Field Evaluation of Arthropod Repellents

Total Page:16

File Type:pdf, Size:1020Kb

Field Evaluation of Arthropod Repellents Journal of the American Mosquito Control Association,12(2):172_176, 1996 FIELD EVALUATION OF ARTHROPOD REPELLENTS. DEET AND A PIPERIDINE COMPOUND. AI3-3722O. AGAINST ANOPHELES FUNESTUS AND ANOPHELES ARABIENSISIN WESTERN KENYA' TODD W. WALKER,' LEON L. ROBERT3 ROBERT A. COPELAND.4 ANDREW K. GITHEKO,s ROBERT A. WIRTZ,6 JOHN I. GITHURE? rNo TERRY A. KLEIN6 ABSTRACT A field evaluation of the repellents N,N-diethyl-3-methylbenzamide (deet) and 1-(3-cy- clohexen-1-yl-carbonyl)-2-methylpiperidine (AI3-3722O, a piperidine compound) was conducted againsr Anopheles funestus and An. arabiensis in Kenya. Both repellents provided significantly more protection (P < 0.001) than the ethanol control. AI3-3722O was significantly more effective (P < 0.001) than deet in repelling both species of mosquitoes. Aller t h, O.l mg/cm, of Al3-3722O provided 89.8Vo and,Tl.lVo protection against An. arabiensis and An. funestzs, respectively. Deet provided >807o protection for only 3 h, and protection rapidly decreased after this time to 6O.2Vo and 35.1Vo for An. irabienvi and Az. funestus, respectively, after t h. Anopheles funestu.r was significantly less sensitive (P < 0.001) to both repellents than An. arabiensis. The results of this study indicate that Al3-3722O is more effective than deet in repelling anophetine mosquitoes in westem Kenya. INTRODUCTION concerning the susceptibility of these mosquito species to arthropod repellent compounds. The vectors of human malaria parasites in The United States Army is currently evaluat- western Kenya are Anopheles gambiae Glles, ing a novel piperidine compound (AI3-3722O) An. arabiensir Patton, and An. Giles funestus that has been shown to be effective in the lab- (Githeko et al. 1993). Anopheles gambiae s.s. oratory against several anopheline species, in- and An. arabiensis are morphologically indistin- cluding laboratory-reared An. gambiae (Cole- guishable members of the An. gambiae complex man et al. 1993, Frances et al. 1993). In a recent (Gillies and de Meillon 1968, Thylor et al. field test, this compound was 1993). shown to be ef- fective against wild populations of Anopheles di- Githeko et al. (1993) reported that the intense rzs Peyton and Harrison in Thailand (S. P Fran- perennial transmission of malaria at Ahero, a ces, unpublished data) Al3-3722O is currently village in western Kenya, was primarily due to under consideration, either alone or in combi- An. funestus, not members of the An. gambiae nation with deet, as a U.S. Army repellent for- complex. Anopheles arabiensis, although pres- mulation. ent in this area, appears to play a minor role in The objective of this study was to determine malaria transmission. No field data are available if AI3-3722O provides more effective and longer lasting protection than deet against An. funestus rThe views of the authors do not purport to reflect and An. arabiensis mosquitoes in the field. Deet the position of the Department of the Army or the is the standard against which the efficacies of Department of Defense. Mention of a commercial candidate skin repellents are evaluated. Field product does not constitute an endorsement of the evaluation of new repellent compounds is nec- product by the Department of Defense. The volunteers essary because behavioral responses to repel- gave informed consent to participate in the study. lents differ between populations 'United States Army Center for Health Promotion feral arthropod and Preventive Medicine, Divisional Support Activity- and laboratory-reared populations (Frances et al. West, ATTN: MCHB-AW-ES, Aurora, CO 80045- 1993). 5001. 3 Department of Chemistry, United States Military MATERIAL AND METHODS Academy, West Point, New York 10996. 