants inside the combustion chamber are based on the employment of turbo-pumps or a pressurized gas. However, in virtue of the technological advances of the last 10 years in matter of electric engines and batteries, is possible to think about the viability of development electric-pumps feed systems. One of the most difficult requirements to achieve when designing a rocket engine is to keep the weight as low as possible, because generally the payload is a small fraction of the total weight. For this reason, this requirement turns out to be a basic parameter to compare the three systems. Beginning with a brief description of the parts that compose each feed system, the conceptual diagrams of each system are presented in figure 1. Figure 1: Schemes of the 3 feed systems to analyzing. The figure 1 shows that all the three systems have fuel and oxidizer tanks, and also a third tank containing a pressurized gas. In the first system, that gas makes the work of displacing the propellant’s masses inside the combustion chamber. Hereby, the stored gas in the above mentioned tank is under high pressure with typical values ranging from 6.9MPa to 69MPa [1]. For the other two systems, the pumps make the work of displacing the propellants while the gas function is only to prevent cavitation in the pumps. Therefore, the gas mass necessary in such systems is much lower. The two pumps systems differ from each other by the pump drive method. In the turbo- pump system, the device that provides power to the pumps is a gas turbine (sometimes one by pump). The available methods to drive the turbine can be found detailed in [2]. Here the gas generator method will be evaluated. Such a gas generator takes a fraction of the tank stored propellants and, by a separated combustion process (usually fuel rich), provides the gas that drives the turbine. The gas generator is fed usually with propellants that are taken from the feed lines located after the pumps to improve the efficiency. This requires the use of some start method, being usual to use a solid fuel cartridge. In the case here depicted, the turbine gas discharge is done through a separated nozzle direct on the atmosphere (which is named as open cycle turbopump system). Otherwise, the electric pump system is driven by a brushless synchronous electric motor (also can have one by each pump). Each motor is fed by an inverter which converts the direct Comparison of Liquid Propellant Rocket Engine Feed Systems - 1 - 4 current from the battery to alternative current with a frequency suitable enough to drive the electric motor at the required speed. II. ANALYTICAL DEVELOPMENT To realize comparisons it is necessary to estimate the total mass of each feed system described in the previous section. To simplify this analysis, only the mass of the principal components of each system will be considered. That is, the masses of the plumbing system, the mounting system, the valves and the electronics controls will be assumed as negligible. Hence, giving denominations to the diverse masses of the components of each feed system yields: mtp: total mass of the turbo-pump feed system. mep: total mass of the electric-pump feed system. mpg: total mass of the pressurized-gas feed system. mg: pressurizing gas mass. mtg: pressurizing gas propellant tank mass. mto: oxidizer tank mass. mtf: fuel tank mass. mpu: pumps mass. mtu: turbine mass. mgg: gas generator mass. mee: electric engine mass. minv: inverters mass. mbat: batteries mass. mo: oxidizer mass. mf: fuel mass. mp = mo + mf: propellant total mass. mptu: turbine driven propellant mass. Thereby, and taking into account the figure 1 schemes, the total masses of each feed system respond to the following equations: mtp = mg + mtg + mto + mtf + m pu + mtu + mgg + m ptu mep = mg + mtg + mto + mtf + m pu + mee + minv + mbat m pg = mg + mtg + mto + mtf The comparisons presented in this report, deal with engines primarily intended to be applied in vehicles operating far above of the sea level, where the atmospheric pressure is very low. Therefore, in the following calculations the atmospheric pressure will be neglected. 