Characterising Planktonic Dinoflagellate Diversity in Singapore Using DNA Metabarcoding

Total Page:16

File Type:pdf, Size:1020Kb

Characterising Planktonic Dinoflagellate Diversity in Singapore Using DNA Metabarcoding Metabarcoding and Metagenomics 2: 1–14 DOI 10.3897/mbmg.2.25136 Research Article Characterising planktonic dinoflagellate diversity in Singapore using DNA metabarcoding Yue Sze1, Lilibeth N. Miranda2, Tsai Min Sin2,†, Danwei Huang1,2 1 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore. 2 Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore. † Deceased. Corresponding author: Danwei Huang ([email protected]) Academic editor: Thorsten Stoeck | Received 19 March 2018 | Accepted 24 April 2018 | Published 17 May 2018 Abstract Dinoflagellates are traditionally identified morphologically using microscopy, which is a time-consuming and labour-intensive process. Hence, we explored DNA metabarcoding using high-throughput sequencing as a more efficient way to study planktonic dinoflagellate diversity in Singapore’s waters. From 29 minimally pre-sorted water samples collected at four locations in western Singapore, DNA was extracted, amplified and sequenced for a 313-bp fragment of the V4–V5 region in the 18S ribosomal RNA gene. Two sequencing runs generated 2,847,170 assembled paired-end reads, corresponding to 573,176 unique sequences. Sequenc- es were clustered at 97% similarity and analysed with stringent thresholds (≥150 bp, ≥20 reads, ≥95% match to dinoflagellates), recovering 28 dinoflagellate taxa. Dinoflagellate diversity captured includes parasitic and symbiotic groups which are difficult to identify morphologically. Richness is similar between the inner and outer West Johor Strait, but variations in community structure are apparent, likely driven by environmental differences. None of the taxa detected in a recent phytoplankton bloom along the West Johor Strait have been recovered in our samples, suggesting that background communities are distinct from bloom communities. The voluminous data obtained in this study contribute baseline information for Singapore’s phytoplankton communities and prompt future research and monitoring to adopt the approach established here. Key Words high-throughput sequencing; Johor Strait; molecular operational taxonomic unit; phytoplankton; Singapore Strait Introduction selves (Taylor et al. 2008). As part of the phytoplankton community, they are primary producers that form the base Dinoflagellates (Alveolata: Dinophyceae) are a diverse of food chains and are a large constituent of the aquatic and abundant group of unicellular protists found in both system’s food web (Spector 1984; Taylor et al. 2008). marine and freshwater environments. With more than In the marine environment, there are more than 1,500 2,000 living species described (Gómez 2012), they are one species including both photosynthetic and non-photosyn- of the most functionally important organisms in a variety thetic types (Taylor et al. 2008, Gómez 2012). Massive of aquatic ecosystems (Spector 1984; Taylor et al. 2008). proliferation and accumulation of planktonic dinoflagellates On top of being species rich, they have highly diversified can lead to water colouration and certain species are also morphologies, physiologies and biochemical properties known to cause damage to marine ecosystems as harmful (Hackett et al. 2004; Taylor et al. 2008). Dinoflagellates algal blooms or ‘red tides’ (Berdalet et al. 2016). Fish kills can be armoured or unarmoured (naked), based on the and other animal mortalities are common especially when presence or absence of thecal plates respectively (Netzel the bloom involves toxin-producing dinoflagellates such as and Dürr 1984). They play diverse ecological roles—as Karenia brevis (Landsberg et al. 2009). Incidents of paralyt- autotrophs, heterotrophs or mixotrophs—and can be endo- ic shellfish poisoning by dinoflagellates such as Alexandri- symbionts of other organisms, notably the shallow-water um fundyense have serious health implications higher up the reef-building corals, or host other endosymbionts them- food chain especially where human consumption is involved Copyright Yue Sze et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Sze et al.: Characterising planktonic dinoflagellate diversity in Singapore using DNA metabarcoding (Tan and Lee 1986; John et al. 2015). For example, in 2008, simultaneously, rapidly and cost-effectively (Aylagas et al. an intense bloom in the St Lawrence Estuary was found to 2016). Important ecological applications of metabarcoding be responsible for the death of many fish, bird and mammal include diet and biodiversity analyses, with environmen- species and extremely hazardous levels of paralytic