(Dinophyceae) Del Orden Gymnodiniales En Aguas De Las Islas Canarias

Total Page:16

File Type:pdf, Size:1020Kb

(Dinophyceae) Del Orden Gymnodiniales En Aguas De Las Islas Canarias Rev. Acad. Canar. Ciena, XII (Nums. 3-4), 21-44 (2000) (publicado en julio de 2001) APORTACION AL CONOCIMIENTO DE LOS DINOFLAGELADOS (DINOPHYCEAE) DEL ORDEN GYMNODINIALES EN AGUAS DE LAS ISLAS CANARIAS A. Ojeda Instituto Canario de Ciencias Marinas. Ctra. de Taliarte s/n. Apdo. 56. 35200 Telde, Gran Canada, Islas Canarias. ABSTRACT Contribution to the knowledge on dinoflagellates (Dinophyceae) of the orden Gymnodiniales in the Canary Islands waters. Thirty five taxa of marine dinoflagellates belonging to two families of the order Gymnodiniales are studied here: the Gymnodiniaceae represented by 29 taxa belong to the genus Gymnodinium Stein, Gyrodinium Kofoid & Swezy, Amphydinium Claparede & Lachmann, Cochlodinium Schiitt, Katodinium Fott and Torodinium Kofoid & Swezy, and the Warnowiaceae represented by four taxa belong to the genus Warnowia Lindemann, Nematodinium Kofoid & Swezy, Nematopsides Greuet and Eritropsidinium Silva. Twenty one species are new records in the Canary Islands, and for twelve its distribution is broadened in the Canarian archipelago. Descriptions of the species are supplemented with selected references, illustrations, biometric data and information on its regional distribution. The samples were collected with oceanographic bottles in several depths of the neritic and oceanic area. Key words: Dinophyceae, Gymnodiniales, dinoflagellates, Canary Islands, habitat, distribution. RESUMEN Se estudian 35 taxones de dinoflagelados marinos pertenecientes a dos familias del orden Gymnodiniales: Gymnodiniaceae representada por 29 taxones pertenecientes a los generos Gymnodinium Stein, Gyrodinium Kofoid y Swezy, Amphidinium Claparede y Lachmann, Cochlodinium Schiitt, Katodinium Fott y Torodinium Kofoid y Swezy y la fami- lia Warnowiaceae, representada por cuatro taxones pertenecientes a los generos Warnowia Lindemann, Nematodinium Kofoid y Swezy, Nematopsides Greuet y Eritropsidinium Silva. Se senalan 21 nuevos registros para las Islas Canarias y para 12 se amplia su distribucion en la region. Cada una de las especies se acompaha de referencias bibliograficas, ilustraciones, datos biometricos e information sobre su distribucion en el archipielago Canario. Las mues- tras fueron recolectadas con botellas oceanograficas en diversos puntos de la zona neritica y oceanica. Palabras clave: Dinophyceae, Gymnodiniales, dinoflagelados, islas Canarias, habi- tat, distribucion. 21 1. INTRODUCTION Los dinoflagelados del orden Gymnodiniales constituyen un componente importan- te del fitoplancton marino de las Islas Canarias. El genero Gymnodinium Stein es uno de los mas frecuentes y agrupa la mayor parte de las especies nanoplanctonicas, mayores de 10 um, presentes en las muestras estudiadas, constituyendo entre el 16% y el 47% del numero total de organismos identificados tanto en aguas neriticas como oceanicas. El genero Amphidinium Claparede y Lachmann le sigue en importancia, representando entre el 12% y el 25% del total de celulas determinadas. El estudio es fundamentalmente taxonomico y se ha cuidado, en especial, que estu- viese acompanado de una abundante iconografia. Se analizan treinta y cinco unidades taxonomicas, describiendose aquellas formas que no han podido ser determinadas hasta el nivel de especie. 