Biodiversité Des Protistes Aquatiques: Le Paradoxe AQUAPARADOX

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversité Des Protistes Aquatiques: Le Paradoxe AQUAPARADOX Biodiversité des Protistes Aquatiques: le Paradoxe Projet ANR-07-BDIV-004 AQUAPARADOX Programme Biodiversité 2007 A IDENTIFICATION.....................................................................2 B RESUME CONSOLIDE PUBLIC B.1 Résumé Consolidé Public en Français ............................... 3 B.2 English Non-Technical Project Summary ........................... 5 C SCIENTIFIC REPORT C.1 Abstract ........................................................................ 6 C.2 Introduction .................................................................. 7 C.3 Primary Producers .......................................................... 8 C.4 Herbivores ................................................................... 10 C.5 Parasites ..................................................................... 11 C.6 Macroecology of Planktonic Protists ................................. 12 C.7 Conclusions ................................................................. 13 C.8 References .................................................................. 13 D LIST OF DELIVERABLES ........................................................ 15 E PROJET PRODUCTION E.1 Summary Table of Project Products ................................ 16 E.2 Publications, Oral Communications, Theses, Reports ......... 16 E.3 Other Project Products (software, websites) ..................... 22 E.4 Summary of Temporary Personel Employed ..................... 25 Référence du formulaire : ANR-FORM-090601-01-01 1/22 A IDENTIFICATION Acronyme du projet AQUAPAROX Titre du projet Biodiversite des Protistes Aquatiques: Le Paradoxe Coordinateur du projet John R. Dolan Microbial Ecology and (société/organisme) Biogeochemistry Group, Laboratoire d'Océanographie de Villefranche, Université Paris6 CNRS UMR 7093 Période du projet 01/08/2008 - 31/12/2011 (date de début – date de fin) Site web du projet http://www.obs-vlfr.fr/LOV/aquaparadox/ Rédacteur de ce rapport Civilité, prénom, nom M. John Dolan Téléphone 04 93 76 36 22 Adresse électronique [email protected] Date de rédaction 03/01/2012 Liste des partenaires présents à la 2. Microbial Diversity and Evolution, fin du projet (société/organisme et Ecologie, Systématique et Evolution, responsable scientifique) Université Paris-Sud XI CNRS UME 8079 Purificacion Lopez-Garcia 3. Diversity of Ocean Plankton Group, Adaptation et Diversité en Milieu Marin, Université Paris6 CNRS UMR 7144 Laure Guillou 4. Virtual Biology Laboratory, Institute of Developmental Biology and Cancer, Université Nice- Sophia Antipolis CNRS UMR 6543 Richard Christen Référence du formulaire : ANR-FORM-090601-01-01 2/22 B.1 Résumé consolidé public en français Aquaparadox: Pourquoi Autant d'Espèces dans le Plancton? Une Etude de la Biodiversité Océanique. Les plantes et animaux microscopiques du plancton forment la base de la chaîne élémentaire dans les océans. Un litre d’eau peut contenir des milliers d'espèces ce qui par extrapolation conduit à une richesse d'espèces inexpliquable dans ce monde microscopique et relativement homogène - c’est ce que l’on appelle 'le paradoxe du plancton'. Les protistes, des organismes unicellulaires, ont des caractéristiques communes : le nombre d'espèces est élevé et beaucoup semblent avoir une distribution géographique très large, voir globale. Connaître l’étendue et les raisons de cette particularité du plancton marin est essentiel pour comprendre le fonctionnement des écosystèmes océaniques et les effets du changement climatique. Nous avons examiné plusieurs questions fondamentales concernant ces organismes planctoniques en nous focalisant sur des groupes importants présentant des types fonctionnels différents : des micro-algues (des plantes), des brouteurs (des animaux) et des parasites. Y a t-il autant d'espèces que de formes morphologiques distinctes? Quel est l’influence du milieu sur la variabilité morphologique des espèces ? Certaines espèces sont-elles réellement à large distribution, ou la diversité est-elle masquée par des convergences morphologiques ? Aquaparadox était un projet de recherche fondamentale focalisé sur la biodiversité des protistes planctoniques. Sonder le plancton à travers des études des populations naturelles in situ et au laboratoire. Est-ce que les protistes et les organismes multicellulaires du