Science Journals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Organelle Movement in Actinophrys Soland Its Inhibition by Cytochalasin B
Acta Protozool. (2003) 42: 7 - 10 Organelle Movement in Actinophrys sol and Its Inhibition by Cytochalasin B Toshinobu SUZAKI1, Mikihiko ARIKAWA1, Akira SAITO1, Gen OMURA1, S. M. Mostafa Kamal KHAN1, Miako SAKAGUCHI2,3 and Klaus HAUSMANN3 1Department of Biology, Faculty of Science; 2Research Institute for Higher Education, Kobe University, Kobe, Japan; 3Institute of Biology/Zoology, Free University of Berlin, Berlin, Germany Summary. Movement of extrusomes in the heliozoon Actinophrys sol was characterized at surfaces of the cell body and giant food vacuoles where microtubules are absent. Extrusomes moved in a saltatory manner at an average velocity of 0.5 µms-1. The highest velocity observed was 2.1 µms-1. Cytochalasin B (50 µg/ml) strongly inhibited extrusome movement at the surfaces of newly-formed food vacuoles, suggesting that the actomyosin system is involved in the organelle transport in Actinophrys. Key words: actinophryid, actomyosin, extrusome, heliozoa, organelle transport. INTRODUCTION Edds (1975a) showed that organelle movement of the heliozoon Echinosphaerium still occurred in artificial Transport of intracellular organelles is a ubiquitous axopodia where a glass microneedle substituted for the feature of eukaryotic cells (e.g. Rebhun 1972, Hyams microtubular axoneme, and colchicine did not inhibit the and Stebbings 1979, Schliwa 1984). In many instances, motion in either the normal or the artificial axopodia microtubules have been postulated as important ele- (Tilney 1968, Edds 1975a). Organelle movement is also ments along which bidirectional particle transport takes known to take place in the cortex of the heliozoon cell place (Koonce and Schliwa 1985, Hayden and Allen body where no microtubules are present (Fitzharris et al. -
Biophotonic Probes for Bio-Detection and Imaging Ting Pan1,Dengyunlu1, Hongbao Xin 1 and Baojun Li 1
Pan et al. Light: Science & Applications (2021) 10:124 Official journal of the CIOMP 2047-7538 https://doi.org/10.1038/s41377-021-00561-2 www.nature.com/lsa REVIEW ARTICLE Open Access Biophotonic probes for bio-detection and imaging Ting Pan1,DengyunLu1, Hongbao Xin 1 and Baojun Li 1 Abstract The rapid development of biophotonics and biomedical sciences makes a high demand on photonic structures to be interfaced with biological systems that are capable of manipulating light at small scales for sensitive detection of biological signals and precise imaging of cellular structures. However, conventional photonic structures based on artificial materials (either inorganic or toxic organic) inevitably show incompatibility and invasiveness when interfacing with biological systems. The design of biophotonic probes from the abundant natural materials, particularly biological entities such as virus, cells and tissues, with the capability of multifunctional light manipulation at target sites greatly increases the biocompatibility and minimizes the invasiveness to biological microenvironment. In this review, advances in biophotonic probes for bio-detection and imaging are reviewed. We emphatically and systematically describe biological entities-based photonic probes that offer appropriate optical properties, biocompatibility, and biodegradability with different optical functions from light generation, to light transportation and light modulation. Three representative biophotonic probes, i.e., biological lasers, cell-based biophotonic waveguides and -
Patrons De Biodiversité À L'échelle Globale Chez Les Dinoflagellés