2. MATERIAL Y METODOS El material estudiado se ha obtenido en diversas campafias oceanograficas realizadas en los ultimos diez anos en distintas areas del archipielago Canario, contandose ademas con muestras esporadicas correspondientes a los anos 1986-1988. Se han analizado 325 mues- tras obtenidas con botellas oceanograficas, desde la superficie hasta una profundidad maxi- ma de 150 m. La temperatura se midio con termometros invertidos dispuestos sobre las botellas o con sondas XBT. Las muestras fueron fijadas con solution de Lugol y concentra- das, por sedimentation, en cubetas de fondo movil de 100 ml de capacidad durante 48 horas. Las observaciones fueron llevadas a cabo utilizando un Microscopio Invertido (MI) Zeiss, provisto con contraste de fase y un micrometro ocular que permitio la obtencion de los datos biometricos. Las preparaciones fueron estudiadas a 200 y 400 aumentos, en oca- siones, los organismos mas pequenos fueron observados a 800 aumentos utilizando ocula- resde20X. El ordenamiento sistematico empleado y los sinonimos a los que se hace referenda son, en su mayorfa, los reconocidos por DODGE [12], SOURNIA [47-49] y STEIDINGER y TANGEN [50]. 3. RESULTADOS Y DISCUSION Orden Gymnodiniales Lemmermann [26] Familia Gymnodiniaceae Lankester [22] Genero Gymnodinium Stein [51] Clave para las especies de Gymnodinium observadas en Canarias 1.- Cloroplastos ausentes 2 Cloroplastos presentes 5 2.- Nucleo situado en el centro de la celula 3 Nucleo situado en el hipocono 4 3.- Mediana, epicono redondeado, periplasto con estriaciones longitudinales G heterostriatum Grande, citoplasma vesiculoso, con tentaculo G pseudonoctiluca 4.- Mediana, mucho mas larga que ancha, extremo posterior puntiagudo G fdum Grande, casi tan larga como ancha, extremo posterior redondeado ....G abbreviatum 22 5.- Pequena 6 Mediana 7 6.- Normalmente menor de 10 jam, epicono e hipocono casi de la misma altura, extremo anterior redondeado G simplex Entre 12 y 25 urn, epicono generalmente mas corto que el hipocono Gymnodinium sp. (pequeno) 7.- Cloroplastos elipticos que irradian del centro de la celula G. splendens Cloroplastos dispersos 8 8.- Pequena, mas o menos ovoide, epicono e hipocono casi de la misma altura G veneficum Mediana 9 9.- Aislada o formando cadenas, generalmente elipsoidal achatada G catenatum Distintas formas, generalmente mas larga que ancha Gymnodinium sp. (mediano) Gymnodinium abbreviatum Kofoid y Swezy [211 Figura 1 (1) Referencias: [12, 14, 50]. Dimensiones: Longitud total 85-120 urn. En uno de los ejemplares medidos longitud total 106 urn; ancho maximo hipocono 58 urn. Habitat: Ocho determinaciones al sudoeste de Gran Canaria en cuatro estaciones clara- mente oceanicas, en junio. No ha sido determinado en muestreos proximos a la costa. Temperatura 16,5-20,4° C. Distribution: Oceanica. Citada para el Canal de Inglaterra, Holanda y La Jolla, California. Islas Canarias: Gran Canaria. Primera cita para el archipielago Canario. Gymnodinium filum Lebour [241 Figura 1 (2) Referencia: [12]. Dimensiones: Longitud total 50-55 urn; ancho maximo hipocono en uno de los ejemplares medidos 13 urn. Habitat: Observada en treinta y siete estaciones al sudeste de Gran Canaria desde los 25 a los 130 m de profundidad, en junio. Oceanica. Temperatura 16,5-20,6° C. Distribucion: Citada al sur de Plymouth, Inglaterra. Islas Canarias: Gran Canaria. Primera cita para el archipielago Canario. Gymnodinium heterostriatum Kofoid y Swezy [211 Figura 1 (3) Sinonimos: Gymnodinium spirale var. obtusum Dogiel [13]; G rhomboides Lebour [25]; ? G lucidum Ballantine [3] (= G hyalinum lebour). Referencias: [12, 14, 50]. Discusion sistematica: Drebes y Elbrachter [15], incluyen como la misma especie a G luci- dum (= G hyalinum Lebour) y G rhomboides Lebour. Dimensiones: Longitud total 45-80 urn. Uno de los ejemplares observados presentaba las siguientes medidas: longitud total 79 urn, longitud epicono 31 urn; longitud hipocono 48 urn; ancho mayor epicono 35 urn; ancho mayor hipocono 45 um. Habitat: Poco abundante en las muestras, aunque observada con cierta frecuencia al sur y sudeste de Gran Canaria en junio y diciembre. Recolectada desde la superficie a 150 m de profundidad en aguas neriticas y oceanicas. Temperatura 16,5- 21,5° C. Distribucion: De aguas templadas. Citada para Napoles, La Jolla, Holanda, Canal de Inglaterra, NE de la costa britanica, islas Hebridas y mar Baltico. 