plancton sont similaires en termes de distribution et de structures des populations? Nous avons examiné des populations naturelles de protistes et les avons comparées avec celles des organismes planctoniques multicellulaires les plus abondants, les copépodes. En laboratoire, nous avons étudié la variabilité des clones, issus de la même cellule. Des cultures de parasites et d’hotes ont été établies et ont permis de comprendre comment un parasite pouvait persister en infectant des hôtes typiquement saisonniers. Nous avons appliqué les outils moléculaires pour déterminer l'identité génétique des formes identifiées sur la base de leur morphologie, et évaluer le spectre d’hôtes de certains parasites. Résultats majeurs du projet. Nous avons démontré que les assemblages de protistes planctoniques ont une structure très similaire à celle des copépodes (multicellulaires) sur des échelles multiples du temps et de l'espace. Par exemple, ils ont le même gradient global de diversité: le nombre d'espèces est le plus élevé en zones tropicales, intermédiaire et zones tempérées, et minimal dans les zones polaires. Nous avons découvertes des exemples remarquables de morphologie variable parmi les protistes planctoniques (voir figure). Une espèce de Ceratium, une micro-algue, caractérisée par ses 'doigts', les résorbe à chaque coucher du soleil et les reforme à l'aube. Au moins une espèce de tintinnides est connue sous des noms différents du fait de sa capacité à fabriquer des coquilles de formes différentes. Nous avons trouvé que les parasites peuvent persister dans les kystes de leur hôte pour infecter une nouvelle génération l’année suivante. Référence du formulaire : ANR-FORM-090601-01-01 3/22 Un protiste peut avoir une morphologie remarquablement variable. La série en haut (1,2,3) montre la réabsorption des 'doigts' de Ceratium ranipes au coucher du soleil, un processus accompli en 3 heures. La série du bas (A,B,C) montre les types de coquilles formées par une seule espèce de cilié tintinnide. Ces organismes font 200 µm de longueur. Production scientifique. Les découvertes sont documentées dans des dizaines d'articles (39) au sein de revues scientifiques très sélectives et de 5 thèses. Outre des publications, le projet a produit des logiciels pour l'analyse des séquences d'ADN et la construction d'arbres phylogénétiques. Une galerie d'images de protistes planctoniques, une bibliothèque virtuelle des monographies taxonomiques et des guides pour l'identification des groupes spécifiques a été créée. Tous ces produits d'Aquaparadox ont été mis en accès libre via http://www.obs-vlfr.fr/LOV/aquaparadox/ Le projet AQUAPARADOX etait un projet de recherche fondamentale coordonné par John R. Dolan. Il a été réalisé par un consortium de 4 équipes: 1) Microbial Ecology and Biogeochemistry, Laboratoire d'Océanographie de Villefranche, Université Paris6 CNRS UMR 7093 (J. Dolan, R. Lemeé), 2) Microbial Diversity and Evolution, Ecologie, Systématique et Evolution, Université Paris-Sud XI CNRS UME 8079 (P. Lopez-Garcia, D. Moreira), 3) Diversity of Ocean Plankton, Adaptation et Diversité en Milieu Marin, Université Paris 6 CNRS UMR 7144 (L. Guillou, N. Simon), et 4) Virtual Biology Laboratory, Institute of Developmental Biology and Cancer, Université Nice- Sophia Antipolis CNRS UMR 6543 (R. Christen). Commencé en janvier 2008 et terminé en decembre 2011, le projet bénéficié d’une aide ANR Biodiversite de 497.000 € et d’une aide du Pôle Mer PACA de 21.000 €, pour un coût global estimé à 1,9M €. Référence du formulaire : ANR-FORM-090601-01-01 4/22 B.2 English Non-Technical Project Summary AQUAPARADOX: Why So Many Species in the Plankton? Examining Biodiversity in the Ocean. The microscopic plants and animals of the plankton are the base of the marine food chain. Among planktonic microbes, there seems to be an unreasonably large number of species, thousands in a single liter: 'the paradox of the plankton'. Protists of the plankton, single-celled organisms, are typical as species richness is high and each species appears to be very widely distributed. Arguably, we need to know what exists in the plankton to understand how marine food chains work and the effects of global change. We examined basic questions concerning protists of the plankton by studying particular groups typical of the different types: primary producers (plants), grazers (animals) and parasites. Are there really as many different species as there seems to be? Perhaps some species