! ! ! ! ! !"#$%&'%&'()!(*+!&'%&,-./01%*$0!2&30%**%&%!&4+*0%&).*0%& ! 0$'1&2(&3'!4!5&6(67&)!#2%&8)!9!:16()!;6136%2()!;&<)%=&3'!>?!@&<283! ! A%'=)83')!$2%! 45&/678&,9&:9;<6=! ! A6?% 6B3)8&% ()!7%2>) >) '()!%.*&>9&?-./01%*$0!2&30%**%&%!&4+*0%&).*0%! ! ! 0?C)3!>)!(2!3DE=)!4! ! @!!"#$%&'()*(+,%),-*$',#.(/(01.23*00*(40%+"0*(23*5(0*'( >A86B?7C9??D;&E?78<=68AFG9;&H7IA8;! ! ! ! 06?3)8?)!()!4!.+!FGH0!*+./! ! ;)<283!?8!C?%I!16#$6='!>)!4! ! 'I5&*6J987&$=9I8J!0&%!G(&=3)%!K2%>I!L6?8>23&68!M6%!N1)28!01&)81)!O0GKLN0PJ!A(I#6?3D!Q!H6I2?#)RS8&!! !!H2$$6%3)?%! 3I6B5&K78&37J?6J;LAJ!S8&<)%=&3'!>)!T)8E<)!Q!0?&==)! !!H2$$6%3)?%! 'I5&47IA87&468=I9;6IJ!032U&68)!V66(67&12!G8368!;6D%8!6M!W2$()=!Q!"32(&)! XY2#&823)?%! 3I6B5&,7I;&$=9HH788J!SAFZ,ZWH0!0323&68!V66(67&[?)!>)!@&(()M%281D)R=?%RF)%!Q!L%281)! XY2#&823)?%! 'I5&*7BB79?9&$A786J!;\WXZN,A)(276=J!"LHXFXH!!"#$%"&'"&(%")$*&+,-./0#1&Q!L%281)!!! !!!Z6R>&%)13)?%!>)!3DE=)! 'I5&)6?6HM78&>9&17IC7;J&SAFZ,ZWH0!0323&68!5&6(67&[?)!>)!H6=16MM!Q!L%281)! ! !!!!!!!!!;&%)13)?%!>)!3DE=)! ! ! ! "#$%&#'!()!*+,+-,*+./! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Remerciements* ! Remerciements* A!l'issue!de!ce!travail!de!recherche!et!de!sa!rédaction,!j’ai!la!preuve!que!la!thèse!est!loin!d'être!un!travail! solitaire.! En! effet,! je! n'aurais! jamais! pu! réaliser! ce! travail! doctoral! sans! le! soutien! d'un! grand! nombre! de! personnes!dont!l’amitié,!la!générosité,!la!bonne!humeur%et%l'intérêt%manifestés%à%l'égard%de%ma%recherche%m'ont% permis!de!progresser!dans!cette!phase!délicate!de!«!l'apprentiGchercheur!».! -
Trait Changes Induced by Species Interactions in Two Phenotypically Distinct Strains of a Marine Dinoflagellate
The ISME Journal (2016) 10, 2658–2668 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Trait changes induced by species interactions in two phenotypically distinct strains of a marine dinoflagellate Sylke Wohlrab, Urban Tillmann, Allan Cembella and Uwe John Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Section Ecological Chemistry, Bremerhaven, Germany Populations of the toxigenic marine dinoflagellate Alexandrium are composed of multiple genotypes that display phenotypic variation for traits known to influence top-down processes, such as the ability to lyse co-occurring competitors and prospective grazers. We performed a detailed molecular analysis of species interactions to determine how different genotypes perceive and respond to other species. In a controlled laboratory culture study, we exposed two A. fundyense strains that differ in their capacity to produce lytic compounds to the dinoflagellate grazer Polykrikos kofoidii, and analyzed transcriptomic changes during this interaction. Approximately 5% of all analyzed genes were differentially expressed between the two Alexandrium strains under control conditions (without grazer presence) with fold-change differences that were proportionally higher than those observed in grazer treatments. Species interactions led to the genotype-specific expression of genes involved in endocytotic processes, cell cycle control and outer membrane properties, and signal transduction and gene expression -
FIRST RECORD of Erythropsidinium Agile (GYMNODINIALES: WARNOWIACEAE) in the MEXICAN PACIFIC
CICIMAR Oceánides 25(2): 137-142 (2010) FIRST RECORD OF Erythropsidinium agile (GYMNODINIALES: WARNOWIACEAE) IN THE MEXICAN PACIFIC Primer registro de Erythropsidinium agile et Swezy, 1921, Proterythropsis Kofoid et Swezy, (Gymnodiniales: Warnowiaceae) en el 1921, Warnowia Lindemann, 1928, Greuetodinium Pacífico Mexicano Loeblich III, 1980, and Erythropsidinium P.C. Silva, 1960. Ten species of Erythropsidinium have been RESUMEN. Se registra por primera vez Erythropsi- described from warm and temperate seas. However, dinium agile, un dinoflagelado de la Familia Warno- a taxonomical study based on the changes in struc- wiaceae para el Pacífico Mexicano, dentro de Bahía ture, position, and coloration of the ocelloid in the de La Paz (Golfo de California). Se observaron 26 course of the cell division or individual development ejemplares de E. agile, principalmente en muestras revealed that some species had different morpho- de fitoplancton de red para el periodo de estudio (Ju- types (Elbrächter, 1979). At present the valid species nio, 2006 a Junio, 2010). En muestras de botella se currently considered to belong to this genus are: estimaron densidades entre 80 y 1000 cél. L–1. Los ejemplares de E. agile mostraron gran variación en E. agile (Hertwig, 1884) P.C. Silva, 1960, E. cochlea forma, tamaño y coloración; se presentaron princi- (Schütt, 1895) P.C. Silva, 1960, E. extrudens (Ko- palmente en el período invierno-primavera, cuando foid et Swezy, 1921) P.C. Silva, 1960, and E. minus la columna del agua está homogénea, a temperatu- (Kofoid et Swezy, 1921) P.C. Silva, 1960. For the ras entre 19 y 22 °C y rica en nutrientes. -