23 Islas Canarias: El Hierro, La Palma, Tenerife, Gran Canaria, Fuerteventura y Lanzarote 5- 36-37. Se amplia su distribucion en el archipielago Canario: La Palma y Lanzarote. Gymnodinium pseudonoctiluca Pouchet T391 Figura 1 (4) Sinonimo: Kofoidinium pavillardi Cachon y Cachon [7]. Referencias: [2, 12]. Discusion sistematica: Existen algunas discrepancias respecto a la position sistematica de este dinoflagelado, como pone en evidencia BALECH [2]. Por la altura del epicono deberia ubicarse en el genero Amphidinium', por otra parte, como demostraron CACHON y CACHON [7], en realidad se trata de estados evolutivos de Kofoidinium, los cuales sufren una gran variabilidad tanto en el tamano como en la forma. Sin embargo, estos estados se diferencian de los verdaderos Gymnodinium por tener el protoplasma muy vesiculoso, sien- do designados por Pouchet como Gymnodinium pseudonoctiluca. Los Cachon, reservan el nombre de Spatulodinium pseudonoctiluca al ejemplar adulto de forma casi esferica y con un tentaculo largo bien desarrollado. Description que corresponde a los dos ejemplares observados en este trabajo. Dimensiones: Longitud cuerpo celular 100-130 urn; ancho 89-120 urn. Habitat: Especie rara en los muestreos. Dos ejemplares obtenidos a 10 y 20 m de profun- didad en aguas proximas a la costa, en noviembre. Temperatura 20,3° C. Distribucion: Citada para el NE y NW de las costas de Inglaterra y Escocia, mar Mediterraneo y Atlantico sudoccidental como especie rara. Islas Canarias: Gran Canaria. Primera cita para el archipielago Canario. Gymnodinium simplex (Lohmann) Kofoid y Swezy [21] Figura 1 (5) Sinonimo: Protodinium simplex Lohmann [29]. Referencias: [12, 48]. Discusion sistematica: Existen ciertas divergencias de opiniones a la hora de clasificar genericamente esta especie. Dodge [12] situa este dinoflagelado dentro del genero Gymno- dinium, siendo conocida esta especie como
Recommended publications
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • FIRST RECORD of Erythropsidinium Agile (GYMNODINIALES: WARNOWIACEAE) in the MEXICAN PACIFIC
    CICIMAR Oceánides 25(2): 137-142 (2010) FIRST RECORD OF Erythropsidinium agile (GYMNODINIALES: WARNOWIACEAE) IN THE MEXICAN PACIFIC Primer registro de Erythropsidinium agile et Swezy, 1921, Proterythropsis Kofoid et Swezy, (Gymnodiniales: Warnowiaceae) en el 1921, Warnowia Lindemann, 1928, Greuetodinium Pacífico Mexicano Loeblich III, 1980, and Erythropsidinium P.C. Silva, 1960. Ten species of Erythropsidinium have been RESUMEN. Se registra por primera vez Erythropsi- described from warm and temperate seas. However, dinium agile, un dinoflagelado de la Familia Warno- a taxonomical study based on the changes in struc- wiaceae para el Pacífico Mexicano, dentro de Bahía ture, position, and coloration of the ocelloid in the de La Paz (Golfo de California). Se observaron 26 course of the cell division or individual development ejemplares de E. agile, principalmente en muestras revealed that some species had different morpho- de fitoplancton de red para el periodo de estudio (Ju- types (Elbrächter, 1979). At present the valid species nio, 2006 a Junio, 2010). En muestras de botella se currently considered to belong to this genus are: estimaron densidades entre 80 y 1000 cél. L–1. Los ejemplares de E. agile mostraron gran variación en E. agile (Hertwig, 1884) P.C. Silva, 1960, E. cochlea forma, tamaño y coloración; se presentaron princi- (Schütt, 1895) P.C. Silva, 1960, E. extrudens (Ko- palmente en el período invierno-primavera, cuando foid et Swezy, 1921) P.C. Silva, 1960, and E. minus la columna del agua está homogénea, a temperatu- (Kofoid et Swezy, 1921) P.C. Silva, 1960. For the ras entre 19 y 22 °C y rica en nutrientes.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Seasonal and Interannual Changes in Ciliate and Dinoflagellate