look different under different conditions. Is an organism found around the world really the same organism everywhere? Aquaparadox was a basic research project focused on protist biodiversity in the marine plankton. Probing the plankton using field sampling, laboratory cultures, and molecular analyses. We compared the structure of natural assemblages of plankton protists to those of the most abundant multi-cellular plankton, the copepods. We sought to determine if protists differed fundamentally from multicellular plankton. We compared the characteristics of natural communities of protists assemblages and copepod assemblages on different scales of time and space. In the laboratory, we examined the morphological variability of individuals grown from a single cell. We compared strains
Recommended publications
  • FIRST RECORD of Erythropsidinium Agile (GYMNODINIALES: WARNOWIACEAE) in the MEXICAN PACIFIC
    CICIMAR Oceánides 25(2): 137-142 (2010) FIRST RECORD OF Erythropsidinium agile (GYMNODINIALES: WARNOWIACEAE) IN THE MEXICAN PACIFIC Primer registro de Erythropsidinium agile et Swezy, 1921, Proterythropsis Kofoid et Swezy, (Gymnodiniales: Warnowiaceae) en el 1921, Warnowia Lindemann, 1928, Greuetodinium Pacífico Mexicano Loeblich III, 1980, and Erythropsidinium P.C. Silva, 1960. Ten species of Erythropsidinium have been RESUMEN. Se registra por primera vez Erythropsi- described from warm and temperate seas. However, dinium agile, un dinoflagelado de la Familia Warno- a taxonomical study based on the changes in struc- wiaceae para el Pacífico Mexicano, dentro de Bahía ture, position, and coloration of the ocelloid in the de La Paz (Golfo de California). Se observaron 26 course of the cell division or individual development ejemplares de E. agile, principalmente en muestras revealed that some species had different morpho- de fitoplancton de red para el periodo de estudio (Ju- types (Elbrächter, 1979). At present the valid species nio, 2006 a Junio, 2010). En muestras de botella se currently considered to belong to this genus are: estimaron densidades entre 80 y 1000 cél. L–1. Los ejemplares de E. agile mostraron gran variación en E. agile (Hertwig, 1884) P.C. Silva, 1960, E. cochlea forma, tamaño y coloración; se presentaron princi- (Schütt, 1895) P.C. Silva, 1960, E. extrudens (Ko- palmente en el período invierno-primavera, cuando foid et Swezy, 1921) P.C. Silva, 1960, and E. minus la columna del agua está homogénea, a temperatu- (Kofoid et Swezy, 1921) P.C. Silva, 1960. For the ras entre 19 y 22 °C y rica en nutrientes.
    [Show full text]
  • Characterising Planktonic Dinoflagellate Diversity in Singapore Using DNA Metabarcoding
    Metabarcoding and Metagenomics 2: 1–14 DOI 10.3897/mbmg.2.25136 Research Article Characterising planktonic dinoflagellate diversity in Singapore using DNA metabarcoding Yue Sze1, Lilibeth N. Miranda2, Tsai Min Sin2,†, Danwei Huang1,2 1 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore. 2 Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore. † Deceased. Corresponding author: Danwei Huang ([email protected]) Academic editor: Thorsten Stoeck | Received 19 March 2018 | Accepted 24 April 2018 | Published 17 May 2018 Abstract Dinoflagellates are traditionally identified morphologically using microscopy, which is a time-consuming and labour-intensive process. Hence, we explored DNA metabarcoding using high-throughput sequencing as a more efficient way to study planktonic dinoflagellate diversity in Singapore’s waters. From 29 minimally pre-sorted water samples collected at four locations in western Singapore, DNA was extracted, amplified and sequenced for a 313-bp fragment of the V4–V5 region in the 18S ribosomal RNA gene. Two sequencing runs generated 2,847,170 assembled paired-end reads, corresponding to 573,176 unique sequences. Sequenc- es were clustered at 97% similarity and analysed with stringent thresholds (≥150 bp, ≥20 reads, ≥95% match to dinoflagellates), recovering 28 dinoflagellate taxa. Dinoflagellate diversity captured includes parasitic and symbiotic groups which are difficult to identify morphologically. Richness is similar between the inner and outer West Johor Strait, but variations in community structure are apparent, likely driven by environmental differences. None of the taxa detected in a recent phytoplankton bloom along the West Johor Strait have been recovered in our samples, suggesting that background communities are distinct from bloom communities.