2.1. Pressurizing gas mass From the analysis done in [1], about the propellant tank pressurization, using the energy conservation principle, the next expression can be obtained: ⎛ ⎞ ⎜ ⎟ p V pp ⎜ γ g ⎟ m = (2.1.1) g R T ⎜ p ⎟ g 0 ⎜ g ⎜1− ⎟ ⎝ po ⎠ Comparison of Liquid Propellant Rocket Engine Feed Systems - 1 - 5 where, mg: Pressurizing gas mass (kg). pp: Propellant tank instantaneous pressure (Pa). pg: Gas tank instantaneous pressure (Pa). po: Pressurizing gas initial pressure (Pa). To: Pressurizing gas initial temperature (K). 3 Vp: Propellant volume (m ). Rg: Pressurizing gas constant (J/kgK). γg: Pressurizing gas specific heat ratio. To foresee the scope of this analysis, the assumptions that allow deriving the previous equation will be enunciated: • Adiabatic process. • Ideal gas. • Negligible initial mass inside the pipes and propellant tanks. It will be assumed that the instantaneous pressure in the gas and propellants tanks is the same, that is, there are no losses in the pipes connecting them. Also, it is interesting to refer all feed system pressures to the combustion chamber pressure, which is a project parameter [3]. Based on this criterion, the following constant is defined: p p pg k p = = (2.1.2) pC pC where pC is the combustión chamber pressure (Pa). Not all the volume of a propellant tank is occupied by this one. A small part is occupied by gas and that portion of the total volume of the tank is denominated ullage. This is the necessary space to allow the propellant thermal expansion, the accumulation of gases that were originally dissolved in the propellants and to contain the reaction products of the slow reactions, which occurs during storage [1]. To assess this quantity in the analysis, an additional constant relating both volumes will be introduced, also assuming that it is the same for both tanks: Vtf Vto ku = = (2.1.3) V f Vo 3 where, Vtf: Fuel tank volume (m ). 3 Vto: Oxidizer tank volume (m ). 3 Vf: Fuel volume (m ). 3 Vo: Oxidizer volume (m ). Besides, the gas constant should be expressed in terms of their molar mass, thus: Ru Rg = (2.1.4) M g where, Ru: Universal gas constant (8314.41J/kmolK). Mg: Pressurizing gas molar mass (kg/kmol). Furthermore, volume and mass will be related through the following expressions: Comparison of Liquid Propellant Rocket Engine Feed Systems - 1 - 6 * * mo ρo v o O / F = * = * (2.1.5) m f ρ f v f * O / F ⎛ 1 ⎞ * * v o = ⎜ ⎟ m p = α o m p (2.1.6) ρo ⎝1+ O / F ⎠ * 1 ⎛ 1 ⎞ * * v f = ⎜ ⎟ m p = α f m p (2.1.7) ρ f ⎝1+ O / F ⎠ * 3 where, vo &v f : Oxidizer or fuel volumetric flow as designated with “o” or “f” (m /s). * * mo &m f : Oxidizer or fuel mass flow as designated with “o” or “f” (kg/s). 3 ρo & ρf: Oxidizer or fuel density (kg/m ). O/F: Propellant mixture ratio. mp: Propellant total mass (kg). Note that once defined the αo and αf constants is possible to write: α o + α f = α (2.1.8) V p = Vo +V f = α o m p + α f m p = α m p (2.1.9) Finally, a safety constant kg is defined, which provides a margin to account the gas mass that, at the end of the operation cycle, will stay inside the gas tank and in the feed system pipes. Thus, the equation 2.1.1 becomes: ⎛ ⎞ ⎜ ⎟ M m p m = k k k γ α g ⎜ p C ⎟ g pg u g ⎜ ⎟ (2.1.10) RuT0 pC ⎜1− k p ⎟ ⎝ po ⎠ 2.2.