    ORIGINAL RESEARCH published: 07 February 2017 doi: 10.3389/fmars.2017.00016 Seasonal and Interannual Changes in Ciliate and Dinoflagellate Species Assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada) Edited by: Deo F. L. Onda 1, 2, 3, Emmanuelle Medrinal 1, 3, André M. Comeau 1, 3 †, Mary Thaler 1, 2, 3, George S. Bullerjahn, Marcel Babin 1, 2 and Connie Lovejoy 1, 2, 3* Bowling Green State University, USA Reviewed by: 1 Département de Biologie and Québec-Océan, Université Laval, Quebec, QC, Canada, 2 Takuvik, Joint International Rebecca Gast, Laboratory, UMI 3376, Centre National de la Recherche Scientifique (CNRS, France) and Université Laval, Québec, QC, Woods Hole Oceanographic Canada, 3 Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada Institution, USA Alison Clare Cleary, Independent Researcher, San Recent studies have focused on how climate change could drive changes in Francisco, United States phytoplankton communities in the Arctic. In contrast, ciliates and dinoflagellates that can *Correspondence: contribute substantially to the mortality of phytoplankton have received less attention. Connie Lovejoy Some dinoflagellate and ciliate species can also contribute to net photosynthesis, [email protected] which suggests that species composition could reflect food web complexity. To identify †Present Address: André M. Comeau, potential seasonal and annual species occurrence patterns and to link species with Centre for Comparative Genomics and environmental conditions, we first examined the seasonal pattern of microzooplankton Evolutionary Bioinformatics-Integrated Microbiome Resource, Department of and then performed an in-depth analysis of interannual species variability. We used Pharmacology, Dalhousie University, high-throughput amplicon sequencing to identify ciliates and dinoflagellates to the lowest Canada taxonomic level using a curated Arctic 18S rRNA gene database.
    [Show full text]
  • Metagenomic Characterization of Unicellular Eukaryotes in the Urban Thessaloniki Bay
    Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay George Tsipas SCHOOL OF ECONOMICS, BUSINESS ADMINISTRATION & LEGAL STUDIES A thesis submitted for the degree of Master of Science (MSc) in Bioeconomy Law, Regulation and Management May, 2019 Thessaloniki – Greece George Tsipas ’’Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay’’ Student Name: George Tsipas SID: 268186037282 Supervisor: Prof. Dr. Savvas Genitsaris I hereby declare that the work submitted is mine and that where I have made use of another’s work, I have attributed the source(s) according to the Regulations set in the Student’s Handbook. May, 2019 Thessaloniki - Greece Page 2 of 63 George Tsipas ’’Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay’’ 1. Abstract The present research investigates through metagenomics sequencing the unicellular protistan communities in Thermaikos Gulf. This research analyzes the diversity, composition and abundance in this marine environment. Water samples were collected monthly from April 2017 to February 2018 in the port of Thessaloniki (Harbor site, 40o 37’ 55 N, 22o 56’ 09 E). The extraction of DNA was completed as well as the sequencing was performed, before the downstream read processing and the taxonomic classification that was assigned using PR2 database. A total of 1248 Operational Taxonomic Units (OTUs) were detected but only 700 unicellular eukaryotes were analyzed, excluding unclassified OTUs, Metazoa and Streptophyta. In this research-based study the most abundant and diverse taxonomic groups were Dinoflagellata and Protalveolata. Specifically, the most abundant groups of all samples are Dinoflagellata with 190 OTUs (27.70%), Protalveolata with 139 OTUs (20.26%) Ochrophyta with 73 OTUs (10.64%), Cercozoa with 67 OTUs (9.77%) and Ciliophora with 64 OTUs (9.33%).