    [Show full text]
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access Molecular phylogeny of ocelloid-bearing dinoflagellates (Warnowiaceae) as inferred from SSU and LSU rDNA sequences Mona Hoppenrath*1,4, Tsvetan R Bachvaroff2, Sara M Handy3, Charles F Delwiche3 and Brian S Leander1 Address: 1Departments of Botany and Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada, 2Smithsonian Environmental Research Center, Edgewater, MD 21037-0028, USA, 3Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-4407, USA and 4Current address : Forschungsinstitut Senckenberg, Deutsches Zentrum für Marine Biodiversitätsforschung (DZMB), Südstrand 44, D-26382 Wilhelmshaven, Germany Email: Mona Hoppenrath* - [email protected]; Tsvetan R Bachvaroff - [email protected]; Sara M Handy - [email protected]; Charles F Delwiche - [email protected]; Brian S Leander - [email protected] * Corresponding author Published: 25 May 2009 Received: 24 February 2009 Accepted: 25 May 2009 BMC Evolutionary Biology 2009, 9:116 doi:10.1186/1471-2148-9-116 This article is available from: http://www.biomedcentral.com/1471-2148/9/116 © 2009 Hoppenrath et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids.
    [Show full text]
  • The Biggest Evolutionary Jump: Restructuring of the Genome and Some Consequences © P
    2010 ÖÈÒÎËÎÃÈß Òîì 52, ¹10 THE BIGGEST EVOLUTIONARY JUMP: RESTRUCTURING OF THE GENOME AND SOME CONSEQUENCES © P. Omodeo Dipartimento di Scienze Ambientali, Universita di Siena, Italy; e-mail: [email protected] Ï. Îìîäåî Âåëè÷àéøèé ýâîëþöèîííûé ñêà÷îê: ðåñòðóêòóðèçàöèÿ ãåíîìà In this paper, the evolution of the cell is investigated till the level of complexity obtained by protists. Part- icular attention is paid to the genomic compartment and to the question: why has the genome of prokaryotes re- mained so small over more than 3 billion years and more than 3 trillion generations? Constraints on their geno- me evolution may be attributed mainly to: 1) the fact that repetitions of nucleotide sequences longer than 12 to 15 bp are forbidden according to Thomas’ principle; 2) the high cost of the control of gene expression by means of regulatory proteins: this cost increases exponentially with chromosome elongation. The formation of chroma- tin, i. e. the wrapping of DNA around the nucleosomes, removed these constraints and allowed the increase of the genome and especially of the redundant sequences of DNA, whose role is discussed. The transformation and growth of the genome generated a trend towards separation of the various physiological functions and of their control. The formation of a nuclear envelope may have begun with the advent of mitosis, which replaced the simple but delicate device of pushing the newly formed DNA into the daughter prokaryotic cells. An increase of the O2 concentration in waters stimulated further evolution: the new cell established symbiosis with a bacterium capable of protecting against peroxides and performing aerobic respiration.
    [Show full text]
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access Molecular phylogeny of ocelloid-bearing dinoflagellates (Warnowiaceae) as inferred from SSU and LSU rDNA sequences Mona Hoppenrath*1,4, Tsvetan R Bachvaroff2, Sara M Handy3, Charles F Delwiche3 and Brian S Leander1 Address: 1Departments of Botany and Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada, 2Smithsonian Environmental Research Center, Edgewater, MD 21037-0028, USA, 3Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-4407, USA and 4Current address : Forschungsinstitut Senckenberg, Deutsches Zentrum für Marine Biodiversitätsforschung (DZMB), Südstrand 44, D-26382 Wilhelmshaven, Germany Email: Mona Hoppenrath* - [email protected]; Tsvetan R Bachvaroff - [email protected]; Sara M Handy - [email protected]; Charles F Delwiche - [email protected]; Brian S Leander - [email protected] * Corresponding author Published: 25 May 2009 Received: 24 February 2009 Accepted: 25 May 2009 BMC Evolutionary Biology 2009, 9:116 doi:10.1186/1471-2148-9-116 This article is available from: http://www.biomedcentral.com/1471-2148/9/116 © 2009 Hoppenrath et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids.
