Anopheles Arabiensis Behaviour and Ecology for the Dissemination of Pyriproxyfen, a Novel Technique for Malaria Vector Control in Tanzania

Total Page:16

File Type:pdf, Size:1020Kb

Anopheles Arabiensis Behaviour and Ecology for the Dissemination of Pyriproxyfen, a Novel Technique for Malaria Vector Control in Tanzania Exploitation of adult Anopheles arabiensis behaviour and ecology for the dissemination of pyriproxyfen, a novel technique for malaria vector control in Tanzania Dickson Wilson Lwetoijera Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy January 2016 1 ABSTRACT Effective larviciding to manage mosquito aquatic habitats offers an additional strategy for malaria vector control by complementing benefits already achieved by long lasting insecticide- treated nets (LLINs) and indoor residual spraying (IRS). Sustainable implementation of larviciding requires comprehensive understanding of the ecology of disease vectors and robust monitoring of factors governing local disease transmission. Treatment of aquatic habitats with the juvenile hormone analogue Pyriproxyfen (PPF), inhibits adult mosquito emergence at extremely low concentrations that are potentially deliverable by PPF-contaminated gravid adult females, a phenomenon termed „autodissemination‟. The primary aim of this thesis was to investigate a range of adult mosquito behaviours that might be exploited to disseminate PPF. The effectiveness of PPF to sterilize adult mosquitoes for malaria vector control was also assessed in a controlled system. Vector dynamics, malaria transmission intensity and risk factors were evaluated at the field site where the PPF autodissemination strategy would be evaluated in field trials and potentially implemented. Field monitoring of indoor malaria transmission risk factors revealed that even in the communities with high coverage of bednets, LLINs did not reduce the indoor densities of An. gambiae s.l (RR= 0.74 (0.50 - 1.11, p > 0.05) but reduced An. funestus indoor densities by 56% (RR= 0.44 (0.23 - 0.87, p < 0.05)). Houses with eave gaps had 3.3 and 5.5 times more An. gambiae s.l. (RR= 3.3 (2.39 - 4.56, p < 0.05)) and An. funestus ((RR = 5.55 (3.25 - 9.46, p < 0.05)) respectively. Intact screening over windows reduced up to 66% (RR = 0.34 (0.17 - 0.69)) and 83% (RR = 0.17 (0.08 - 0.39)) indoor entry of An. gambiae s.l. and An. funestus respectively. Furthermore, surveillance of wild malaria vectors populations and susceptibility to insecticide resistance demonstrated significant increase in An. funestus densities in 2012 (RR=1.56 (1.33- 1.69)) compared to An.gambiae s.l. (p <0.0001). In 2014, the proportion of An. gambiae s.l. catches (67%; 4373/6373) was higher than An. funestus (33%; 2100/6373). PCR results revealed change in relative proportion between the two sibling species of An.gambaie s.l. with a significant decrease in An. gambiae s.s. from approximately 14% (414/2,924) in 2008 to 0% (0/435) in 2014. Insecticide susceptibility tests indicated high resistance in An. funestus against deltamethrin (mortality rate in discriminating dose assay = 87%), lambda cyhalothrin (74%), permethrin (65%), bendiocarb (65%), and DDT (66%). Similarly, An. arabiensis showed insecticide resistance to permethrin (77%), deltamethrin (64%) and lambda cyhalothrin (42%) in 2014. In large screened cages it was demonstrated that adult An. arabiensis can disseminate PPF from clay pots treated with PPF to the aquatic habitats, resulting in 76.5% reduction in adult emergence, with higher mean proportion of adult emerging from untreated chamber, 0.95 (0.56 - 1.34) compared to the treated chamber, 0.21 (0.09 - 0.51, p < 0.0001). Treatment of a single clay pot resulted in 58% reduction in adult emergence in six habitats, with mean proportion of 0.34 (0.21 – 0.45) compared to the controls, 0.98 (0.96 – 1.00, p < 0.0001), showing a high level of habitats coverage amplification of the autodissemination event. After treating the walls and ceilings of cattle shelters with PPF, mosquito sterilization resulted in > 95% (89.3 - 102.9%) reduction in adult An. arabiensis production. This research provides evidence on the need of better housing and larviciding to complement LLINs in controlling the remaining malaria transmission transmitted by An. funestus and An. arabiensis. It also demonstrated for the first time that the PPF autodissemination strategy and sterilization of adult females present a promising malaria vector control option for field trial. PPF-autodissemination can be integrated into a vector management toolbox to control outdoor malaria transmission and also target multiple disease-carrying mosquitoes that share aquatic habitats with malaria vectors. These findings highlight the potential of PPF for controlling outdoor and indoor malaria vectors and call for further testing in the field. 