    [Show full text]
  • Manual for Phytoplankton Sampling and Analysis in the Black Sea
    Manual for Phytoplankton Sampling and Analysis in the Black Sea Dr. Snejana Moncheva Dr. Bill Parr Institute of Oceanology, Bulgarian UNDP-GEF Black Sea Ecosystem Academy of Sciences, Recovery Project Varna, 9000, Dolmabahce Sarayi, II. Hareket P.O.Box 152 Kosku 80680 Besiktas, Bulgaria Istanbul - TURKEY Updated June 2010 2 Table of Contents 1. INTRODUCTION........................................................................................................ 5 1.1 Basic documents used............................................................................................... 1.2 Phytoplankton – definition and rationale .............................................................. 1.3 The main objectives of phytoplankton community analysis ........................... 1.4 Phytoplankton communities in the Black Sea ..................................................... 2. SAMPLING ................................................................................................................. 9 2.1 Site selection................................................................................................................. 2.2 Depth ............................................................................................................................... 2.3 Frequency and seasonality ....................................................................................... 2.4 Algal Blooms................................................................................................................. 2.4.1 Phytoplankton bloom detection
    [Show full text]
  • Characterising Planktonic Dinoflagellate Diversity in Singapore Using DNA Metabarcoding
    Metabarcoding and Metagenomics 2: 1–14 DOI 10.3897/mbmg.2.25136 Research Article Characterising planktonic dinoflagellate diversity in Singapore using DNA metabarcoding Yue Sze1, Lilibeth N. Miranda2, Tsai Min Sin2,†, Danwei Huang1,2 1 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore. 2 Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore. † Deceased. Corresponding author: Danwei Huang ([email protected]) Academic editor: Thorsten Stoeck | Received 19 March 2018 | Accepted 24 April 2018 | Published 17 May 2018 Abstract Dinoflagellates are traditionally identified morphologically using microscopy, which is a time-consuming and labour-intensive process. Hence, we explored DNA metabarcoding using high-throughput sequencing as a more efficient way to study planktonic dinoflagellate diversity in Singapore’s waters. From 29 minimally pre-sorted water samples collected at four locations in western Singapore, DNA was extracted, amplified and sequenced for a 313-bp fragment of the V4–V5 region in the 18S ribosomal RNA gene. Two sequencing runs generated 2,847,170 assembled paired-end reads, corresponding to 573,176 unique sequences. Sequenc- es were clustered at 97% similarity and analysed with stringent thresholds (≥150 bp, ≥20 reads, ≥95% match to dinoflagellates), recovering 28 dinoflagellate taxa. Dinoflagellate diversity captured includes parasitic and symbiotic groups which are difficult to identify morphologically. Richness is similar between the inner and outer West Johor Strait, but variations in community structure are apparent, likely driven by environmental differences. None of the taxa detected in a recent phytoplankton bloom along the West Johor Strait have been recovered in our samples, suggesting that background communities are distinct from bloom communities.
    [Show full text]
  • Highlights • the Type Species of Cochlodinium, C. Strangulatum, Is
    1 Highlights • The type species of Cochlodinium, C. strangulatum, is widespread, but was mistaken for large cells of Gyrodinium. • First molecular data of a Cochlodinium heterotrophic species, the generic type Cochlodinium strangulatum. • The morphology and molecular phylogeny of Cochlodinium polykrikoides is distantly related to the generic type. • New genus, Margalefidinium gen. nov., and combinations for Cochlodinium polykrikoides and allied species. 2 Molecular characterization and morphology of Cochlodinium strangulatum, the type species of Cochlodinium, and Margalefidinium gen. nov. for C. polykrikoides and allied species (Gymnodiniales, Dinophyceae) Fernando Gómeza,*, Mindy L. Richlenb, Donald M. Andersonb a Carmen Campos Panisse 3, E-11500 Puerto de Santa María, Spain b Woods Hole Oceanographic Institution, Woods Hole MA 02543-1049, USA * Corresponding author: E-mail address: [email protected] (F. Gómez) 3 ABSTRACT Photosynthetic species of the dinoflagellate genus Cochlodinium such as C. polykrikoides, one of the most harmful bloom-forming dinoflagellates, have been extensively investigated. Little is known about the heterotrophic forms of Cochlodinium, such as its type species, Cochlodinium strangulatum. This is an uncommon, large (~200 µm long), solitary, and phagotrophic species, with numerous refractile bodies, a central nucleus enclosed in a distinct perinuclear capsule, and a cell surface with fine longitudinal striae and a circular apical groove. The morphology of C. polykrikoides and allied species is different from the generic type. It is a bloom-forming species with single, two or four-celled chains, small cell size (25–40 µm long) with elongated chloroplasts arranged longitudinally and in parallel, anterior nucleus, eye-spot in the anterior dorsal side, and a cell surface smooth with U-shaped apical groove.