    [Show full text]
  • Exaptations.Pdf
    Prospects & Overviews Problems & Paradigms How exaptations facilitated photosensory evolution: Seeing the light by accident Gregory S. Gavelis1)2)Ã, Patrick J. Keeling2) and Brian S. Leander2) Exaptations are adaptations that have undergone a major zone, as well as dark ecosystems illuminated by biolumines- change in function. By recruiting genes from sources cence [1, 2]. The selective advantages of exploiting this information have resulted in a great diversity of photoreceptive originally unrelated to vision, exaptation has allowed for systems (Fig. 1). Eyes (or eyespots) in animals and some protists sudden and critical photosensory innovations, such as are extraordinarily complex, and how this complexity evolved lenses, photopigments, and photoreceptors. Here we has been a longstanding question [3]. It is clear that visual review new or neglected findings, with an emphasis on systems have become superbly suited to their tasks through the unicellular eukaryotes (protists), to illustrate how exapta- gradual refinement of pre-existing features such as photo- receptors, photopigments, and lenses. But how did these tion has shaped photoreception across the tree of life. features acquire photosensory roles in the first place? Protist phylogeny attests to multiple origins of photore- Gould and Vrba coined the term “exaptation” to describe ception, as well as the extreme creativity of evolution. By traits that became used for different functions than those for appropriating genes and even entire organelles from which they had originally evolved [4]. This concept is useful foreign organisms via lateral gene transfer and endo- to explain the evolution of some important features. For symbiosis, protists have cobbled photoreceptors and instance, the feathers of Archaeopteryx were originally adapted for warmth, but through exaptation, they became eyespots from a diverse set of ingredients.
    [Show full text]
  • Ocelloids Are Built from Different Endosymbiotically Acquired Components
    Eye-like ocelloids are built from different endosymbiotically acquired components Item Type Article Authors Gavelis, Gregory S.; Hayakawa, Shiho; White, Richard A.; Gojobori, Takashi; Suttle, Curtis A.; Keeling, Patrick J.; Leander, Brian S. Citation Gavelis, G. S., Hayakawa, S., White III, R. A., Gojobori, T., Suttle, C. A., Keeling, P. J., & Leander, B. S. (2015). Eye-like ocelloids are built from different endosymbiotically acquired components. Nature, 523(7559), 204–207. doi:10.1038/nature14593 DOI 10.1038/nature14593 Publisher Springer Nature Journal Nature Download date 02/10/2021 02:47:57 Link to Item http://hdl.handle.net/10754/566109 1 Eyelike “ocelloids” are built from different endosymbiotically acquired components as 2 revealed by single-organelle genomics. 3 4 Gregory S. Gavelis1,2, Shiho Hayakawa1,2,3, Richard A. White III4, Takashi Gojobori3,5, Curtis A. 5 Suttle4,6, Patrick J. Keeling2, Brian S. Leander1,2 6 7 1 Department of Zoology, University of British Columbia, Canada 8 2 Department of Botany, University of British Columbia, Canada 9 3 DNA Databank of Japan, National Institute of Genetics, Japan 10 4 Department of Microbiology and Immunology, University of British Columbia, Canada 11 5 King Abdullah University of Science and Technology, Saudi Arabia 12 6 Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Canada 13 14 Multicellularity is often considered a prerequisite for morphological complexity, as 15 seen in the camera-type eyes found in several groups of animals. A notable exception exists in 16 single-celled eukaryotes called warnowiid dinoflagellates, which have an eyelike “ocelloid” 17 consisting of subcellular analogs to a cornea, lens, iris, and retina1,8,9.