4 United States Army Medical Research Unit-Ke- Two repellents, MN-diethyl-3-methylbenza- nya, Unit 641O9, Box 401, APO AE 09831-4109. mide (deet), lOO7o (Morflex 5 Inc., Greensboro, Vector Biology and Control Research Centre, Ke- NC) and 1-(3-cyclohexen-l-yl-carbonyl)-2- nya Medical Research Institute, P O. Box 1578, Kis- methylpiperidine (AI3-3722O), 99Vo (synthe- umu, Kenya. sized by T, P McGovern, Insect Ecol- 6 Department of Entomology, Walter Reed Army In- Chemical stitute of Research, Washington, DC 2O3O7-510O- ogy Laboratory, USDA-ARS, Beltsville, MD) 7 Biomedical Sciences Research Centre, Kenya were evaluated. The study was conducted in Ny- Medical Research Institute, P O. Box 5484O, Nairobi, anza Province, western Kenya, adjacent to the Kenya. Ahero rice irrigation scheme. Ahero is located t72 Juue 1996 REPELLEI.i-TS PON ATTI. ARABIENSIS AND AN. FUNESTUS 173 23 km SE of Kisumu. located on the shore of 2100 h, I h prior to the start of each repellent Lake Victoria. test. At 22Wh. the volunteers entered their des- Twelve adult male residents (>21 years old) ignated houses, sat on chairs, and collected all of the area volunteered to participate in this mosquitoes biting them on their lower legs in study. Repellents were evaluated on the lower 20-mm scintillation vials for 45 min during each legs, using the area between the knee and ankle. hour of the night. A 15-min break followed each Both trouser legs were rolled up to just above collection period. The time, collector, and house the knees and a line was drawn at the knee with were recorded for each captured mosquito. This an ink marker to provide a line of demarcation collection procedure was repeated each hour un- for repellent application and mosquito collec- til approximately 0600 h the next morning so tion. Low-top canvas shoes, all of the same that 8 biting collections were made by each vol- brand, provided a demarcation line at the ankle. unteer. Ambient temperature and humidity were Volunteers wore hooded screened jackets (Bug recorded hourly throughout the test nights. This Out Outdoor Wear@Ltd., Wauwatsoa, WI) to re- 9-h repellent efficacy test was replicated for 6 strict mosquito feeding to the lower legs. test nights. Repellents were prep:red as 5Vo solutions in The collected mosquitoes were transported to absolute ethanol (50 mg/ml) and applied at a rate the Kenya Medical Research Institute (KEMRI), of 0.1 mg/cm2. The amount of repellent varied Vector Biology and Control Research Centre, at among volunteers and was based on the surface Kisian for processing and identification. In a area of application, previous study at this site, Githeko et al. (1993) reported that An. arabiensis comprised lNVo of A:[(a+b+c)t3]h, the mosquitoes captured from the An. gambiae calculated from the averaged measurements of complex. The ribosomal DNA polymerase chain leg height (ft = length between the crease of the reaction (PCR) amplification method described knee and the ankle bone) and circumference ([a by Taylor et al. (1993) was used to confirm the + b + cl/3, where a : circumference just below identification of mosquitoes identified morpho- the knee, b : circumference at mid-calf, and c logically as An. gambiae s.l. = circumference just above the ankle bone). Pri- Nightly collection totals were determined for or to treatment, the lower legs of each volunteer each of the 8 collection times. Totals for each were washed with TOqo ethanol to ensure that 45-min period were then summed and the per- the treatments were applied directly onto the cent protection at each collection time, defined skin. The ethanol was then allowed to evaporate as the number of bites received by an individual before the treatments were applied to the vol- in the treatment group relative to that of the con- * unteers' legs. The legs of the control volunteers trol, was calculated flO0(control treatment)/ were treated with absolute ethanol. contro[. Results of preliminary repellent tests The repellent tests were conducted inside lo- indicated that the data did not meet the distri- cal mud-walled houses, because An. arabiensis butional assumptions of an analysis of variance and An. funestus primarily bloodfeed indoors and that transformations would not normalize (Githeko et al. 1993). Due to the design of hous- the data. Statistical comparisons of repellent ef- es in western Kenya, mosquitoes have free ac- ficacy were made among the treatment groups cess to the interior through the open eves. Mos- using Kruskal-Wallis nonparametric analysis of quitoes can enter and exit freely even though all variance (Statistix 1987). doors and windows may be closed. Bednets were provided to the house occupants so that the RESULTS AND DISCUSSION volunteers were the only accessible blood-meal source. Nightly