    [Show full text]
  • Redalyc.Occurrence of Cochlodinium Fulvescens(Gymnodiniales
    Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Gárate-Lizárraga, Ismael Occurrence of Cochlodinium fulvescens(Gymnodiniales: Dinophyceae) in the southwestern Gulf of California Revista de Biología Marina y Oceanografía, vol. 49, núm. 1, abril-, 2014, pp. 123-127 Universidad de Valparaíso Viña del Mar, Chile Available in: http://www.redalyc.org/articulo.oa?id=47931255013 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Biología Marina y Oceanografía Vol. 49, Nº1: 123-127, abril 2014 RESEARCH NOTE Occurrence of Cochlodinium fulvescens (Gymnodiniales: Dinophyceae) in the southwestern Gulf of California Ocurrencia de Cochlodinium fulvescens (Gymnodiniales: Dinophyceae) en el suroeste del Golfo de California Ismael Gárate-Lizárraga1 1Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Departamento de Plancton y Ecología Marina, Apartado postal 592, La Paz, B.C.S. 23000, México. [email protected] Abstract.- The naked dinoflagellate Cochlodinium fulvescens was rarely observed in Bahía de La Paz since 2008. Sporadic observations were made in 2010 and 2012. The species re-appeared from October 2012 to April 2013. Abundance of C. fulvescens ranged from 600 to 45,800 cells L–1 during this period in seawater temperature at 22-27°C and salinity of 35.25- 35.75. This species appeared as single cells or two-celled chains and co-occurred with Cochlodinium polykrikoides at the end of the bloom.
    [Show full text]
  • Phylogenetic Analysis of Brachidinium Capitatum (Dinophyceae) from the Gulf of Mexico Indicates Membership in the Kareniaceae1
    J. Phycol. 47, 366–374 (2011) Ó 2011 Phycological Society of America DOI: 10.1111/j.1529-8817.2011.00960.x PHYLOGENETIC ANALYSIS OF BRACHIDINIUM CAPITATUM (DINOPHYCEAE) FROM THE GULF OF MEXICO INDICATES MEMBERSHIP IN THE KARENIACEAE1 Darren W. Henrichs Department of Biology, Texas A&M University, College Station, Texas 77843, USA Heidi M. Sosik, Robert J. Olson Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA and Lisa Campbell2 Department of Oceanography and Department of Biology, Texas A&M University, College Station, Texas 77843, USA Brachidinium capitatum F. J. R. Taylor, typically ITS, internal transcribed spacer; ML, maximum considered a rare oceanic dinoflagellate, and one likelihood; MP, maximum parsimony which has not been cultured, was observed at ele- ) vated abundances (up to 65 cells Æ mL 1) at a coastal station in the western Gulf of Mexico in the fall of 2007. Continuous data from the Imaging FlowCyto- Members of the genus Brachidinium have been bot (IFCB) provided cell images that documented observed in samples from throughout the world, yet the bloom during 3 weeks in early November. they remain poorly known because they have always Guided by IFCB observations, field collection per- been recorded at extremely low abundances. The mitted phylogenetic analysis and evaluation of the type species, B. capitatum, originally described by relationship between Brachidinium and Karenia. Taylor (1963) from the southwest Indian Ocean, Sequences from SSU, LSU, internal transcribed has also been identified from the Pacific Ocean spacer (ITS), and cox1 regions for B. capitatum were (Hernandez-Becerril and Bravo-Sierra 2004, Gomez compared with five other species of Karenia; all 2006), the northeast Atlantic Ocean, the Mediterra- B.