shell- tal samples of various ecosystems obtained mainly from fish toxins produced by the dinoflagellate were detected in faeces (Srivathsan et al. 2015; Guillerault et al. 2017), soil edible mussels collected during the event (Starr et al. 2017). (Andersen et al. 2012; Treonis et al. 2018) or water sam- The most common and earliest method of observing ples (Thomsen et al. 2012; Yamamoto et al. 2017). phytoplankton is through light microscopy, which is time In the marine environment, metabarcoding has been consuming, labour intensive and demands a high level useful for studying both benthic and planktonic eukary- of taxonomic expertise (Sinigalliano et al. 2009; Medlin otic diversity (Fonseca et al. 2010, 2014; Logares et al. 2013; McNamee et al. 2016). Some species, such as those 2014; de Vargas et al. 2015; Guardiola et al. 2015; Le in Alexandrium Halim, 1960, are relatively featureless Bescot et al. 2016; Tragin et al. 2018). Studies have tar- and furthermore belong to species complexes, rendering geted the 18S rRNA and successfully characterised phy- them challenging to identify morphologically (John et al. toplankton communities, which are more diverse than 2005; Anderson et al. 2012; John et al. 2014). In addition, previously thought (de Vargas et al. 2015; Le Bescot et naked dinoflagellates are also difficult to identify from al. 2016). Small and symbiotic species have escaped tra- preserved samples. Hence, more efficient approaches to ditional microscopic detection but can now be identified study dinoflagellates have been developed, including the via metabarcoding (Le Bescot et al. 2016, Leblanc et al. use of scanning electron microscopy (Jung et al. 2010), 2018). Here we use this technique to study phytoplankton natural fluorescence (Karlson et al. 2010), flow cytom- communities in the coastal waters of Singapore. etry (Sinigalliano et al. 2009), high performance liquid The earliest studies of Singapore’s marine phytoplank- chromatography (HPLC) (Gin et al. 2006) and molecular ton communities were carried out in the mid-1900s, fo- methods (Karlson et al. 2010). cusing on the Singapore Strait (Tham 1953, 1973; see Molecular techniques exploit the genetic distinction Lee et al. 2015). It has long been hypothesised that the between species to identify and quantify species and have succession of phytoplankton species is likely caused by played an integral role in our understanding of the sys- the biological history of water, stability and turbulence tematic positions and evolutionary relationships amongst of the water column and monsoon-driven currents (Tham organisms (Karlson et al. 2010). Examples of earlier mo- 1973). There have also been new species discoveries lecular methods include cloning and sequencing (Zard- (Holmes 1998) and new species records for Singapore oya et al. 1995), as well as heteroduplex mobility assay (Leong et al. 2015). More recently, studies have begun (Oldach et al. 2000). More recently, DNA barcoding has to use more advanced techniques, which include the use been successful in identifying dinoflagellates (Stern et al. of extracted chlorophyll measurements (Gin et al. 2000), 2010). It uses the amplified sequence from a short, stan- flow cytometry (Gin et al. 2003), HPLC pigment analysis dardised DNA locus as diagnostic characters for species (Gin et al. 2003, 2006), spectral fluorometric characteri- identification (Lin et al. 2009; Shokralla et al. 2012). sation (Kuwahara and Leong 2015) and also molecular Loci tested for dinoflagellates include the nuclear small methods (Tang et al. 2007; Leong et al. 2015). The con- ribosomal subunit (18S rRNA) (Lin et al. 2006), large ri- sensus of these efforts is that, amongst all phytoplank- bosomal subunit (28S rRNA; D1/D2 region) (Elferink et ton groups, diatoms have the highest abundance except al. 2017), internal transcribed spacers (Stern et al. 2012) during dinoflagellate blooms (Gin et al. 2006; Leong et and the mitochondrial cytochrome c oxidase subunit I al. 2015). Particularly in the Johor Strait, there appears and cytochrome b (Lin et al. 2009). The mitochondrial to be an inverse relationship between dinoflagellate and genes cannot be easily amplified from all dinoflagellate diatom counts (Chia et al. 1988). taxa (Stern et al. 2012) and, amongst the nuclear loci, 18S There have been more than 20 positively identified spe- rRNA remains the most well-sequenced marker in public cies of dinoflagellates reported from Singapore’s waters, databases due to their widespread use in dinoflagellate but those which are known in detail have been studied systematics (Mordret et al. 2018). mainly because they are associated with harmful algal Improved technologies for performing high-through- blooms (Leong et al.