2 DECLARATION I declare that this thesis is my own original work and that none of the material in this thesis has been presented or submitted to any other University for a similar degree award. Chapters 2, 3, 4 and 5 have already been published as reports in peer-reviewed journals, as Lwetoijera et al. and are presented in this thesis with minimal modification. Since those publications had multiple authors, the individual contributions of the co- authors are described here:- Chapter 2: A need for better housing to further reduce indoor malaria transmission in areas with high bed net coverage. Dickson W. Lwetoijera (DWL) proposed the study, supervised field data collection, analysed the data and drafted the manuscript under the supervision of Silas Majambere (SM), Samson K. Kiware (SSK) and Brian Faragher (BF) assisted in data analysis. The additional authors, Zawadi D. Mageni (ZDM), Caroline Harris (CH), Stefan Dongus (SD) and Gregor J. Devine (GJD), contributed to and approved the final manuscript. Chapter 3: Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. DWL conceived the study hypothesis, designed and supervised data collection, performed data analysis and drafted the manuscript under supervision of SM and Philip J. McCall (PJM). CH, SSK, SD and GJD contributed to the study design, and contributed to and approved the final manuscript. Chapter 4: Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopheles arabiensis in semi-field settings in Tanzania. DWL, SM and GD conceived the study hypothesis. DWL developed the study protocols and conducted the experiments; DWL, SSK and CH performed statistical analysis and interpreted the results. SM and PJM supervised the experimental progress and 3 supervised drafting of the manuscript. All authors contributed to and approved the final manuscript. Chapter 5: Comprehensive sterilization of resilient malaria vectors: a step closer to malaria elimination. DWL and SM conceived the study hypothesis, summarized and analysed the data under guidance of SSK and CH, and wrote the first manuscript draft. DWL prepared the study protocols, and performed and supervised the experiments under supervision of SM and PJM. All authors contributed to and approved the final manuscript. All remaining parts of the thesis were written by DWL, under the guidance of PJM and SM. Signed :................................................(Candidate) Date:.................................................... 4 TABLE OF CONTENTS ABSTRACT ....................................................................................................................... 2 DECLARATION ............................................................................................................... 2 TABLE OF CONTENTS ................................................................................................... 5 ACKNOWLEDGMENTS ................................................................................................. 9 LIST OF TABLES ........................................................................................................... 11 LIST OF FIGURES ......................................................................................................... 12 LIST OF ABBREVIATIONS .......................................................................................... 14 1 INTRODUCTION AND LITERATURE REVIEW .......................................... 16 1.1 Malaria ................................................................................................................ 16 1.1.1 Malaria parasites and transmission ............................................................ 17 1.1.2 Malaria vectors ........................................................................................... 20 1.1.3 Biology of the main African anopheline vectors ....................................... 