weather conditions throughout the The study was arranged in a 3-way factorial study were relatively constant. The mean tem- design (2 repellent treatments plus a control X perature was 20.6oC (range: 16.7-23.4"C) arld 8 time intervals X 6 collection nights). The 12 the mean percent relative humidity was 8l7o volunteers were selected at random for treatment (range: 63-lOOVo RH). There was little or no and house so that for each collection night there wind. were 4 participants per treatment and 3 treatment Three genera of mosquitoes (Anopheles, Ae- participants per house (deet, AI3-3722O, and des, and Culex) were collected. Ttwo species of control). Once assigned to a house, volunteer Anopheles (An. funestus and An. gambiae s.l.), treatment groups were evaluated in that house representing 72Vo of the total number, were col- throughout the study. Treatments were changed lected, providing sufficient numbers (5,029) to nightly so by the end ofthe study each volunteer evaluate repellent efficacy. Initially, 3,668 An. had received each treatment twice. funestus and 1,361 An. gambiae s./. were iden- The treatments were applied at approximately tified. Twenty percent (272) of the An. gambiae t74 JounNel-or rse Avtnrcltr Mosquno Cournol AssocnrloN Vor-.12, No. 2 ANOPHELESARABIENSIS 100 z 90 o F 80 ogJ F 70 o E o 60 zF uJ 50 o E 40 rlu z 30 ...€.-.
Recommended publications
  • California Encephalitis Orthobunyaviruses in Northern Europe
    California encephalitis orthobunyaviruses in northern Europe NIINA PUTKURI Department of Virology Faculty of Medicine, University of Helsinki Doctoral Program in Biomedicine Doctoral School in Health Sciences Academic Dissertation To be presented for public examination with the permission of the Faculty of Medicine, University of Helsinki, in lecture hall 13 at the Main Building, Fabianinkatu 33, Helsinki, 23rd September 2016 at 12 noon. Helsinki 2016 Supervisors Professor Olli Vapalahti Department of Virology and Veterinary Biosciences, Faculty of Medicine and Veterinary Medicine, University of Helsinki and Department of Virology and Immunology, Hospital District of Helsinki and Uusimaa, Helsinki, Finland Professor Antti Vaheri Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland Reviewers Docent Heli Harvala Simmonds Unit for Laboratory surveillance of vaccine preventable diseases, Public Health Agency of Sweden, Solna, Sweden and European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden Docent Pamela Österlund Viral Infections Unit, National Institute for Health and Welfare, Helsinki, Finland Offical Opponent Professor Jonas Schmidt-Chanasit Bernhard Nocht Institute for Tropical Medicine WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research National Reference Centre for Tropical Infectious Disease Hamburg, Germany ISBN 978-951-51-2399-2 (PRINT) ISBN 978-951-51-2400-5 (PDF, available
    [Show full text]
  • Comparative Assessment of An. Gambiae and An. Stephensi Mosquitoes to Determine Transmission-Reducing Activity of Antibodies Against P
    Eldering et al. Parasites & Vectors (2017) 10:489 DOI 10.1186/s13071-017-2414-z RESEARCH Open Access Comparative assessment of An. gambiae and An. stephensi mosquitoes to determine transmission-reducing activity of antibodies against P. falciparum sexual stage antigens Maarten Eldering1†, Anaïs Bompard2†, Kazutoyo Miura3, Will Stone1, Isabelle Morlais4, Anna Cohuet4, Geert-Jan van Gemert1, Patrick M. Brock2,6, Sanna R. Rijpma1, Marga van de Vegte-Bolmer1, Wouter Graumans1, Rianne Siebelink-Stoter1, Dari F. Da5, Carole A. Long3, Merribeth J. Morin7, Robert W. Sauerwein1, Thomas S. Churcher2 and Teun Bousema1,8* Abstract Background: With the increasing interest in vaccines to interrupt malaria transmission, there is a demand for harmonization of current methods to assess Plasmodium transmission in laboratory settings. Potential vaccine candidates are currently tested in the standard membrane feeding assay (SMFA) that commonly relies on Anopheles stephensi mosquitoes. Other mosquito species including Anopheles gambiae are the dominant malaria vectors for Plasmodium falciparum in sub-Saharan Africa. Methods: Using human serum and monoclonal pre-fertilization (anti-Pfs48/45) and post-fertilization (anti-Pfs25) antibodies known to effectively inhibit sporogony, we directly compared SMFA based estimates of transmission- reducing activity (TRA) for An. stephensi and An. gambiae mosquitoes. Results: In the absence of transmission-reducing antibodies, average numbers of oocysts were similar between An. gambiae and An. stephensi. Antibody-mediated TRA was strongly correlated between both mosquito species, and absolute TRA estimates for pre-fertilisation monoclonal antibodies (mAb) showed no significant difference between the two species. TRA estimates for IgG of naturally exposed individuals and partially effective concentrations of anti-Pfs25 mAb were higher for An.