Recommended publications
  • Patrons De Biodiversité À L'échelle Globale Chez Les Dinoflagellés
    ! ! ! ! ! !"#$%&'%&'()!(*+!&'%&,-./01%*$0!2&30%**%&%!&4+*0%&).*0%& ! 0$'1&2(&3'!4!5&6(67&)!#2%&8)!9!:16()!;6136%2()!;&<)%=&3'!>?!@&<283! ! A%'=)83')!$2%! 45&/678&,9&:9;<6=! ! A6?% 6B3)8&% ()!7%2>) >) '()!%.*&>9&?-./01%*$0!2&30%**%&%!&4+*0%&).*0%! ! ! 0?C)3!>)!(2!3DE=)!4! ! @!!"#$%&'()*(+,%),-*$',#.(/(01.23*00*(40%+"0*(23*5(0*'( >A86B?7C9??D;&E?78<=68AFG9;&H7IA8;! ! ! ! 06?3)8?)!()!4!.+!FGH0!*+./! ! ;)<283!?8!C?%I!16#$6='!>)!4! ! 'I5&*6J987&$=9I8J!0&%!G(&=3)%!K2%>I!L6?8>23&68!M6%!N1)28!01&)81)!O0GKLN0PJ!A(I#6?3D!Q!H6I2?#)RS8&!! !!H2$$6%3)?%! 3I6B5&K78&37J?6J;LAJ!S8&<)%=&3'!>)!T)8E<)!Q!0?&==)! !!H2$$6%3)?%! 'I5&47IA87&468=I9;6IJ!032U&68)!V66(67&12!G8368!;6D%8!6M!W2$()=!Q!"32(&)! XY2#&823)?%! 3I6B5&,7I;&$=9HH788J!SAFZ,ZWH0!0323&68!V66(67&[?)!>)!@&(()M%281D)R=?%RF)%!Q!L%281)! XY2#&823)?%! 'I5&*7BB79?9&$A786J!;\WXZN,A)(276=J!"LHXFXH!!"#$%"&'"&(%")$*&+,-./0#1&Q!L%281)!!! !!!Z6R>&%)13)?%!>)!3DE=)! 'I5&)6?6HM78&>9&17IC7;J&SAFZ,ZWH0!0323&68!5&6(67&[?)!>)!H6=16MM!Q!L%281)! ! !!!!!!!!!;&%)13)?%!>)!3DE=)! ! ! ! "#$%&#'!()!*+,+-,*+./! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Remerciements* ! Remerciements* A!l'issue!de!ce!travail!de!recherche!et!de!sa!rédaction,!j’ai!la!preuve!que!la!thèse!est!loin!d'être!un!travail! solitaire.! En! effet,! je! n'aurais! jamais! pu! réaliser! ce! travail! doctoral! sans! le! soutien! d'un! grand! nombre! de! personnes!dont!l’amitié,!la!générosité,!la!bonne!humeur%et%l'intérêt%manifestés%à%l'égard%de%ma%recherche%m'ont% permis!de!progresser!dans!cette!phase!délicate!de!«!l'apprentiGchercheur!».!