Grazing Impacts of the Heterotrophic Dinoflagellate Polykrikos Kofoidii on a Bloom of Gymnodinium Catenatum
AQUATIC MICROBIAL ECOLOGY Published April 30 Aquat Microb Ecol NOTE Grazing impacts of the heterotrophic dinoflagellate Polykrikos kofoidii on a bloom of Gymnodinium catenatum Yukihiko Matsuyama'f*,Masahide Miyamoto2, Yuichi ~otani' 'National Research Institute of Fisheries and Environment of Inland Sea, Maruishi, Ohno, Saeki, Hiroshima 739-0452, Japan 2KumamotoAriake Fisheries Direction Office, Iwasaki, Tamana, Kumamoto 865-0016, Japan ABSTRACT: In 1998, a red tide of the paralytic shellfish an assessment of the natural population of G. catena- poisoning (PSP)-producing dinoflagellate Gymnodinium cate- turn coupled with a laboratory incubation experiment naturn Graham occurred in Yatsushiro Sea, western Japan. to evaluate the bloom fate. We present data showing The dramatic decline of dominant G. catenatum cells oc- curred during the field and laboratory assessments, accompa- considerable predation by the pseudocolonial hetero- nied with growth of the heterotrophic dinoflagellate Poly- trophic dinoflagellate Polykrikos kofoidii Chatton on knkos kofoidii Chatton. Microscopic observations on both the dominant G. catenatum population, and discuss field and laboratory cultured bloom water revealed that the ecological importance of the genus Polykrikos and >50% of P. kofoidii predated on the natural population of G. catenaturn, and 1 to 8 G. catenatum cells were found in its grazing impact on harmful algal blooms. food vacuoles of P. kofoidii pseudocolonies. Our results sug- Materials and methods. Filed population surveys: gest that predation by P. kofoidii contributes to the cessation The Gymnodinium catenatum bloom occurred from 19 of a G. catenatum bloom. January to 5 February in Miyano-Gawachi Bay, west- ern Yatsushiro Sea, Kyushu Island (Fig. 1). Five cruises KEY WORDS: PSP - Gymnodimurn catenatum . -
A Parasite of Marine Rotifers: a New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae)
Hindawi Publishing Corporation Journal of Marine Biology Volume 2015, Article ID 614609, 5 pages http://dx.doi.org/10.1155/2015/614609 Research Article A Parasite of Marine Rotifers: A New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae) Fernando Gómez1 and Alf Skovgaard2 1 Laboratory of Plankton Systems, Oceanographic Institute, University of Sao˜ Paulo, Prac¸a do Oceanografico´ 191, Cidade Universitaria,´ 05508-900 Butanta,˜ SP, Brazil 2Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 7, 1870 Frederiksberg C, Denmark Correspondence should be addressed to Fernando Gomez;´ [email protected] Received 11 July 2015; Accepted 27 August 2015 Academic Editor: Gerardo R. Vasta Copyright © 2015 F. Gomez´ and A. Skovgaard. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Dinoflagellate infections have been reported for different protistan and animal hosts. We report, for the first time, the association between a dinoflagellate parasite and a rotifer host, tentatively Synchaeta sp. (Rotifera), collected from the port of Valencia, NW Mediterranean Sea. The rotifer contained a sporangium with 100–200 thecate dinospores that develop synchronically through palintomic sporogenesis. This undescribed dinoflagellate forms a new and divergent fast-evolved lineage that branches amongthe dinokaryotic dinoflagellates. 1. Introduction form independent lineages with no evident relation to other dinoflagellates [12]. In this study, we describe a new lineage of The alveolates (or Alveolata) are a major lineage of protists an undescribed parasitic dinoflagellate that largely diverged divided into three main phyla: ciliates, apicomplexans, and from other known dinoflagellates. -
Massisteria Marina Larsen & Patterson 1990