    [Show full text]
  • (Dinophyceae): Morpho-Molecular Characterization of Centrodinium Punctatum (Cleve) F.J.R
    1 Protist Archimer April 2019, Volume 170, Issue 2, Pages 168-186 https://doi.org/10.1016/j.protis.2019.02.003 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00483/59496/ Discovery of a New Clade Nested Within the Genus Alexandrium (Dinophyceae): Morpho-molecular Characterization of Centrodinium punctatum (Cleve) F.J.R. Taylor Li Zhun 1, Mertens Kenneth 2, Nézan Elisabeth 2, Chomérat Nicolas 2, Bilien Gwenael 2, Iwataki Mitsunori 3, Shin Hyeon Ho 1, * 1 Library of Marine Samples, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea 2 Ifremer, LER BO, Station de Biologie Marine,Place de la Croix, BP40537, F-29185 Concarneau Cedex, France 3 Asian Natural Environmental Science Center, The University of Tokyo, Bunkyo, Tokyo, Japan * Corresponding author : Hyeon Ho Shin, email address : [email protected] Abstract : Investigation of phytoplankton from East China Sea of the Pacific Ocean, offshore Réunion Island of the Indian Ocean, and the French Atlantic coast revealed a species of poorly known armored fusiform dinoflagellate. To clarify this species, morphology and phylogeny based on mitochondrial and nuclear protein gene sequence (Cox1, Cob and Hsp90) concatenated with the SSU, ITS region and LSU rDNA sequences were analysed. Epifluorescence and scanning electron microscopy observations revealed that the nucleus of the specimen was elongated, sausage-shaped and located equatorially on the left lateral side of the cell, and that the plate formula is Po, 3′, 1a, 6″, 6C, 8S, 5‴, 1p, 2′‴. These morphological features indicate that the species can be assigned to Centrodinium punctatum. Interestingly, the phylogenetic analyses placed this species within the Alexandrium clade, with Alexandrium affine being its closest relative.
    [Show full text]
  • Science Journals
    SCIENCE ADVANCES | RESEARCH ARTICLE CELL BIOLOGY 2017 © The Authors, some rights reserved; Microbial arms race: Ballistic “nematocysts” exclusive licensee American Association in dinoflagellates represent a new extreme in for the Advancement of Science. Distributed organelle complexity under a Creative Commons Attribution 1,2 † 3,4 5 6 NonCommercial Gregory S. Gavelis, * Kevin C. Wakeman, Urban Tillmann, Christina Ripken, License 4.0 (CC BY-NC). Satoshi Mitarai,6 Maria Herranz,1 Suat Özbek,7 Thomas Holstein,7 Patrick J. Keeling,1 Brian S. Leander1,2 We examine the origin of harpoon-like secretory organelles (nematocysts) in dinoflagellate protists. These ballistic organelles have been hypothesized to be homologous to similarly complex structures in animals (cnidarians); but we show, using structural, functional, and phylogenomic data, that nematocysts evolved independently in both lineages. We also recorded the first high-resolution videos of nematocyst discharge in dinoflagellates. Unexpectedly, our data suggest that different types of dinoflagellate nematocysts use two fundamentally different types of ballistic mechanisms: one type relies on a single pressurized capsule for propulsion, whereas the other type launches 11 to 15 projectiles from an arrangement similar to a Gatling gun. Despite their radical structural differences, these nematocysts share a single origin within dinoflagellates and both potentially use a contraction-based mechanism to generate ballistic force. The diversity of traits in dinoflagellate nematocysts demonstrates a stepwise route by which simple secretory structures diversified to yield elaborate subcellular weaponry. INTRODUCTION in the phylum Cnidaria (7, 8), which is among the earliest diverging Planktonic microbes are often viewed as passive food items for larger life- predatory animal phyla.
    [Show full text]
  • Diversity and Phylogeny of Gymnodiniales (Dinophyceae) from the NW Mediterranean Sea Revealed by a Morphological and Molecular Approach
    Diversity and phylogeny of Gymnodiniales (Dinophyceae) from the NW Mediterranean Sea revealed by a morphological and molecular approach Albert Reñé *, Jordi Camp, Esther Garcés Institut de Ciències del Mar (CSIC) Pg. Marítim de la Barceloneta, 37-49 08003 Barcelona (Spain) * Corresponding author. Tel.: +34 93 230 9500; fax: +34 93 230 9555. E-mail address: [email protected] Abstract The diversity and phylogeny of dinoflagellates belonging to the Gymnodiniales were studied during a 3-year period at several coastal stations along the Catalan coast (NW Mediterranean) by combining analyses of their morphological features with rDNA sequencing. This approach resulted in the detection of 59 different morphospecies, 13 of which were observed for the first time in the Mediterranean Sea. Fifteen of the detected species were HAB producers; four represented novel detections on the Catalan coast and two in the Mediterranean Sea. Partial rDNA sequences were obtained for 50 different morphospecies, including novel LSU rDNA sequences for 27 species, highlighting the current scarcity of molecular information for this group of dinoflagellates. The combination of morphology and genetics allowed the first determinations of the phylogenetic position of several genera, i.e., Torodinium and many Gyrodinium and Warnowiacean species. The results also suggested that among the specimens belonging to the genera Gymnodinium, Apicoporus, and Cochlodinium were those representing as yet undescribed species. Furthermore, the phylogenetic data suggested taxonomic incongruences for some species, i.e., Gyrodinium undulans and Gymnodinium agaricoides. Although a species complex related to G. spirale was detected, the partial LSU rDNA sequences lacked sufficient resolution to discriminate between various other Gyrodinium morphospecies.