    [Show full text]
  • FIRST RECORD of Erythropsidinium Agile (GYMNODINIALES: WARNOWIACEAE) in the MEXICAN PACIFIC
    CICIMAR Oceánides 25(2): 137-142 (2010) FIRST RECORD OF Erythropsidinium agile (GYMNODINIALES: WARNOWIACEAE) IN THE MEXICAN PACIFIC Primer registro de Erythropsidinium agile et Swezy, 1921, Proterythropsis Kofoid et Swezy, (Gymnodiniales: Warnowiaceae) en el 1921, Warnowia Lindemann, 1928, Greuetodinium Pacífico Mexicano Loeblich III, 1980, and Erythropsidinium P.C. Silva, 1960. Ten species of Erythropsidinium have been RESUMEN. Se registra por primera vez Erythropsi- described from warm and temperate seas. However, dinium agile, un dinoflagelado de la Familia Warno- a taxonomical study based on the changes in struc- wiaceae para el Pacífico Mexicano, dentro de Bahía ture, position, and coloration of the ocelloid in the de La Paz (Golfo de California). Se observaron 26 course of the cell division or individual development ejemplares de E. agile, principalmente en muestras revealed that some species had different morpho- de fitoplancton de red para el periodo de estudio (Ju- types (Elbrächter, 1979). At present the valid species nio, 2006 a Junio, 2010). En muestras de botella se currently considered to belong to this genus are: estimaron densidades entre 80 y 1000 cél. L–1. Los ejemplares de E. agile mostraron gran variación en E. agile (Hertwig, 1884) P.C. Silva, 1960, E. cochlea forma, tamaño y coloración; se presentaron princi- (Schütt, 1895) P.C. Silva, 1960, E. extrudens (Ko- palmente en el período invierno-primavera, cuando foid et Swezy, 1921) P.C. Silva, 1960, and E. minus la columna del agua está homogénea, a temperatu- (Kofoid et Swezy, 1921) P.C. Silva, 1960. For the ras entre 19 y 22 °C y rica en nutrientes.
    [Show full text]
  • The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
    Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK.
    [Show full text]
  • Eighth International Conference on Modern and Fossil Dinoflagellates
    0 DINO8 Eighth International Conference on Modern and Fossil Dinoflagellates May 4 to May 10, 2008 Université du Québec à Montréal Complexe des Sciences Pierre Dansereau Building SH, 200 Sherbrooke Street West, Montreal, Quebec, Canada Abstracts 1 TABLE OF CONTENTS ABSTRACTS……………………………………………………………………………………...2 LIST OF PARTICIPANTS………………………………………………………………………66 Organizing commitee Organizers : Anne de Vernal GEOTOP-UQAM, Canada ([email protected]) André Rochon ISMER-UQAR, Canada ([email protected]) Scientific committee: Susan Carty, Heidelberg College, Ohio, USA ([email protected]) Lucy Edwards, US Geological Survey ([email protected]) Marianne Ellegaard, University of Copenhagen, Denmark ([email protected]) Martin J. Head, Brock University, Canada ([email protected]) Alexandra Kraberg, Alfred Wegener Institute for Polar and Marine Research, Germany ([email protected] ) Jane Lewis, University of Westminster, UK ([email protected] ) Fabienne Marret, University of Liverpool, UK ([email protected] ) Kazumi Matsuoka, University of Nagasaki, Japan ([email protected] ) Jens Matthiessen, Alfred Wegener Institute for Polar and Marine Research, Germany ([email protected] ) Edwige Masure, Université Pierre et Marie Curie, France ([email protected] ) Marina Montresor, Stazione zoologica "Anton Dohrn" di Napoli, Italy ([email protected] ) Vera Pospelova, University of Victoria, Canada ([email protected] ) Suzanne Roy, ISMER-UQAR, Canada ([email protected]) Karin Zonneveld, University of Bremen, Germany ([email protected]) 2 ABSTRACTS Toxic blooms of Alexandrium fundyense in the Monitoring of the regional abundance of cysts may Gulf of Maine: the role of cysts in population thus hold the key to interannual forecasts of A. dynamics and long-term patterns of shellfish fundyense bloom severity in this region.