l MARINE ECOLOGY PROGRESS SERIES Vol. 62: 11-19, 1990 1 Published April 5 l Mar. Ecol. Prog. Ser. l Massisteria marina Larsen & Patterson 1990, a widespread and abundant bacterivorous protist associated with marine detritus David J. patterson', Tom ~enchel~ ' Department of Zoology. University of Bristol. Bristol BS8 IUG. United Kingdom Marine Biological Laboratory, Strandpromenaden, DK-3000 Helsinger, Denmark ABSTRACT: An account is given of Massisteria marina Larsen & Patterson 1990, a small phagotrophic protist associated with sediment particles and with suspended detrital material in littoral and oceanic marine waters. It has been found at sites around the world. The organism has an irregular star-shaped body from which radiate thin pseudopodia with extrusomes. There are 2 inactive flagella. The organism is normally sedentary but, under adverse conditions, the arms are resorbed, the flagella become active, and the organism becomes a motile non-feeding flagellate. The ecological niche occupied by this organism and its phylogenetic affinities are discussed. INTRODUCTION (Patterson & Fenchel 1985, Fenchel & Patterson 1986, 1988, V~rs1988, Larsen & Patterson 1990). Here we Much of the carbon fixed in marine ecosystems is report on a protist, Massisteria marina ', that is specifi- degraded by microbial communities and it is held that cally associated with planktonic and benthic detritus protists, especially flagellates under 10 pm in size, and appears to be widespread and common. exercise one of the principal controlling influences over bacterial growth rates and numbers (Fenchel 1982, Azam et al. 1983, Ducklow 1983, Proctor & Fuhrman MATERIALS AND METHODS 1990). Detrital aggregates, whether benthic or in the water column, may support diverse and active microbial Cultures were established by dilution series from communities that include flagellates (Wiebe & Pomeroy water samples taken in the Limfjord (Denmark), and 1972, Caron et al. -
Recent Dinoflagellate Cysts from the Chesapeake Estuary (Maryland and Virginia, U.S.A.): Taxonomy and Ecological Preferences
Recent dinoflagellate cysts from the Chesapeake estuary (Maryland and Virginia, U.S.A.): taxonomy and ecological preferences. Tycho Van Hauwaert Academic year 2015–2016 Master’s dissertation submitted in partial fulfillment of the requirements for the degree of Master in Science in Geology Promotor: Prof. Dr. S. Louwye Co-promotor: Dr. K. Mertens Tutor: P. Gurdebeke Jury: Dr. T. Verleye, Dr. E. Verleyen Picture on the cover An exceptionally dense bloom of Alexandrium monilatum was observed in lower Chesapeake Bay along the north shore of the York River between Sarah's Creek and the Perrin River on 17 August 2015. Credit: W. Vogelbein/VIMS ii ACKNOWLEDGEMENTS First of all I want to thank my promoters, Prof. Dr. S. Louwye and Dr. K. Mertens. They introduced me into the wonderful world of dinoflagellates and the dinocysts due to the course Advanced Micropaleontology. I did not have hesitated long to choose a subject within the research unit of paleontology. Thank you for the proofreading, help with identification and many discussions. A special mention for Pieter Gurdebeke. This appreciation you can imagine as a 22-minutes standing ovation for the small talks and jokes only! If you include the assistance in the thesis, I would not dare to calculate the time of applause. I remember when we were discussing the subject during the fieldtrip to the Alps in September. We have come a long way and I am pleased with the result. Thank you very much for helping me with the preparation of slides, identification of dinocysts, some computer programs, proofreading of the different chapters and many more! When I am back from my trip to Canada, I would like to discuss it with a (small) bottle of beer. -
RS BA Meeting.2016
Biological Action in Read-Write Genome Evolution Royal Society-British Academy, “New trends in evolutionary biology,” November 7-9, 2016 James A. Shapiro University of Chicago [email protected] www.shapiro.bsd.uchicago.edu Living Organisms Regularly Use Generic Activities to Facilitate Evolution • Taxonomic divergences and adaptive innovations often result from abrupt, widespread cell-mediated and biochemical modifications of RW genomes rather than gradual accumulation of independent localized copying errors in ROM genomes. • Abrupt genome rewriting processes include symbiogenesis, horizontal DNA transfers, interspecific hybridizations, and mobilization of repetitive DNA elements to rewire genome networks and regulatory ncRNAs. • Ecological conditions and population interactions stimulate evolutionary variation. • Conclusion: living organisms have core biological/molecular tools to rewrite their genomes actively when challenged. Well-documented classes of active RW genome inscription lead repeatedly to adaptive and taxonomic novelties: • Hereditary variation, adaptations and taxonomic originations by cell mergers (symbiogenesis); • Acquisition of evolved functional adaptations from other taxaa by horizontal DNA transfers; • Taxonomic originations and adaptive radiations by interspecific hybridizations and whole genome doublings; • Protein evolution by exon shuffling; • Amplification of so-called “noncoding” repetitive components in the genome as evolution produces increasingly complex organisms; • Mobile DNA elements rewiring taxonomically-specific -