21 1.2 Control of malaria vectors and challenges to existing approaches ..................... 23 1.2.1 Integrated vector management ................................................................... 25 1.2.2 Sustainable larval control ........................................................................... 26 1.2.3 Larval control by autodissemination of pyriproxyfen ............................... 29 1.3 Insect Development and Reproduction Hormones ............................................. 30 1.3.1 Insect Growth Regulators .......................................................................... 31 1.3.2 Mechanism of action of Juvenile Hormone Analogues ............................. 32 1.4 Pyriproxyfen for control of mosquito vectors and other pests ........................... 33 5 1.4.1 Effect of pyriproxyfen on non-targeted organisms .................................... 36 1.4.2 Potential for pyriproxyfen to impact on malaria transmission ................... 37 1.4.3 Evolution of resistance
Recommended publications
  • California Encephalitis Orthobunyaviruses in Northern Europe
    California encephalitis orthobunyaviruses in northern Europe NIINA PUTKURI Department of Virology Faculty of Medicine, University of Helsinki Doctoral Program in Biomedicine Doctoral School in Health Sciences Academic Dissertation To be presented for public examination with the permission of the Faculty of Medicine, University of Helsinki, in lecture hall 13 at the Main Building, Fabianinkatu 33, Helsinki, 23rd September 2016 at 12 noon. Helsinki 2016 Supervisors Professor Olli Vapalahti Department of Virology and Veterinary Biosciences, Faculty of Medicine and Veterinary Medicine, University of Helsinki and Department of Virology and Immunology, Hospital District of Helsinki and Uusimaa, Helsinki, Finland Professor Antti Vaheri Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland Reviewers Docent Heli Harvala Simmonds Unit for Laboratory surveillance of vaccine preventable diseases, Public Health Agency of Sweden, Solna, Sweden and European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden Docent Pamela Österlund Viral Infections Unit, National Institute for Health and Welfare, Helsinki, Finland Offical Opponent Professor Jonas Schmidt-Chanasit Bernhard Nocht Institute for Tropical Medicine WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research National Reference Centre for Tropical Infectious Disease Hamburg, Germany ISBN 978-951-51-2399-2 (PRINT) ISBN 978-951-51-2400-5 (PDF, available
    [Show full text]
  • Diversidade E Dinâmica De Microcrustáceos Em Áreas Úmidas Intermitentes
    Universidade Federal do Rio Grande Instituto de Ciências Biológicas Pós-graduação em Biologia de Ambientes Aquáticos Continentais Diversidade e dinâmica de microcrustáceos em áreas úmidas intermitentes Maiby Glorize da Silva Bandeira Orientadora: Profa. Dra. Edélti F. Albertoni Coorientador: Prof. Dr. Luiz U. Hepp Rio Grande 2020 Universidade Federal do Rio Grande Instituto de Ciências Biológicas Pós-graduação em Biologia de Ambientes Aquáticos Continentais Diversidade e dinâmica de microcrustáceos em áreas úmidas intermitentes Aluna: Maiby Glorize da Silva Bandeira Orientadora: Profa. Dra. Edélti F. Albertoni Coorientador: Prof. Dr. Luiz U. Hepp Tese apresentada ao Programa de Pós- graduação em Biologia de Ambientes Aquáticos Continentais como requisito parcial para a obtenção do título de Doutora em Biologia de Ambientes Aquáticos Continentais. Rio Grande 2020 Dedico ao meu querido Andirobal (Monte Alegre-PA) Cujos moradores são a minha motivação diária Eles me mantém focada nos meus objetivos E me fazem ser mais persistente com os meus sonhos Que de certa forma são deles também. AGRADECIMENTOS Primeiramente a Deus que nunca desiste de mim. Segundo, à queridíssima profª. Edélti Albertoni que desde o meu primeiro email (no início de 2016), me aceitou e permitiu que eu realizasse mais um grande sonho na minha vida. Nunca terei palavras para expressar o carinho que ela, o prof. Cleber, a Manu e o Leandro tiveram comigo quando cheguei ao tenebroso frio do Sul. A Edélti não foi só uma orientadora, também foi mãe, amiga, conselheira e sempre nos acolheu com muito carinho, seja no laboratório ou no aconchego do seu lar. Sempre me apoiou nas minhas decisões, nas desilusões, nas conquistas, e soube me frear quando achou necessário.