Recommended publications
  • Einicke Diplom.Pdf
    Zum Erlangen des akademischen Grades DIPLOMINGENIEUR (Dipl.-Ing.) Betreuer: Dr. Christian Bach Verantwortlicher Hochschullehrer: Prof. Dr. techn. Martin Tajmar Tag der Einreichung: 20.04.2021 Erster Gutachter: Prof. Dr. techn. Martin Tajmar Zweiter Gutachter: Dr. Christian Bach Hiermit erkläre ich, dass ich die von mir dem Institut für Luft-und Raumfahrttechnik der Fakultät Maschinenwesen eingereichte Diplomarbeit zum Thema Mischungsverhältnis- und Brennkammerdruckregelung eines Expander-Bleed Raketentriebwerks mit Reinforcement Learning (Mixture Ratio and Combustion Chamber Pressure Control of an Expander-Bleed Rocket Engine with Reinforcement Learning) selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe. Berlin, 20.04.2021 Karina Einicke Contents Nomenclature iv Acronyms vii 1. Introduction 1 1.1. Motivation . .1 1.2. Objectives and Approach . .2 2. Fundamentals of Liquid Rocket Engines 3 2.1. Control Loops . .5 2.1.1. Open-Loop Control . .5 2.1.2. Closed-Loop Control . .5 2.1.3. Reusable Liquid Rocket Engine Control . .6 2.2. Control Valves . .8 2.2.1. Flow Characteristics . .9 2.2.2. Valve Types . .9 2.3. Liquid Rocket Engine Control: Historical Background . 11 2.4. Summary . 13 3. LUMEN 15 3.1. LUMEN Components . 15 3.2. Operating Points . 17 3.3. EcosimPro/ESPSS Model . 18 3.3.1. LUMEN System Analysis . 21 3.3.2. LUMEN System Validation . 26 3.4. Summary . 27 4. Reinforcement Learning 28 4.1. Fundamentals of Reinforcement Learning . 28 4.2. Reinforcement Learning Algorithms . 31 4.2.1. Model-based and Model-free Reinforcement Learning . 31 4.2.2. Policy Optimization .
    [Show full text]
  • Design of a 500 Lbf Liquid Oxygen and Liquid Methane Rocket Engine for Suborbital Flight Jesus Eduardo Trillo University of Texas at El Paso, [email protected]
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2016-01-01 Design Of A 500 Lbf Liquid Oxygen And Liquid Methane Rocket Engine For Suborbital Flight Jesus Eduardo Trillo University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons Recommended Citation Trillo, Jesus Eduardo, "Design Of A 500 Lbf Liquid Oxygen And Liquid Methane Rocket Engine For Suborbital Flight" (2016). Open Access Theses & Dissertations. 767. https://digitalcommons.utep.edu/open_etd/767 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. DESIGN OF A 500 LBF LIQUID OXYGEN AND LIQUID METHANE ROCKET ENGINE FOR SUBORBITAL FLIGHT JESUS EDUARDO TRILLO Master’s Program in Mechanical Engineering APPROVED: Ahsan Choudhuri, Ph.D., Chair Norman Love, Ph.D. Luis Rene Contreras, Ph.D. Charles H. Ambler, Ph.D. Dean of the Graduate School Copyright © by Jesus Eduardo Trillo 2016 DESIGN OF A 500 LBF LIQUID OXYGEN AND LIQUID METHANE ROCKET ENGINE FOR SUBORBITAL FLIGHT by JESUS EDUARDO TRILLO, B.S.ME THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Mechanical Engineering THE UNIVERSITY OF TEXAS AT EL PASO December 2016 Acknowledgements Foremost, I would like to express my sincere gratitude to my advisor Dr.