    [Show full text]
  • Marine Phytoplankton Atlas of Kuwait's Waters
    Marine Phytoplankton Atlas of Kuwait’s Waters Marine Phytoplankton Atlas Marine Phytoplankton Atlas of Kuwait’s Waters Marine Phytoplankton Atlas of Kuwait’s of Kuwait’s Waters Manal Al-Kandari Dr. Faiza Y. Al-Yamani Kholood Al-Rifaie ISBN: 99906-41-24-2 Kuwait Institute for Scientific Research P.O.Box 24885, Safat - 13109, Kuwait Tel: (965) 24989000 – Fax: (965) 24989399 www.kisr.edu.kw Marine Phytoplankton Atlas of Kuwait’s Waters Published in Kuwait in 2009 by Kuwait Institute for Scientific Research, P.O.Box 24885, 13109 Safat, Kuwait Copyright © Kuwait Institute for Scientific Research, 2009 All rights reserved. ISBN 99906-41-24-2 Design by Melad M. Helani Printed and bound by Lucky Printing Press, Kuwait No part of this work may be reproduced or utilized in any form or by any means electronic or manual, including photocopying, or by any information or retrieval system, without the prior written permission of the Kuwait Institute for Scientific Research. 2 Kuwait Institute for Scientific Research - Marine phytoplankton Atlas Kuwait Institute for Scientific Research Marine Phytoplankton Atlas of Kuwait’s Waters Manal Al-Kandari Dr. Faiza Y. Al-Yamani Kholood Al-Rifaie Kuwait Institute for Scientific Research Kuwait Kuwait Institute for Scientific Research - Marine phytoplankton Atlas 3 TABLE OF CONTENTS CHAPTER 1: MARINE PHYTOPLANKTON METHODOLOGY AND GENERAL RESULTS INTRODUCTION 16 MATERIAL AND METHODS 18 Phytoplankton Collection and Preservation Methods 18 Sample Analysis 18 Light Microscope (LM) Observations 18 Diatoms Slide Preparation
    [Show full text]
  • Monitoring Groningen Sea Ports Non-Indigenous Species and Risks from Ballast Water in Eemshaven and Delfzijl
    Monitoring Groningen Sea Ports Non-indigenous species and risks from ballast water in Eemshaven and Delfzijl Authors: D.M.E. Slijkerman, S.T. Glorius, A. Gittenberger¹, B.E. van der Weide, O.G. Bos, Wageningen University & M. Rensing¹, G.A. de Groot² Research Report C045/17 A ¹ GiMaRiS ² Wageningen Environmental Research Monitoring Groningen Sea Ports Non-indigenous species and risks from ballast water in Eemshaven and Delfzijl Authors: D.M.E. Slijkerman, S.T. Glorius, A. Gittenberger1, B.E. van der Weide, O.G. Bos, M. Rensing1, G.A. de Groot2 1GiMaRiS 2Wageningen Environmental Research Publication date: June 2017 Wageningen Marine Research Den Helder, June 2017 Wageningen Marine Research report C045/17 A Monitoring Groningen Sea Ports, Non-indigenous species and risks from ballast water in Eemshaven and Delfzijl; D.M.E. Slijkerman, S.T. Glorius, A. Gittenberger, B.E. van der Weide, O.G. Bos, M. Rensing, G.A. de Groot, 2017. Wageningen, Wageningen Marine Research (University & Research centre), Wageningen Marine Research report C045/17 A. 81 pp. Keywords: Harbour monitoring, Non- Indigenous Species, eDNA, metabarcoding, Ballast water This report is free to download from https://doi.org/10.18174/417717 Wageningen Marine Research provides no printed copies of reports. This project was funded by “Demonstratie Ballast Waterbehandelings Barge kenmerk WF220396”, under the Subsidy statute by Waddenfonds 2012, and KB project HI Marine Portfolio (KB-24-003- 012). Client: DAMEN Green Solutions Attn.: Dhr. R. van Dinteren Industrieterrein Avelingen West 20 4202 MS Gorinchem Acknowledgements and partners Wageningen Marine Research is ISO 9001:2008 certified. © 2016 Wageningen Marine Research Wageningen UR Wageningen Marine Research The Management of Wageningen Marine Research is not responsible for resulting institute of Stichting Wageningen damage, as well as for damage resulting from the application of results or Research is registered in the Dutch research obtained by Wageningen Marine Research, its clients or any claims traderecord nr.
    [Show full text]