Characterising Planktonic Dinoflagellate Diversity in Singapore Using DNA Metabarcoding
Metabarcoding and Metagenomics 2: 1–14 DOI 10.3897/mbmg.2.25136 Research Article Characterising planktonic dinoflagellate diversity in Singapore using DNA metabarcoding Yue Sze1, Lilibeth N. Miranda2, Tsai Min Sin2,†, Danwei Huang1,2 1 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore. 2 Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore. † Deceased. Corresponding author: Danwei Huang ([email protected]) Academic editor: Thorsten Stoeck | Received 19 March 2018 | Accepted 24 April 2018 | Published 17 May 2018 Abstract Dinoflagellates are traditionally identified morphologically using microscopy, which is a time-consuming and labour-intensive process. Hence, we explored DNA metabarcoding using high-throughput sequencing as a more efficient way to study planktonic dinoflagellate diversity in Singapore’s waters. From 29 minimally pre-sorted water samples collected at four locations in western Singapore, DNA was extracted, amplified and sequenced for a 313-bp fragment of the V4–V5 region in the 18S ribosomal RNA gene. Two sequencing runs generated 2,847,170 assembled paired-end reads, corresponding to 573,176 unique sequences. Sequenc- es were clustered at 97% similarity and analysed with stringent thresholds (≥150 bp, ≥20 reads, ≥95% match to dinoflagellates), recovering 28 dinoflagellate taxa. Dinoflagellate diversity captured includes parasitic and symbiotic groups which are difficult to identify morphologically. Richness is similar between the inner and outer West Johor Strait, but variations in community structure are apparent, likely driven by environmental differences. None of the taxa detected in a recent phytoplankton bloom along the West Johor Strait have been recovered in our samples, suggesting that background communities are distinct from bloom communities. -
Biologia Celular – Cell Biology
Biologia Celular – Cell Biology BC001 - Structural Basis of the Interaction of a Trypanosoma cruzi Surface Molecule Implicated in Oral Infection with Host Cells and Gastric Mucin CORTEZ, C.*1; YOSHIDA, N.1; BAHIA, D.1; SOBREIRA, T.2 1.UNIFESP, SÃO PAULO, SP, BRASIL; 2.SINCROTRON, CAMPINAS, SP, BRASIL. e-mail:[email protected] Host cell invasion and dissemination within the host are hallmarks of virulence for many pathogenic microorganisms. As concerns Trypanosoma cruzi that causes Chagas disease, the insect vector-derived metacyclic trypomastigotes (MT) initiate infection by invading host cells, and later blood trypomastigotes disseminate to diverse organs and tissues. Studies with MT generated in vitro and tissue culture-derived trypomastigotes (TCT), as counterparts of insect- borne and bloodstream parasites, have implicated members of the gp85/trans-sialidase superfamily, MT gp82 and TCT Tc85-11, in cell invasion and interaction with host factors. Here we analyzed the gp82 structure/function characteristics and compared them with those previously reported for Tc85-11. One of the gp82 sequences identified as a cell binding site consisted of an alpha-helix, which connects the N-terminal beta-propeller domain to the C- terminal beta-sandwich domain where the second binding site is nested. In the gp82 structure model, both sites were exposed at the surface. Unlike gp82, the Tc85-11 cell adhesion sites are located in the N-terminal beta-propeller region. The gp82 sequence corresponding to the epitope for a monoclonal antibody that inhibits MT entry into target cells was exposed on the surface, upstream and contiguous to the alpha-helix. Located downstream and close to the alpha-helix was the gp82 gastric mucin binding site, which plays a central role in oral T.