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Minimizing hydraulic losses in additively-manufactured swirl coaxial rocket injectors via analysis-driven design methods Permalink https://escholarship.org/uc/item/7n51c078 Author Morrow, David Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Minimizing hydraulic losses in additively-manufactured swirl coaxial rocket injectors via analysis-driven design methods A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Aerospace Engineering by David Morrow 2020 c Copyright by David Morrow 2020 ABSTRACT OF THE THESIS Minimizing hydraulic losses in additively-manufactured swirl coaxial rocket injectors via analysis-driven design methods by David Morrow Master of Science in Aerospace Engineering University of California, Los Angeles, 2020 Professor Raymond M. Spearrin, Chair Additive manufacturing (AM) has matured significantly over the past decade and become a highly attractive tool for reducing manufacturing complexity and removing traditional de- sign constraints. This is particularly desirable for rocket combustion devices which often feature hundreds of individual parts with precise tolerances. The degree to which AM can be used to improve combustion device performance, however, has been less rigorously ex- plored. In this work, hydraulic performance impacts associated with and enabled by AM are assessed for a liquid bi-propellant swirl coaxial injector. Specifically, a single-element liquid oxygen/kerosene injector based on a canonical design was manufactured from inconel using Direct Metal Laser Sintering at two different coaxial recess depths. Cold-flow testing for the as-manufactured baseline injector found a reduction in the designed discharge coefficients, which is primarily attributed to increased surface roughness inherent in the AM process.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0133788 A1 Mungas Et Al
    US 200901.33788A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0133788 A1 Mungas et al. (43) Pub. Date: May 28, 2009 (54) NITROUS OXIDE FUEL BLEND Related U.S. Application Data MONOPROPELLANTS (60) Provisional application No. 60/986,991, filed on Nov. 9, 2007. (75) Inventors: Gregory Mungas, Arcadia, CA Publication Classification (US); David J. Fisher, Denver, CO (US); Christopher Mungas, (51) Int. Cl. Plymouth, CA (US); Benjamin C06B 47/04 (2006.01) Carryer, Denver, CO (US) (52) U.S. Cl. .......................................................... 149/74 (57) ABSTRACT Correspondence Address: Compositions and methods herein provide monopropellants HENSLEY KIM & HOLZER, LLC comprising nitrous oxide mixed with organic fuels in particu 1660 LINCOLN STREET, SUITE 3000 lar proportions creating stable, storable, monopropellants DENVER, CO 80264 (US) which demonstrate high ISP performance. Due to physical properties of the nitrous molecule, fuel/nitrous blends dem (73) Assignee: Firestar Engineering, LLC, onstrate high degrees of miscibility as well as excellent Broomfield, CO (US) chemical stability. While the monopropellants are particu larly well Suited for use as propulsion propellants, they also lend themselves well to power generation in demanding situ (21) Appl. No.: 12/268,266 ations where some specific cycle creates useable work and for providing gas pressure and/or heat for inflating deployable (22) Filed: Nov. 10, 2008 materials. Isp (NOFB3X at 100 psia Chamber Pressure) vs OF (To=298 K) ----------arrarilla-rule 2001 F --vacuum Eq v 2001 Ed T-ch T-th EQUBRUM { % - 4% 9%. 8. sash;94 -ko's -8%xxxx was wi:8%. g. gzge 8% is es: 8 as: 8 Patent Application Publication May 28, 2009 Sheet 1 of 17 US 2009/0133788A1 isp (NOFB3X at 100 psia Chamber Pressure) vs OF (To=298 K) --vacuum F -e-2001 F --vacuum Eq.- 2001 Ed T-ch T-th ------- 3500 350 d ..
    [Show full text]
  • United States Patent (1O) Patent No.: US 8,572,946 B2 Mungas Et Al
    11111111111111111111111111111111111111111111111111111111111111111111111111 (12) United States Patent (1o) Patent No.: US 8,572,946 B2 Mungas et al. (45) Date of Patent: Nov. 5, 2013 (54) MICROFLUIDIC FLAME BARRIER 1,103,503 A 7/1914 Goddard 1,586,195 A 5/1926 Hall (75) Inventors: Gregory S. Mungas, Mojave, CA (US); 2,609,281 A 9/1952 Smith 2,714,563 A 2/1955 Norman et al. David J. Fisher, Tehachapi, CA (US); 3,243,272 A3/1966 Schmitz Christopher Mungas, Plymouth, CA 3,266,241 A * 8/1966 Jennings ......................... 60/258 (US) 3,512,556 A 5/1970 McKhann 3,719,046 A 3/1973 Sutherland et al. (73) Assignee: Firestar Engineering, LLC, Mojave, 3,779,714 A 12/1973 Nadkarni et al. CA (US) (Continued) (*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. EP 1500880 1/2005 EP 1500880 A2 1/2005 (21) Appl. No.: 13/549,027 (Continued) (22) Filed: Jul. 13, 2012 OTHER PUBLICATIONS "aRocket", an amateur rocketry discussion forum onhttp://exrocktry . (65) Prior Publication Data net/mailman/listinfo/arocket, Dec. 31, 2009. US 2012/0279196 Al Nov. 8, 2012 (Continued) Related U.S. Application Data Primary Examiner Phutthiwat Wongwian (63) Continuation-in-part of application No. 11/950,174, filed on Dec. 4, 2007, now Pat. No. 8,230,672, and a (74) Attorney, Agent, or Firm HolzerIPLaw, PC continuation of application No. 12/613,188, filed on Nov. 5, 2009, now Pat. No. 8,230,673. (57) ABSTRACT (60) Provisional application No.