    [Show full text]
  • VII EUROPEAN CONGRESS of PROTISTOLOGY in Partnership with the INTERNATIONAL SOCIETY of PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283484592 FINAL PROGRAMME AND ABSTRACTS BOOK - VII EUROPEAN CONGRESS OF PROTISTOLOGY in partnership with THE INTERNATIONAL SOCIETY OF PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting) Conference Paper · September 2015 CITATIONS READS 0 620 1 author: Aurelio Serrano Institute of Plant Biochemistry and Photosynthesis, Joint Center CSIC-Univ. of Seville, Spain 157 PUBLICATIONS 1,824 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Use Tetrahymena as a model stress study View project Characterization of true-branching cyanobacteria from geothermal sites and hot springs of Costa Rica View project All content following this page was uploaded by Aurelio Serrano on 04 November 2015. The user has requested enhancement of the downloaded file. VII ECOP - ISOP Joint Meeting / 1 Content VII ECOP - ISOP Joint Meeting ORGANIZING COMMITTEES / 3 WELCOME ADDRESS / 4 CONGRESS USEFUL / 5 INFORMATION SOCIAL PROGRAMME / 12 CITY OF SEVILLE / 14 PROGRAMME OVERVIEW / 18 CONGRESS PROGRAMME / 19 Opening Ceremony / 19 Plenary Lectures / 19 Symposia and Workshops / 20 Special Sessions - Oral Presentations / 35 by PhD Students and Young Postdocts General Oral Sessions / 37 Poster Sessions / 42 ABSTRACTS / 57 Plenary Lectures / 57 Oral Presentations / 66 Posters / 231 AUTHOR INDEX / 423 ACKNOWLEDGMENTS-CREDITS / 429 President of the Organizing Committee Secretary of the Organizing Committee Dr. Aurelio Serrano
    [Show full text]
  • The Ecology and Feeding Biology of Thecate
    -1- THE ECOLOGY AND FEEDING BIOLOGY OF THECATE HETEROTROPHIC DINOFLAGELLATES by Dean Martin Jacobson A.B., Occidental College 1979 SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February, 1987 e Dean Martin Jacobson The author hereby grants to M.I.T. and W.H.O.I. permission to reproduce and to distribute copies of this thesis document in whole or in part. Signature of Au thor_--.....~-=-~~_ ...........~iIlfII"I'V"-...........,.;..p;-~~ _ Department of Biology, Ma sac usetts Institute of Technology and the Joint Program in Ocea og aphy, Massachusetts Institute of Technology/Woods Hole Ocea graphic Institution, February, 1986. Certified by _----L~...-:c-.:.• ......:::z:..::-~-::..,.c£....=:....------:...---------------­ Donald M. A~rsont Thesis Supervisor Accepted by --"X:,,-==~,e:--..;;-,------.;;;,.--------------------­ Sallie W. Chisholm, Chairman, Joint Committee for Biological Oceanography, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution. -2- -3- Table of Contents List of Figures and Tables 5 Abstract. 7 Aknow1edgements •••••••••••.••••••••••••••••••••••••••.•••••••••••••.•• 9 Introduction 11 References .••••••••••••••••••••••••••••••••••••••••••••••••••••. 21 Chapter 1. Population Dynamics of Heterotrophic Dinoflagellates in a Temperate Esturary •••••••••••••••••••••••••••••••••••• 23 Abstract 25 Introduction ••••..•••.••.••••••.•••••••••••.•••••••••••.•••.••.• 26 Methods
    [Show full text]
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access Molecular phylogeny of ocelloid-bearing dinoflagellates (Warnowiaceae) as inferred from SSU and LSU rDNA sequences Mona Hoppenrath*1,4, Tsvetan R Bachvaroff2, Sara M Handy3, Charles F Delwiche3 and Brian S Leander1 Address: 1Departments of Botany and Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada, 2Smithsonian Environmental Research Center, Edgewater, MD 21037-0028, USA, 3Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-4407, USA and 4Current address : Forschungsinstitut Senckenberg, Deutsches Zentrum für Marine Biodiversitätsforschung (DZMB), Südstrand 44, D-26382 Wilhelmshaven, Germany Email: Mona Hoppenrath* - [email protected]; Tsvetan R Bachvaroff - [email protected]; Sara M Handy - [email protected]; Charles F Delwiche - [email protected]; Brian S Leander - [email protected] * Corresponding author Published: 25 May 2009 Received: 24 February 2009 Accepted: 25 May 2009 BMC Evolutionary Biology 2009, 9:116 doi:10.1186/1471-2148-9-116 This article is available from: http://www.biomedcentral.com/1471-2148/9/116 © 2009 Hoppenrath et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids.
