Testing a Potential Marine Species Trend Indicator

Total Page:16

File Type:pdf, Size:1020Kb

Testing a Potential Marine Species Trend Indicator Biodiversity Trends and Threats in Europe: Testing a potential marine species trend indicator Submitted to: Submitted by: Author: Ed McManus 1 Contents 1. Foreword 4 2. Introduction 5 3. Monitoring Biodiversity and Ecosystem Changes 7 4. Methods: marine component 9 4.1 Geographical scope and classification of the study area 9 4.2 Locating, mobilising and compiling data 13 4.3 Calculation and aggregation 14 5. Results 16 5.1 Evaluation of the available data 16 5.2 A first trial of the indicator 19 5.2.1 Taxonomic groups 19 5.2.2 Regions 21 5.2.3 Pan-European Indices 23 5.2.4 Baselines and long-term data 24 6. Discussion and recommendations 27 6.1 Data mobilisation 27 6.2 Habitats and ecoregionalisation 28 6.3 Composition and aggregation 29 6.4 Species selection and frequency of reporting 30 6.5 Reliability and sensitivity 30 6.6 Relation between the indicator and biodiversity loss 32 6.7 Potential for use at the national and supra-national scales 32 6.8 Towards a European marine biodiversity monitoring framework 32 6.9 Recommendations and next steps 33 Acknowledgements 35 References 36 Annex 1. Potential marine related EU indicators defined at Malahide. 39 Annex 2. The number of species and time series (lines of data) in the pilot indicator per LME. 40 2 Annex 3. Species list 42 Annex 4. Potential for European Biodiversity Monitoring: Marine Data networks 45 Annex 5. Causes of change 47 Annex 6. LME ‘Response’ indicator. 52 Cover shows the Large Marine Ecosystems within European waters. The numbers refer to North Sea (22), Baltic Sea (23), Celtic-Biscay Shelf (24), Mediterranean Sea (26), Black Sea (62) and the Arctic Ocean (64) Disclaimer The contents of this volume do not necessarily reflect the views or policies of UNEP-WCMC, contributory organizations, or editors. The designations employed and the presentations do not imply the expression of any opinion whatsoever on the part of UNEP-WCMC or contributory organizations, editors or publishers concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries or the designation of its name or allegiances. Contact information: Edmund McManus Senior Programme Officer Marine Assessment and Policy UNEP-World Conservation Monitoring Centre 219 Huntingdon Road Cambridge CB3 0DL, UK E-mail: [email protected] Tel: +44 1223 277314 Fax: +44 1223 277136 Web site: http://www.unep-wcmc.org 3 1. Foreword This report complements the main report of the project, Biodiversity Trends and Threats in Europe, completed by Mireille de Heer (de Heer, M., Kapos, V., and ten Brink, B. J. E., 2005) by providing a marine component to the work. Much of the rationale of the marine component is similar to that of the main project, as is some of the methodology, but there are also substantive differences between the two parts of the project. Therefore, this report is linked to the main report but can also serve as a stand-alone document. It is structured along similar lines to the main project report and includes some of the same introductory material. The major difference between the marine component and the main project are in the analytical method, which is described in detail in this report. The rationale for this and other differences are explained in the relevant sections. Summary This report is essentially a methodological review and not intended to be a ‘State of the Environment Report’. It presents a trial of a species population trend indicator for evaluating progress towards the 2010 biodiversity target in Europe, using existing data. The indicator integrates trends on different species (groups), and can be aggregated across habitats and countries. Thus, the indicator can deliver both headline messages for high-level decision-making and detailed information for in-depth analysis, using data from different sources, collected with different methods. Data was mobilised on over 480 historical trends of populations of fish, marine mammals and reptiles, for a total of 109 species. The vast majority of the trends were for fish and birds. These data were aggregated by biogeographical region and then combined to generate a pilot Pan-European scale indicator. From the data collected for this trial, the indicator suggests a decline of commercial fish populations, but an increase in seabird populations between 1970 and 2000. It was found that the indicator is potentially useful for monitoring progress towards 2010 biodiversity targets. However, the constraints include the limited sensitivity of the historical data, which may lead to inaccurate estimates of species decline; a potential danger of ambiguity because increases in opportunistic species can mask the loss of other species; and bias with regard to the current dataset. We recommend mobilising additional existing data (particularly for under represented taxa and regions, and for non target species) from national and regional bodies, and elaborating further the criteria for compiling representative sets of species. Based on the approach detailed here, it is recommended that an analysis is conducted culminating in a ‘State of European Marine Biodiversity’ report. For a frequent, reliable update of the indicator, sound, sensitive and harmonised biodiversity monitoring programmes are needed across Pan-Europe. 