    [Show full text]
  • Ideas Into Hardware: a History of the Rocket Engine Test Facility
    Ideas Into Hardware IDEAS INTO HARDWARE A History of the Rocket Engine Test Facility at the NASA Glenn Research Center Virginia P. Dawson National Aeronautics and Space Administration NASA Glen Research Center Cleveland, Ohio 2004 This document was generated for the NASA Glenn Research Center, in accor- dance with a Memorandum of Agreement among the Federal Aviation Administration, National Aeronautics and Space Administration (NASA), The Ohio State Historic Preservation Officer, and the Advisory Council on Historic Preservation. The City of Cleveland’s goal to expand the Cleveland Hopkins International Airport required the NASA Glenn Research Center’s Rocket Engine Test Facility, located adjacent to the airport, to be removed before this expansion could be realized. To mitigate the removal of this registered National Historic Landmark, the National Park Service stipulated that the Rocket Engine Test Facility be documented to Level I standards of the Historic American Engineering Record (HAER). This history project was initiated to fulfill and supplement that requirement. Produced by History Enterprises, Inc. Cover and text design by Diana Dickson. Library of Congress Cataloging-in-Publication Data Dawson, Virginia P. (Virginia Parker) —Ideas into hardware : a history of NASA’s Rocket Engine Test Facility / by Virginia P. Dawson. ——p.——cm. —Includes bibliographical references. —1. Rocket engines—Research—United States—History.—2.—United States. National Aeronautics and Space Administration—History.—I. Title. TL781.8.U5D38 2004 621.43'56'072077132—dc22 2004024041 Table of Contents Introduction / v 1. Carving Out a Niche / 1 2. RETF: Complex, Versatile, Unique / 37 3. Combustion Instability and Other Apollo Era Challenges, 1960s / 64 4.
    [Show full text]
  • Extensions to the Time Lag Models for Practical Application to Rocket
    The Pennsylvania State University The Graduate School College of Engineering EXTENSIONS TO THE TIME LAG MODELS FOR PRACTICAL APPLICATION TO ROCKET ENGINE STABILITY DESIGN A Dissertation in Mechanical Engineering by Matthew J. Casiano © 2010 Matthew J. Casiano Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2010 The dissertation of Matthew J. Casiano was reviewed and approved* by the following: Domenic A. Santavicca Professor of Mechanical Engineering Co-chair of Committee Vigor Yang Adjunct Professor of Mechanical Engineering Dissertation Advisor Co-chair of Committee Richard A. Yetter Professor of Mechanical Engineering André L. Boehman Professor of Fuel Science and Materials Science and Engineering Tomas E. Nesman Aerospace Engineer at NASA Marshall Space Flight Center Special Member Karen A. Thole Professor of Aerospace Engineering Head of the Department of Mechanical and Nuclear Engineering *Signatures are on file in the Graduate School iii ABSTRACT The combustion instability problem in liquid-propellant rocket engines (LREs) has remained a tremendous challenge since their discovery in the 1930s. Improvements are usually made in solving the combustion instability problem primarily using computational fluid dynamics (CFD) and also by testing demonstrator engines. Another approach is to use analytical models. Analytical models can be used such that design, redesign, or improvement of an engine system is feasible in a relatively short period of time. Improvements to the analytical models can greatly aid in design efforts. A thorough literature review is first conducted on liquid-propellant rocket engine (LRE) throttling. Throttling is usually studied in terms of vehicle descent or ballistic missile control however there are many other cases where throttling is important.