    [Show full text]
  • The Biggest Evolutionary Jump: Restructuring of the Genome and Some Consequences © P
    2010 ÖÈÒÎËÎÃÈß Òîì 52, ¹10 THE BIGGEST EVOLUTIONARY JUMP: RESTRUCTURING OF THE GENOME AND SOME CONSEQUENCES © P. Omodeo Dipartimento di Scienze Ambientali, Universita di Siena, Italy; e-mail: [email protected] Ï. Îìîäåî Âåëè÷àéøèé ýâîëþöèîííûé ñêà÷îê: ðåñòðóêòóðèçàöèÿ ãåíîìà In this paper, the evolution of the cell is investigated till the level of complexity obtained by protists. Part- icular attention is paid to the genomic compartment and to the question: why has the genome of prokaryotes re- mained so small over more than 3 billion years and more than 3 trillion generations? Constraints on their geno- me evolution may be attributed mainly to: 1) the fact that repetitions of nucleotide sequences longer than 12 to 15 bp are forbidden according to Thomas’ principle; 2) the high cost of the control of gene expression by means of regulatory proteins: this cost increases exponentially with chromosome elongation. The formation of chroma- tin, i. e. the wrapping of DNA around the nucleosomes, removed these constraints and allowed the increase of the genome and especially of the redundant sequences of DNA, whose role is discussed. The transformation and growth of the genome generated a trend towards separation of the various physiological functions and of their control. The formation of a nuclear envelope may have begun with the advent of mitosis, which replaced the simple but delicate device of pushing the newly formed DNA into the daughter prokaryotic cells. An increase of the O2 concentration in waters stimulated further evolution: the new cell established symbiosis with a bacterium capable of protecting against peroxides and performing aerobic respiration.
    [Show full text]
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access Molecular phylogeny of ocelloid-bearing dinoflagellates (Warnowiaceae) as inferred from SSU and LSU rDNA sequences Mona Hoppenrath*1,4, Tsvetan R Bachvaroff2, Sara M Handy3, Charles F Delwiche3 and Brian S Leander1 Address: 1Departments of Botany and Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada, 2Smithsonian Environmental Research Center, Edgewater, MD 21037-0028, USA, 3Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-4407, USA and 4Current address : Forschungsinstitut Senckenberg, Deutsches Zentrum für Marine Biodiversitätsforschung (DZMB), Südstrand 44, D-26382 Wilhelmshaven, Germany Email: Mona Hoppenrath* - [email protected]; Tsvetan R Bachvaroff - [email protected]; Sara M Handy - [email protected]; Charles F Delwiche - [email protected]; Brian S Leander - [email protected] * Corresponding author Published: 25 May 2009 Received: 24 February 2009 Accepted: 25 May 2009 BMC Evolutionary Biology 2009, 9:116 doi:10.1186/1471-2148-9-116 This article is available from: http://www.biomedcentral.com/1471-2148/9/116 © 2009 Hoppenrath et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids.
    [Show full text]
  • Exaptations.Pdf
    Prospects & Overviews Problems & Paradigms How exaptations facilitated photosensory evolution: Seeing the light by accident Gregory S. Gavelis1)2)Ã, Patrick J. Keeling2) and Brian S. Leander2) Exaptations are adaptations that have undergone a major zone, as well as dark ecosystems illuminated by biolumines- change in function. By recruiting genes from sources cence [1, 2]. The selective advantages of exploiting this information have resulted in a great diversity of photoreceptive originally unrelated to vision, exaptation has allowed for systems (Fig. 1). Eyes (or eyespots) in animals and some protists sudden and critical photosensory innovations, such as are extraordinarily complex, and how this complexity evolved lenses, photopigments, and photoreceptors. Here we has been a longstanding question [3]. It is clear that visual review new or neglected findings, with an emphasis on systems have become superbly suited to their tasks through the unicellular eukaryotes (protists), to illustrate how exapta- gradual refinement of pre-existing features such as photo- receptors, photopigments, and lenses. But how did these tion has shaped photoreception across the tree of life. features acquire photosensory roles in the first place? Protist phylogeny attests to multiple origins of photore- Gould and Vrba coined the term “exaptation” to describe ception, as well as the extreme creativity of evolution. By traits that became used for different functions than those for appropriating genes and even entire organelles from which they had originally evolved [4]. This concept is useful foreign organisms via lateral gene transfer and endo- to explain the evolution of some important features. For symbiosis, protists have cobbled photoreceptors and instance, the feathers of Archaeopteryx were originally adapted for warmth, but through exaptation, they became eyespots from a diverse set of ingredients.
