Electric Feed Systems for Liquid-Propellant Rockets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Einicke Diplom.Pdf
Zum Erlangen des akademischen Grades DIPLOMINGENIEUR (Dipl.-Ing.) Betreuer: Dr. Christian Bach Verantwortlicher Hochschullehrer: Prof. Dr. techn. Martin Tajmar Tag der Einreichung: 20.04.2021 Erster Gutachter: Prof. Dr. techn. Martin Tajmar Zweiter Gutachter: Dr. Christian Bach Hiermit erkläre ich, dass ich die von mir dem Institut für Luft-und Raumfahrttechnik der Fakultät Maschinenwesen eingereichte Diplomarbeit zum Thema Mischungsverhältnis- und Brennkammerdruckregelung eines Expander-Bleed Raketentriebwerks mit Reinforcement Learning (Mixture Ratio and Combustion Chamber Pressure Control of an Expander-Bleed Rocket Engine with Reinforcement Learning) selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe. Berlin, 20.04.2021 Karina Einicke Contents Nomenclature iv Acronyms vii 1. Introduction 1 1.1. Motivation . .1 1.2. Objectives and Approach . .2 2. Fundamentals of Liquid Rocket Engines 3 2.1. Control Loops . .5 2.1.1. Open-Loop Control . .5 2.1.2. Closed-Loop Control . .5 2.1.3. Reusable Liquid Rocket Engine Control . .6 2.2. Control Valves . .8 2.2.1. Flow Characteristics . .9 2.2.2. Valve Types . .9 2.3. Liquid Rocket Engine Control: Historical Background . 11 2.4. Summary . 13 3. LUMEN 15 3.1. LUMEN Components . 15 3.2. Operating Points . 17 3.3. EcosimPro/ESPSS Model . 18 3.3.1. LUMEN System Analysis . 21 3.3.2. LUMEN System Validation . 26 3.4. Summary . 27 4. Reinforcement Learning 28 4.1. Fundamentals of Reinforcement Learning . 28 4.2. Reinforcement Learning Algorithms . 31 4.2.1. Model-based and Model-free Reinforcement Learning . 31 4.2.2. Policy Optimization . -
Design of a 500 Lbf Liquid Oxygen and Liquid Methane Rocket Engine for Suborbital Flight Jesus Eduardo Trillo University of Texas at El Paso, [email protected]
University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2016-01-01 Design Of A 500 Lbf Liquid Oxygen And Liquid Methane Rocket Engine For Suborbital Flight Jesus Eduardo Trillo University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons Recommended Citation Trillo, Jesus Eduardo, "Design Of A 500 Lbf Liquid Oxygen And Liquid Methane Rocket Engine For Suborbital Flight" (2016). Open Access Theses & Dissertations. 767. https://digitalcommons.utep.edu/open_etd/767 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. DESIGN OF A 500 LBF LIQUID OXYGEN AND LIQUID METHANE ROCKET ENGINE FOR SUBORBITAL FLIGHT JESUS EDUARDO TRILLO Master’s Program in Mechanical Engineering APPROVED: Ahsan Choudhuri, Ph.D., Chair Norman Love, Ph.D. Luis Rene Contreras, Ph.D. Charles H. Ambler, Ph.D. Dean of the Graduate School Copyright © by Jesus Eduardo Trillo 2016 DESIGN OF A 500 LBF LIQUID OXYGEN AND LIQUID METHANE ROCKET ENGINE FOR SUBORBITAL FLIGHT by JESUS EDUARDO TRILLO, B.S.ME THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Mechanical Engineering THE UNIVERSITY OF TEXAS AT EL PASO December 2016 Acknowledgements Foremost, I would like to express my sincere gratitude to my advisor Dr. -
UCLA Electronic Theses and Dissertations
UCLA UCLA Electronic Theses and Dissertations Title Minimizing hydraulic losses in additively-manufactured swirl coaxial rocket injectors via analysis-driven design methods Permalink https://escholarship.org/uc/item/7n51c078 Author Morrow, David Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Minimizing hydraulic losses in additively-manufactured swirl coaxial rocket injectors via analysis-driven design methods A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Aerospace Engineering by David Morrow 2020 c Copyright by David Morrow 2020 ABSTRACT OF THE THESIS Minimizing hydraulic losses in additively-manufactured swirl coaxial rocket injectors via analysis-driven design methods by David Morrow Master of Science in Aerospace Engineering University of California, Los Angeles, 2020 Professor Raymond M. Spearrin, Chair Additive manufacturing (AM) has matured significantly over the past decade and become a highly attractive tool for reducing manufacturing complexity and removing traditional de- sign constraints. This is particularly desirable for rocket combustion devices which often feature hundreds of individual parts with precise tolerances. The degree to which AM can be used to improve combustion device performance, however, has been less rigorously ex- plored. In this work, hydraulic performance impacts associated with and enabled by AM are assessed for a liquid bi-propellant swirl coaxial injector. Specifically, a single-element liquid oxygen/kerosene injector based on a canonical design was manufactured from inconel using Direct Metal Laser Sintering at two different coaxial recess depths. Cold-flow testing for the as-manufactured baseline injector found a reduction in the designed discharge coefficients, which is primarily attributed to increased surface roughness inherent in the AM process. -
(12) Patent Application Publication (10) Pub. No.: US 2009/0133788 A1 Mungas Et Al
US 200901.33788A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0133788 A1 Mungas et al. (43) Pub. Date: May 28, 2009 (54) NITROUS OXIDE FUEL BLEND Related U.S. Application Data MONOPROPELLANTS (60) Provisional application No. 60/986,991, filed on Nov. 9, 2007. (75) Inventors: Gregory Mungas, Arcadia, CA Publication Classification (US); David J. Fisher, Denver, CO (US); Christopher Mungas, (51) Int. Cl. Plymouth, CA (US); Benjamin C06B 47/04 (2006.01) Carryer, Denver, CO (US) (52) U.S. Cl. .......................................................... 149/74 (57) ABSTRACT Correspondence Address: Compositions and methods herein provide monopropellants HENSLEY KIM & HOLZER, LLC comprising nitrous oxide mixed with organic fuels in particu 1660 LINCOLN STREET, SUITE 3000 lar proportions creating stable, storable, monopropellants DENVER, CO 80264 (US) which demonstrate high ISP performance. Due to physical properties of the nitrous molecule, fuel/nitrous blends dem (73) Assignee: Firestar Engineering, LLC, onstrate high degrees of miscibility as well as excellent Broomfield, CO (US) chemical stability. While the monopropellants are particu larly well Suited for use as propulsion propellants, they also lend themselves well to power generation in demanding situ (21) Appl. No.: 12/268,266 ations where some specific cycle creates useable work and for providing gas pressure and/or heat for inflating deployable (22) Filed: Nov. 10, 2008 materials. Isp (NOFB3X at 100 psia Chamber Pressure) vs OF (To=298 K) ----------arrarilla-rule 2001 F --vacuum Eq v 2001 Ed T-ch T-th EQUBRUM { % - 4% 9%. 8. sash;94 -ko's -8%xxxx was wi:8%. g. gzge 8% is es: 8 as: 8 Patent Application Publication May 28, 2009 Sheet 1 of 17 US 2009/0133788A1 isp (NOFB3X at 100 psia Chamber Pressure) vs OF (To=298 K) --vacuum F -e-2001 F --vacuum Eq.- 2001 Ed T-ch T-th ------- 3500 350 d .. -