    [Show full text]
  • The NASA In-Space Propulsion Technology Project's Current
    NASA In-Space Propulsion Technologies and Their Infusion Potential David J. Anderson,1 Eric J. Pencil,2 Todd Peterson3 and Daniel Vento4 NASA Glenn Research Center, Cleveland, OH 44135 Michelle M. Munk5 and Louis J. Glaab6 NASA Langley Research Center, Hampton, VA 23681 and John W. Dankanich7 AeroDank, Inc., Cleveland, OH 44135 The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA’s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions.
    [Show full text]
  • An Analysis of Green Propulsion Applied to NASA Missions
    An Analysis of Green Propulsion Applied to NASA Missions Presented at Space Propulsion 2014 Cologne, GERMANY May 19-22nd, 2014 Eric H. Cardiff1, Henry W. Mulkey2, and Caitlin E. Bacha3, NASA Goddard Space Flight Center, Greenbelt, MD 20771 The advantages of green propulsion for five mission classes are examined, including a Low Earth Orbit (LEO) mission (GPM), a Geosynchronous Earth Orbit (GEO) mission (SDO), a High Earth Orbit (HEO) mission (MMS), a lunar mission (LRO), and a planetary mission (MAVEN). The propellant mass benefits are considered for all five missions, as well as the effects on the tanks, propellant loading, thruster throughput, thermal considerations, and range requirements for both the AF-M315E and LMP-103S propellants. Nomenclature ACS = Attitude Control System MMH = Monomethyl Hydrazine CDR = Critical Design Review MMS = Magnetospheric Multi Scale mission ECAPS = Ecological Advanced Propulsion NASA = National Aeronautics and Space Systems Administration GEO = Geosynchronous Orbit NOFBX = Nitrous Oxide Fuel Blend GSFC = Goddard Space Flight Center NTO = Nitrogen Tetroxide GPIM = Green Propellant Infusion Mission PRISMA = Prototype Research Instruments and GPM = Global Precipitation Measurement Space Mission Advancement HEO = High Earth Orbit RE = Earth Radii IA = International Agreement SCAPE = Self-Contained Atmospheric Protective Isp = Specific Impulse (s) Ensemble LEO = Low Earth Orbit SDO = Solar Dynamics Observatory LRO = Lunar Reconnaissance Orbiter SNSB = Swedish National Space Board mf = Spacecraft final (or dry) mass STMD = Space Technology Mission Directorate mi = Spacecraft initial (or wet) mass TDRSS = Tracking and Data Relay Satellite MAVEN = Mars Atmosphere and Volatile System Evolution mission TRL = Technology Readiness Level ME = Main Engine (for SDO) I. Introduction Interest in green propulsion has rekindled in recent years due to the ultimate success of catalytic ignition systems for multiple high-performance formulations.