    [Show full text]
  • Eukaryotic Cell Organelles
    Department of Genetics and Plant Breeding Ch. Charan Singh University, Meerut Plant Physiology: An Open Elective Course (Study Material) Cell physiology: Cell organelles and their physiological functions, structure and physiological functions of cell wall, cell inclusions, cell membrane structure and functions. ------(syllabus of Unit 1) Suggested Readings (i) Salisbury FB and Ross, CW (1986) Plant Physiology, CBS Publishers & Distributors, New Delhi. (ii) Taize L and Zeiger E (2006) Plant Physiology. Sinauer Associates, Inc, Publishers, Sunderland, Massachusetts, USA. (iii) Hopkins WG and Huner NPA (2004) Introduction to Plant Physiology. John Wiley & Sons. (iv) Oxlade Edwin (2010) Plant Physiology: The Structure of Plants Explained. In-focus: Studymates. (v) Lodish, H, et al. "The Dynamic Plant Cell Wall." Molecular Cell Biology. 4th ed., W. H. Freeman, 2000, www.ncbi.nlm.nih.gov/books/NBK21709/. (vi) Young, Kevin D. “Bacterial Cell Wall.” Wiley Online Library, Wiley/Blackwell (10.1111), 19 Apr. 2010, onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0000297.pub2. Eukaryotic Cell Organelles Eukaryotic cells are structurally complex, and by definition are organized, in part, by interior compartments that are themselves enclosed by lipid membranes that resemble the outermost cell membrane. The larger organelles, such as the nucleus and vacuoles, are easily visible with the light microscope. They were among the first biological discoveries made after the invention of the microscope. Not all eukaryotic cells have each of the organelles listed below. Exceptional organisms have cells that do not include some organelles that might otherwise be considered universal to eukaryotes (such as mitochondria).[18] There are also occasional exceptions to the number of membranes surrounding organelles, listed in the tables below (e.g., some that are listed as double-membrane are sometimes found with single or triple membranes).
    [Show full text]
  • Redalyc.New Record of Three Species of the Family Warnowiaceae
    Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Gárate-Lizárraga, Ismael New record of three species of the family Warnowiaceae (Dinophyceae) in the Gulf of California Revista de Biología Marina y Oceanografía, vol. 47, núm. 3, diciembre, 2012, pp. 581-586 Universidad de Valparaíso Viña del Mar, Chile Available in: http://www.redalyc.org/articulo.oa?id=47925145020 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Biología Marina y Oceanografía Vol. 47, Nº3: 581-586, diciembre 2012 Research Note New record of three species of the family Warnowiaceae (Dinophyceae) in the Gulf of California Nuevos registros de tres especies de la familia Warnowiaceae (Dinophyceae) en el Golfo de California Ismael Gárate-Lizárraga1 1Laboratorio de Fitoplancton, Departamento de Plancton y Ecología Marina, Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Apartado postal 592, 23000, La Paz, B.C.S., México. [email protected] Abstract.- The naked marine dinoflagellates Proterythropsis vigilans, Nematodinium armatum, and Nematodinium torpedo are reported for the first time in the Gulf of California. The first and the third species are also recorded for the first time on the Pacific coast of Mexico. They were recorded during winter-spring in seawater at 20-26.5°C. Nematodinium armatum was the most frequent species. Proterythropsis vigilans was less frequent. The 3 species were found in phytoplankton net samples.
    [Show full text]