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • A New Malaria Vector in Africa: Predicting the Expansion Range of Anopheles Stephensi and Identifying the Urban Populations at Risk
    A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk M. E. Sinkaa,1, S. Pirononb, N. C. Masseyc, J. Longbottomd, J. Hemingwayd,1, C. L. Moyesc,2, and K. J. Willisa,b,2 aDepartment of Zoology, University of Oxford, Oxford, United Kingdom, OX1 3SZ; bBiodiversity Informatics and Spatial Analysis Department, Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom, TW9 3DS; cBig Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom, OX3 7LF; and dDepartment of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom, L3 5QA Edited by Nils Chr. Stenseth, University of Oslo, Norway, and approved July 27, 2020 (received for review March 26, 2020) In 2012, an unusual outbreak of urban malaria was reported from vector species in the published literature and found an equal Djibouti City in the Horn of Africa and increasingly severe out- number of studies (5:5) reported An. arabiensis in polluted, turbid breaks have been reported annually ever since. Subsequent inves- water as were found in clear, clean habitats, with a similar result tigations discovered the presence of an Asian mosquito species; for An. gambiae (4:4). Nonetheless, urban Plasmodium falciparum Anopheles stephensi, a species known to thrive in urban environ- transmission rates are repeatedly reported as significantly lower ments. Since that first report, An. stephensi has been identified in than those in peri-urban or rural areas (7, 10). Hay et al. (10) Ethiopia and Sudan, and this worrying development has prompted conducted a meta-analysis in cities from 22 African countries and the World Health Organization (WHO) to publish a vector alert reported a mean urban annual P.
    [Show full text]
  • A Review of the Mosquito Species (Diptera: Culicidae) of Bangladesh Seth R
    Irish et al. Parasites & Vectors (2016) 9:559 DOI 10.1186/s13071-016-1848-z RESEARCH Open Access A review of the mosquito species (Diptera: Culicidae) of Bangladesh Seth R. Irish1*, Hasan Mohammad Al-Amin2, Mohammad Shafiul Alam2 and Ralph E. Harbach3 Abstract Background: Diseases caused by mosquito-borne pathogens remain an important source of morbidity and mortality in Bangladesh. To better control the vectors that transmit the agents of disease, and hence the diseases they cause, and to appreciate the diversity of the family Culicidae, it is important to have an up-to-date list of the species present in the country. Original records were collected from a literature review to compile a list of the species recorded in Bangladesh. Results: Records for 123 species were collected, although some species had only a single record. This is an increase of ten species over the most recent complete list, compiled nearly 30 years ago. Collection records of three additional species are included here: Anopheles pseudowillmori, Armigeres malayi and Mimomyia luzonensis. Conclusions: While this work constitutes the most complete list of mosquito species collected in Bangladesh, further work is needed to refine this list and understand the distributions of those species within the country. Improved morphological and molecular methods of identification will allow the refinement of this list in years to come. Keywords: Species list, Mosquitoes, Bangladesh, Culicidae Background separation of Pakistan and India in 1947, Aslamkhan [11] Several diseases in Bangladesh are caused by mosquito- published checklists for mosquito species, indicating which borne pathogens. Malaria remains an important cause of were found in East Pakistan (Bangladesh).