    [Show full text]
  • Adaptation of the Brown Planthopper, Nilaparvata Lugens (Stål), to Resistant Rice Varieties
    Adaptation of the brown planthopper, Nilaparvata lugens (Stål), to resistant rice varieties Jedeliza B. Ferrater Promotor Prof.dr Marcel Dicke Professor of Entomology Wageningen University Co-promoters Dr Finbarr G. Horgan Senior Scientist International Rice Research Institute, Los Baños, Philippines Dr Peter W. de Jong Assistant Professor at the Laboratory of Entomology Wageningen University Other members Prof. Dr Jaap Bakker, Wageningen University Dr Ben Vosman, Plant Research International, Wageningen Dr Bart A. Pannebakker, Wageningen University Dr Orlando M.B. de Ponti, Wageningen This research was conducted under the auspices of the C.T de Wit Graduate School for Production Ecology and Resource Conservation. Adaptation of the brown planthopper, Nilaparvata lugens (Stål), to resistant rice varieties Jedeliza B. Ferrater Thesis Submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 2 December 2015 at 11a.m. in the Aula Jedeliza B. Ferrater Adaptation of the brown planthopper, Nilaparvata lugens (Stål), to resistant rice varieties 200 pages PhD thesis, Wageningen University, Wageningen, NL (2015) With references, with summary in English ISBN 978-94-6257-559-2 ACKNOWLEDGEMENT It has been said that it‘s not the destination, but the journey that matters. This thesis is much like a journey with unexpected circumstances encountered along the way. Overall, my memories captured more the nice view and I have no regrets of passing some bumps along the way because these bumps have shaped my character and prepared myself to deal with the future.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • WO 2015/038734 A2 19 March 2015 (19.03.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/038734 A2 19 March 2015 (19.03.2015) P O P C T (51) International Patent Classification: Not classified International, Inc., 7250 N.W. 62nd Avenue, Johnston, Iowa 5013 1-0552 (US). SCHELLENBERGER, Ute; c/o (21) International Application Number: Pioneer Hi-Bred International, Inc., 7250 N.W. 62nd Av PCT/US20 14/055 128 enue, Johnston, Iowa 5013 1-0552 (US). UDRANSZKY, (22) International Filing Date Ingrid; c/o Pioneer Hi-Bred International, Inc., 7250 N.W. 11 September 2014 ( 11.09.2014) 62nd Avenue, Johnston, Iowa 5013 1-0552 (US). WEI, Jun-zhi; c/o Pioneer Hi-Bred International, Inc., 7250 (25) Filing Language: English N.W. 62nd Avenue, Johnston, Iowa 5013 1-0552 (US). (26) Publication Language: English XIE, Weiping; c/o Pioneer Hi-Bred International, Inc., 7250 N.W. 62nd Avenue, Johnson, Iowa 5013 1-0552 (30) Priority Data: (US). ZHU, Genhai; c/o Pioneer Hi-Bred International, 61/877,625 13 September 2013 (13.09.2013) US Inc., 7250 N.W. 62nd Avenue, Johnston, Iowa 5013 1-0552 (71) Applicant: PIONEER HI-BRED INTERNATIONAL, (US). INC. [US/US]; 7100 N.W. 62nd Avenue, Johnston, Iowa (74) Agent: BAUER, S. Christopher; Pioneer Hi-Bred Interna 5013 1-1014 (US). tional, Inc., 7250 N.W. 62nd Avenue, Johnston, Iowa (72) Inventors: DIEHN, Scott; c/o Pioneer Hi-Bred Interna 5013 1-0552 (US). tional, Inc., 7250 N.W. 62nd Avenue, Johnston, Iowa (81) Designated States (unless otherwise indicated, for every 5013 1-0552 (US).