    [Show full text]
  • Propulsion Engineering Research Center
    https://ntrs.nasa.gov/search.jsp?R=19940018555 2020-06-16T15:54:43+00:00Z PROPULSION ENGINEERING RESEARCH CENTER [! - -- - - n I [I 1993 ANNUAL REPORT VOLUME II 0 NOVEMBER, 1993 [I oio P4 m3mm 50 - - R - - -- A UNIVERSITY SPACE ENGINEERING RESEARCH CENTER FIFTH AMNUAL SYMPOSIUM SEPTEMBER 8-9: 1993 106 RESEARCH BUILDING EAST rloweu rn kZX m *w3- UNIVERSITY PARK, PENNSYLVANIA 16801 OI AC 4zom NASA PROPULSION ENGINEERING RESEARCH CENTER ANNUAL REPORT 1993 VOLUME II FIFIH ANNUAL SYMPOSIUM SEPTEMBER &9,1993 THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA WBLE OF CONTENTS Sumary.. ......................................................................................................................... Technical Program............................................................................................................ by Image Deconvolution .................................................................................................. Small Rocket Flowfield Diagnostic Chambers................................................................. A Theoretical Evaluation of Aluminum Gel Propellant Two-Phase Flow Losses on Vehicle Performance................................................................................................... Laser Diagnostics for Small Rockets................................................................................ CFD Analyses of Combustor and Nozzle Flowfields....................................................... LOX Droplet Vaporization
    [Show full text]
  • Three Phases of Low-Cost Rocket Engine Demonstration Program
    Three Phases of Low-Cost Rocket Engine Demonstration Program Completed The NASA Lewis Research Center and the TRW Space & Technology Group have successfully completed three phases of testing on the Low-Cost Rocket Engine Demonstration Program. TRW and the McDonnell Douglas Corporation are working, in a joint effort, to quickly develop and produce a highly stable, inexpensive, simple, yet reliable, expendable launch vehicle. Studies have shown that this launch system is required to maintain U.S. viability to space access in the face of growing foreign competition. For the U.S. commercial launch industry to remain competitive, a low-cost launch vehicle must be developed to place payloads into low-Earth orbit. Trade studies performed by McDonnell Douglas and TRW have shown that a low-cost, commercial, expendable launch vehicle could be designed that uses low-pressure turbopumps and rocket combustors. These studies show that expensive high-performance technology can be sacrificed for inexpensive lower performance technology and still meet mission requirements. Because the propulsion system is more than half of a launch vehicle's cost, TRW proposed the pintle injector engine design used in the Apollo Program--the lunar module descent engine. TRW's pintle injector engine, which runs on liquid hydrogen or RP-1 fuels and liquid oxygen oxidizer, uses modified low-pressure turbopumps to supply the propellants. The engine consists of a centrally located, coaxial injector; an ablative liner for insulating the metal surfaces of the combustion chamber and nozzle; and annular sleeves to throttle the propellant feeds. Lewis and TRW entered into a Space Act Agreement to demonstrate that the pintle injector can operate at acceptable stable performance levels and to demonstrate the life of a low-cost, combustion chamber with an ablative lining.
    [Show full text]
  • 딥 스로틀링 가변 슬리브 인젝터의 추력제어 성능예측 Prediction On
    韓國航空宇宙學會誌 487 論文 J. of The Korean Society for Aeronautical and Space Sciences 46(6), 487-495(2018) DOI:https://doi.org/10.5139/JKSAS.2018.46.6.487 ISSN 1225-1348(print), 2287-6871(online) 딥 스로틀링 가변 슬리브 인젝터의 추력제어 성능예측 박선정*, 남정수*, 이건웅*, 구자예**, 황용석*** Prediction on Throttling Performance of a Movable Sleeve Injector for Deep Throttling Sunjung Park*, Jeongsoo Nam*, Keonwoong Lee*, Jaye Koo** and Yongsok Hwang*** Department of Aerospace Mechanical Engineering, Korea Aerospace University* School of Aerospace Mechanical Engineering, Korea Aerospace University** Agency of Defense Development*** ABSTRACT Experimental analysis of the spray characteristics of the movable sleeve injector, which can simultaneously control the area of ​​the annular gap and the pintle gap, has been studied and a method for controlling the uniform performance over a wide thrust range has been studied. It is confirmed that the design flow rate is not satisfied when the constant pressure difference is set regardless of the opening distance of the sleeve. In order to improve this, the differential pressure in the annular gap and the pintle gap was applied differently according to the opening distance. It was confirmed that the design flow rate was satisfied within the operating range and thrust control was linear from 25% to 100% in linear sleeve area. 초 록 환형 갭과 핀틀갭의 면적을 동시에 제어할 수 있는 가변 슬리브 인젝터의 분무특성을 실 험적으로 분석하고, 넓은 추력범위에서 일정한 성능으로 제어할 수 있는 방안을 연구하였 다. 슬리브의 개도에 관계없이 일정한 차압을 설정한 경우 설계유량을 만족하지 못하는 것 을 확인하였다. 이를 개선하기 위해 개도에 따라 환형 갭과 핀틀 갭에서의 차압을 개도에 따라 다르게 적용하였다.
    [Show full text]