    [Show full text]
  • Phylogeny, Evidence for a Cryptic Plastid, and Distribution of Chytriodinium Parasites (Dinophyceae) Infecting Copepods
    bioRxiv preprint doi: https://doi.org/10.1101/418467 . The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license . Running head: Chytriodinium copepod parasites Phylogeny, evidence for a cryptic plastid, and distribution of Chytriodinium parasites (Dinophyceae) infecting copepods Jürgen F. H. Strassert a,1 , Elisabeth Hehenberger a,2 , Javier del Campo a,3 , Noriko Okamoto a, Martin Kolisko a,4 , Thomas A. Richards b, Alexandra Z. Worden c, Alyson E. Santoro d and Patrick J. Keeling a a Department of Botany, University of British Columbia, Vancouver, BC, Canada b Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, UK c Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA d Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA Current addresses 1 Department of Organismal Biology, Uppsala University, Uppsala, Sweden 2 Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA 3 Department of Marine Biology and Oceanography, Institute of Marine Sciences, Barcelona, Spain 4 Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic Correspondence J. F. H. Strassert, Department of Organismal Biology, Uppsala U niversity, Norbyvägen 18D, 752 36 Uppsala, Sweden Telephone number: +46(0)18 471 4631 ; e -mail : strasser [email protected] bioRxiv preprint doi: https://doi.org/10.1101/418467 . The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license . ABSTRACT Spores of the dinoflagellate Chytriodinium are known to infest copepod eggs causing their lethality.
    [Show full text]
  • Ocelloids Are Built from Different Endosymbiotically Acquired Components
    Eye-like ocelloids are built from different endosymbiotically acquired components Item Type Article Authors Gavelis, Gregory S.; Hayakawa, Shiho; White, Richard A.; Gojobori, Takashi; Suttle, Curtis A.; Keeling, Patrick J.; Leander, Brian S. Citation Gavelis, G. S., Hayakawa, S., White III, R. A., Gojobori, T., Suttle, C. A., Keeling, P. J., & Leander, B. S. (2015). Eye-like ocelloids are built from different endosymbiotically acquired components. Nature, 523(7559), 204–207. doi:10.1038/nature14593 DOI 10.1038/nature14593 Publisher Springer Nature Journal Nature Download date 02/10/2021 02:47:57 Link to Item http://hdl.handle.net/10754/566109 1 Eyelike “ocelloids” are built from different endosymbiotically acquired components as 2 revealed by single-organelle genomics. 3 4 Gregory S. Gavelis1,2, Shiho Hayakawa1,2,3, Richard A. White III4, Takashi Gojobori3,5, Curtis A. 5 Suttle4,6, Patrick J. Keeling2, Brian S. Leander1,2 6 7 1 Department of Zoology, University of British Columbia, Canada 8 2 Department of Botany, University of British Columbia, Canada 9 3 DNA Databank of Japan, National Institute of Genetics, Japan 10 4 Department of Microbiology and Immunology, University of British Columbia, Canada 11 5 King Abdullah University of Science and Technology, Saudi Arabia 12 6 Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Canada 13 14 Multicellularity is often considered a prerequisite for morphological complexity, as 15 seen in the camera-type eyes found in several groups of animals. A notable exception exists in 16 single-celled eukaryotes called warnowiid dinoflagellates, which have an eyelike “ocelloid” 17 consisting of subcellular analogs to a cornea, lens, iris, and retina1,8,9.
    [Show full text]