    [Show full text]
  • Downloaded from the National Center for Cide Resistance Mechanisms
    Zhou et al. Parasites & Vectors (2018) 11:32 DOI 10.1186/s13071-017-2584-8 RESEARCH Open Access ASGDB: a specialised genomic resource for interpreting Anopheles sinensis insecticide resistance Dan Zhou, Yang Xu, Cheng Zhang, Meng-Xue Hu, Yun Huang, Yan Sun, Lei Ma, Bo Shen* and Chang-Liang Zhu Abstract Background: Anopheles sinensis is an important malaria vector in Southeast Asia. The widespread emergence of insecticide resistance in this mosquito species poses a serious threat to the efficacy of malaria control measures, particularly in China. Recently, the whole-genome sequencing and de novo assembly of An. sinensis (China strain) has been finished. A series of insecticide-resistant studies in An. sinensis have also been reported. There is a growing need to integrate these valuable data to provide a comprehensive database for further studies on insecticide-resistant management of An. sinensis. Results: A bioinformatics database named An. sinensis genome database (ASGDB) was built. In addition to being a searchable database of published An. sinensis genome sequences and annotation, ASGDB provides in-depth analytical platforms for further understanding of the genomic and genetic data, including visualization of genomic data, orthologous relationship analysis, GO analysis, pathway analysis, expression analysis and resistance-related gene analysis. Moreover, ASGDB provides a panoramic view of insecticide resistance studies in An. sinensis in China. In total, 551 insecticide-resistant phenotypic and genotypic reports on An. sinensis distributed in Chinese malaria- endemic areas since the mid-1980s have been collected, manually edited in the same format and integrated into OpenLayers map-based interface, which allows the international community to assess and exploit the high volume of scattered data much easier.
    [Show full text]
  • Olfaction in the Malaria Mosquito Anopheles Gambiae
    Olfaction inth e malaria mosquito Anophelesgambiae electrophysiology and identification of kairomones Promoter: dr. J.C.va nLentere n Hoogleraar ind e Entomologie Co-promotor: dr.ir .J.J.A .va nLoo n Universitair Docent,leerstoelgroe p Entomologie uwoSzo' jZkSS Jocelijn Meijerink Olfaction inth e malaria mosquito Anophelesgambiae electrophysiology andidentificatio n ofkairomone s Proefschrift ter verkrijging van degraa d van doctor op gezagva n derecto r magnificus van Wageningen Universiteit, dr. CM. Karssen, inhe topenbaa r te verdedigen opdinsda g 26oktobe r 1999 desnamiddag st evie ruu ri nd eAul a \JVVN ^f^-}l^ ISBN: 90-5808-117-6 Coverb yJok eA . Meijerink-Haarler andPie tKostense , 1999 BIBLIOTHEEK LA^DBOUVvUNIVERSIT Yi W'AG"\'f\*CFN (Qwote' 2638 Stellingen 1. Inhibitie van de spontane vuurfrequentie van olfactorische neuronen in respons op bepaalde geuren wordt, door onvolledige kennis van perifere olfactorische coderings mechanismen, ten onrechte alsee n artefact beschouwd. Olfaction in mosquito-host interactions. Wiley, Chichester (Ciba Foundation Symposium 200). General discussion V. p. 282 2. Het is niet aannemelijk dat bij haematofage muggen alleen de grooved peg sensilla betrokken zouden zijn bij de detectie van gastheergeuren. Pappenberger B. et al., (1996) Responses of antennal olfactory receptors in the yellow fever mosquito Aedes aegypti to human body odours. In: Olfaction in mosquito-host interactions. Wiley,Chichester (Ciba Foundation Symposium 200) p. 254-262 Dit proefschrift 3. Geurvallen zullen alleen dan een positieve bijdrage leveren aan het terugdringen van het aantal malaria gevallen, wanneer ze gecombineerd ingezet worden met additionele antimalaria middelen. 4. Het uitblijven van een bruikbaar middel tegen malaria na tientallen jaren van onderzoek mag geen reden zijn voor verminderde financiering.