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Impacts of Bacillus Thuringiensis Var. Israelensis and Bacillus Sphaericus Insect Larvicides on Mosquito Larval Densities in Lusaka, Zambia
    Medical Journal of Zambia, Vol. 39, No. 4 (2012) ORIGINAL PAPER Impacts of Bacillus thuringiensis var. israelensis and Bacillus sphaericus insect larvicides on mosquito larval densities in Lusaka, Zambia Kandyata, A.*1, 2, Mbata, K. J.2, Shinondo, C. J.3, Katongo, C.2, Kamuliwo, R. M.1, Nyirenda, F.1 , Chanda, J.1 and E. Chanda1, 3 1National Malaria Control Centre, P.O. Box 32509, Lusaka. 2Department of Biological Sciences, University of Zambia, P.O. Box 32379, Lusaka. 3Department of Biomedical Sciences, University of Zambia, P.O. Box 50110, Lusaka 1-3 ABSTRACT annually, mostly in tropical countries of Africa and Asia. In Zambia, the disease accounts for about 4.3 million The study assessed the impact of bio-larvicides- Bacillus clinical cases with an average of 6,000 deaths annually.4,5 thuringiensis var. israelensis (Bti) and B. sphaericus (Bs) Malaria control involve an integrated approach using on anopheline mosquito larval densities in four selected effective treatment with Artemisinin-based Combination areas of Lusaka urban district. Larval densities were Therapy (Artemether/Lumefantrine) and vector control.6 determined using a standard WHO protocol at each study Presently the frontline vector control interventions are area prior to and after larviciding. Ninety percent (90%) insecticide treated bed nets (ITNs) and indoor residual of the collected mosquito larvae and pupae were spraying (IRS).7-10 preserved in 70% ethanol, while 10% were reared to adults for species identification. Prior to larviciding, the Despite significant impacts rendered by ITNs and IRS in largest number of mosquito larvae collected was operational settings, these interventions are undermined by the development of insecticide resistance in malaria culicines.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • Climate Change May Restrict the Predation Efficiency of Mesocyclops
    insects Article Climate Change May Restrict the Predation Efficiency of Mesocyclops aspericornis (Copepoda: Cyclopidae) on Aedes aegypti (Diptera: Culicidae) Larvae Nobuko Tuno 1,* , Tran Vu Phong 2,3 and Masahiro Takagi 2 1 Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan 2 Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; [email protected] (T.V.P.); [email protected] (M.T.) 3 Department of Medical Entomology and Zoology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam * Correspondence: tuno@staff.kanazawa-u.ac.jp; Tel.: +81-76-264-6214 Received: 31 March 2020; Accepted: 13 May 2020; Published: 14 May 2020 Abstract: (1) Dengue is the most spread mosquito-borne viral disease in the world, and vector control is the only available means to suppress its prevalence, since no effective treatment or vaccine has been developed. A biological control program using copepods that feed on mosquito larvae has been practiced in Vietnam and some other countries, but the application of copepods was not always successful. (2) To understand why the utility of copepods varies, we evaluated the predation efficiency of a copepod species (Mesocyclops aspericornis) on a vector species (Aedes aegypti) by laboratory experiments under different temperatures, nutrition and prey-density conditions. (3) We found that copepod predation reduced intraspecific competition among Aedes larvae and then shortened the survivor’s aquatic life and increased their pupal weight. In addition, the predatory efficiency of copepods was reduced at high temperatures. Furthermore, performance of copepod offspring fell when the density of mosquito larvae was high, probably because mosquito larvae had adverse effects on copepod growth through competition for food resources.
    [Show full text]
  • Wild Anopheles Funestus Mosquito Genotypes Are Permissive for Infection with the Rodent Malaria Parasite, Plasmodium Berghei
    Wild Anopheles funestus mosquito genotypes are permissive for infection with the rodent malaria parasite, Plasmodium berghei. Jiannong Xu, Julian F. Hillyer, Boubacar Coulibaly, Madjou Sacko, Adama Dao, Oumou Niare, Michelle M. Riehle, Sekou F. Traore, Kenneth D Vernick To cite this version: Jiannong Xu, Julian F. Hillyer, Boubacar Coulibaly, Madjou Sacko, Adama Dao, et al.. Wild Anophe- les funestus mosquito genotypes are permissive for infection with the rodent malaria parasite, Plas- modium berghei.. PLoS ONE, Public Library of Science, 2013, 8 (4), pp.e61181. 10.1371/jour- nal.pone.0061181. pasteur-02008326 HAL Id: pasteur-02008326 https://hal-pasteur.archives-ouvertes.fr/pasteur-02008326 Submitted on 5 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Wild Anopheles funestus Mosquito Genotypes Are Permissive for Infection with the Rodent Malaria Parasite, Plasmodium berghei Jiannong Xu1,2,3., Julia´n F. Hillyer2,4., Boubacar Coulibaly5, Madjou Sacko5, Adama Dao5,
    [Show full text]