    [Show full text]
  • Anopheles Gambiae Giles Mosquitoes in Malaria Transmission, Kenya Yaw A
    Deforestation and Vectorial Capacity of Anopheles gambiae Giles Mosquitoes in Malaria Transmission, Kenya Yaw A. Afrane, Tom J. Little, Bernard W. Lawson, Andrew K. Githeko, and Guiyun Yan We investigated the effects of deforestation on mi- land use change in Kenya may have exacerbated malaria croclimates and sporogonic development of Plasmodium epidemics caused by Plasmodium falciparum parasites and falciparum parasites in Anopheles gambiae mosquitoes its mosquito vectors Anopheles gambiae and An. funestus in an area of the western Kenyan highland prone to ma- (6–9), although other factors may have also contributed to laria epidemics. An. gambiae mosquitoes were fed with P. the surge in epidemics, including global warming (10,11), falciparum–infected blood through membrane feeders. Fed climate variability (12), and drug resistance (4,13). Land mosquitoes were placed in houses in forested and deforest- ed areas in a highland area (1,500 m above sea level) and use change can infl uence malaria transmission by increas- monitored for parasite development. Deforested sites had ing the temperature and decreasing the humidity of vector higher temperatures and relative humidities, and the overall mosquito habitats. This in turn affects biting, survival, and infection rate of mosquitoes was increased compared with reproductive rates of vectors (8,9,14,15). that in forested sites. Sporozoites appeared on average 1.1 Temperature changes will also shorten the development days earlier in deforested areas. Vectorial capacity was es- time of P. falciparum in mosquitoes (16–18). Development timated to be 77.7% higher in the deforested site than in the of malaria parasites in mosquitoes (sporogony) involves a forested site.
    [Show full text]
  • Impacts of Bacillus Thuringiensis Var. Israelensis and Bacillus Sphaericus Insect Larvicides on Mosquito Larval Densities in Lusaka, Zambia
    Medical Journal of Zambia, Vol. 39, No. 4 (2012) ORIGINAL PAPER Impacts of Bacillus thuringiensis var. israelensis and Bacillus sphaericus insect larvicides on mosquito larval densities in Lusaka, Zambia Kandyata, A.*1, 2, Mbata, K. J.2, Shinondo, C. J.3, Katongo, C.2, Kamuliwo, R. M.1, Nyirenda, F.1 , Chanda, J.1 and E. Chanda1, 3 1National Malaria Control Centre, P.O. Box 32509, Lusaka. 2Department of Biological Sciences, University of Zambia, P.O. Box 32379, Lusaka. 3Department of Biomedical Sciences, University of Zambia, P.O. Box 50110, Lusaka 1-3 ABSTRACT annually, mostly in tropical countries of Africa and Asia. In Zambia, the disease accounts for about 4.3 million The study assessed the impact of bio-larvicides- Bacillus clinical cases with an average of 6,000 deaths annually.4,5 thuringiensis var. israelensis (Bti) and B. sphaericus (Bs) Malaria control involve an integrated approach using on anopheline mosquito larval densities in four selected effective treatment with Artemisinin-based Combination areas of Lusaka urban district. Larval densities were Therapy (Artemether/Lumefantrine) and vector control.6 determined using a standard WHO protocol at each study Presently the frontline vector control interventions are area prior to and after larviciding. Ninety percent (90%) insecticide treated bed nets (ITNs) and indoor residual of the collected mosquito larvae and pupae were spraying (IRS).7-10 preserved in 70% ethanol, while 10% were reared to adults for species identification. Prior to larviciding, the Despite significant impacts rendered by ITNs and IRS in largest number of mosquito larvae collected was operational settings, these interventions are undermined by the development of insecticide resistance in malaria culicines.
    [Show full text]
  • Introduction to the Types of Mosquito That Bit for Blood
    Introduction to the Types of mosquito that bit for blood Dr.Mubarak Ali Aldoub Consulatant Aviation Medicine Directorate General Of Civil Aviation Kuwait Airport Mosquito 1: Aedes aegypti AEDES MOSQUITO Mosquito 1: Aedes aegypti • Aedes aegyptihas transmit the Zika virus, in addition to dengue, yellow fever, and chikungunya. Originally from sub‐Saharan Africa,now found throughout tropical and subtropical parts of the world. • Distinguished by the white markings on its legs ‘lyre shaped’ markings above its eyes. The activity of Aedes aegypti is strongly tied to light, with this species most commonly biting humans indoors during daylight hours early morning or late afternoon feeder . • The yellow fever mosquito, Aedes aegypti, is often found near human dwellings, fly only a few hundred yards from breeding sites, but females will take a blood meal at night under artificial illumination. • Human blood is preferred over other animals with the ankle area as a favored feeding site. Mosquito 2: Aedes albopictus Mosquito 3: Anopheles gambiae Mosquito 3: Anopheles gambiae Malaria mosquito’, Anopheles gambiae is found throughout tropical Africa, where it transmits the most dangerous form of malaria: Plasmodium falciparum. These small mosquitos are active at night and prefer to bite humans indoors—making bed nets a critical method of malaria prevention. Mosquito 4: Anopheles plumbeus Mosquito 4: Anopheles plumbeus • This small species of mosquito is found in tropical areas and throughout Europe, including northern regions of the United Kingdom and Scandinavia. Active during daylight hours, female Anopheles plumbeus are efficient carriers of malaria parasites—with the potential to transmit tropical malaria after biting infected travellers returning home from abroad with parasites.
    [Show full text]
  • Anopheles Gambiae Species Complex and Gene Transfer
    Anopheles gambiae species complex and gene transfer What is gene flow? Gene flow is the introduction of genetic material (by interbreeding) from one population of a species to another, or between different species. Cross-mating between species (hybridisation) does not necessarily lead to gene flow unless fertile hybrids are found in the progeny. What is the Anopheles gambiae species complex? • The Anopheles gambiae species complex is a group of closely related species: An. gambiae, An. coluzzii, An. arabiensis, An. melas, An. merus, An. bwambae, An. quadriannulatus and An. amharicus. Collectively these are known as An. gambiae s.l. • Target Malaria only works with An. gambiae, An. coluzzii and An. arabiensis, which are the most important malaria vectors in the complex. These are the only An. gambiae s.l. species that are found at the field sites where we are working in Burkina Faso, Mali and Uganda. • An. melas and An. merus are also vectors of malaria, but have lower vectorial capacity, and are only found along coastal regions of west and east Africa respectively. TARGETMALARIA.ORG | [email protected] PAGE 1 • An. bwambae is a malaria vector but has a very small geographical distribution: it is only found in hot springs in Uganda. • An. quadriannulatus and An. amharicus are not malaria vectors, and mainly bite animals. • It is not possible to visually distinguish among species of An. gambiae s.l., so genetic methods are used to identify the species. Can you have hybridisation between species? • In the laboratory, all An. gambiae s.l. species will cross-mate and produce viable eggs.
    [Show full text]
  • Wild Anopheles Funestus Mosquito Genotypes Are Permissive for Infection with the Rodent Malaria Parasite, Plasmodium Berghei
    Wild Anopheles funestus mosquito genotypes are permissive for infection with the rodent malaria parasite, Plasmodium berghei. Jiannong Xu, Julian F. Hillyer, Boubacar Coulibaly, Madjou Sacko, Adama Dao, Oumou Niare, Michelle M. Riehle, Sekou F. Traore, Kenneth D Vernick To cite this version: Jiannong Xu, Julian F. Hillyer, Boubacar Coulibaly, Madjou Sacko, Adama Dao, et al.. Wild Anophe- les funestus mosquito genotypes are permissive for infection with the rodent malaria parasite, Plas- modium berghei.. PLoS ONE, Public Library of Science, 2013, 8 (4), pp.e61181. 10.1371/jour- nal.pone.0061181. pasteur-02008326 HAL Id: pasteur-02008326 https://hal-pasteur.archives-ouvertes.fr/pasteur-02008326 Submitted on 5 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Wild Anopheles funestus Mosquito Genotypes Are Permissive for Infection with the Rodent Malaria Parasite, Plasmodium berghei Jiannong Xu1,2,3., Julia´n F. Hillyer2,4., Boubacar Coulibaly5, Madjou Sacko5, Adama Dao5,
    [Show full text]