4 2. Introduction In response to global concern over the rapid loss of the world’s biodiversity, the 6th Conference of the Parties (CoP) of the Convention on Biological Diversity (CBD) adopted a global target to reduce the rate of biodiversity loss by 2010 (CBD 2002). This target, which was later endorsed by the World Summit on Sustainable Development (United Nations 2002), has also been adopted by a number of regional scale policies and processes. The European Union Sustainable Development Strategy (EC 2001a) and various other European Union policies (EC 1998, 2001 b, c) set similar or even more ambitious biodiversity goals. The Pan-European Ministerial ‘Environment for Europe’ process adopted a resolution on halting the loss of biodiversity by 2010 (UN/ECE 2003). This widespread adoption of targets for reducing the rate of biodiversity loss has highlighted a need for indicators that will allow policy makers to track progress towards these ambitious goals. Recognising this need, the CoP of the CBD identified a series of biodiversity indicators for immediate testing (UNEP 2004, CBD 2004). Such indicators are needed at national, regional and global levels. In June 2004 the Environment Council of the EU adopted a set of 15 headline indicators for biodiversity to evaluate progress towards the 2010 target (Council of the European Union 2004). This set was recommended by the EU Biodiversity Expert Group and its Ad Hoc Working Group on Indicators, Monitoring and Assessment, and the Malahide stakeholder conference (Anonymous 2004). Both the CBD decision and the European documents recommend, among other indicators for immediate testing, indicators of trends in abundance and distribution of selected species. Species trend indicators are considered a sensitive measure of biodiversity change (Balmford et al. 2003; Ten Brink et al. 1991; Ten Brink 2000), and one such approach, composite species trend indicators, has been increasingly widely applied. In addition to the global-scale Living Planet Index (Loh 2002) there are several instances of the successful implementation of such indicators, principally at national scales (Jenkins et al. 2004). The UK Headline indicator of wild bird populations (Gregory et al. 2003a) is one example. The European Bird Census Council (EBCC) has used a similar approach to develop the Pan-European Common Bird Index for farmland and forest birds (Gregory et al. 2003b). The marine environment requires biodiversity indicators as much as the terrestrial one and many similar approaches have been proposed. (For a list of proposed marine related EU biodiversity headline indicators see Annex 1.) However, in the marine realm the players and interests of different parties are different, and in many senses, the boundaries are non-existent. To address the need for regional scale biodiversity indicators for marine ecosystems in (Pan-) Europe, this study set out to identify suitable data and build upon existing methods to develop an appropriate indicator of trends in marine species 5 abundance for use at the Pan-European1 scale. The indicator is intended to inform high- level decision-making on the environment and biodiversity-related sectoral activities by policy makers at the Pan-European and national levels. The indicator should also be suitable for informing the general public on biodiversity trends. In accordance with the set of requirements listed by the CBD (UNEP 2003), such an indicator needs to be, among other characteristics: policy and biodiversity relevant; scientifically sound; broadly accepted; affordable to produce and update; sensitive; representative; flexible and amenable to aggregation. In this paper, we present a trial of an indicator to evaluate progress towards the 2010 target for marine biodiversity in Europe, an evaluation of the existing data available for the purpose and our experience of mobilising them, and recommendations as to how the data and the method can be improved based upon this pilot experience. 1 Albania, Austria, Belgium, Bosnia-Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Liechtenstein, Lithuania, Luxembourg,
Recommended publications
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Relatório E Contas, Ano 2020
    RELATÓRIO E CONTAS PROJETAR A INVESTIGAÇÃO CIENTÍFICA PARA RESPONDER AO DESAFIO DO SÉCULO XXI - VIVER BEM DENTRO DOS LIMITES DO PLANETA 2020 IPMA, IP - RELATÓRIO DE ATIVIDADES 2020 ÍNDICE 1. NOTA INTRODUTÓRIA ............................................................................................................................................................. 4 2. ATIVIDADES REALIZADAS ........................................................................................................................................................ 7 2.1 GESTÃO ............................................................................................................................................................................ 7 2.1.1 GESTÃO FINANCEIRA ................................................................................................................................................ 7 2.1.2 GESTÃO DE RECURSOS HUMANOS ........................................................................................................................... 7 2.1.3 GESTÃO DE CONTRATOS .......................................................................................................................................... 8 2.1.4 GESTÃO DE INFRAESTRUTURAS GENÉRICAS ............................................................................................................ 9 2.1.5 GESTÃO DE INFRAESTRUTURAS DE IT E SUPERCOMPUTAÇÃO .............................................................................. 10 2.1.6 GESTÃO DE PRODUTOS, SERVIÇOS E
    [Show full text]
  • Intrinsic Vulnerability in the Global Fish Catch
    The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae
    [Show full text]
  • Shelf-Break Areas with Leptometra Phalangium (Echinodermata: Crinoidea)
    Marine Biology (2004) 145: 1129–1142 DOI 10.1007/s00227-004-1405-8 RESEARCH ARTICLE F. Colloca Æ P. Carpentieri Æ E. Balestri G. D. Ardizzone A critical habitat for Mediterranean fish resources: shelf-break areas with Leptometra phalangium (Echinodermata: Crinoidea) Received: 8 October 2003 / Accepted: 10 May 2004 / Published online: 3 July 2004 Ó Springer-Verlag 2004 Abstract This paper considers the potential role of the structure of species occurring on the shelf break showed crinoid Leptometra phalangium as an indicator of highly that for some of them the selection of this area is related productive areas along the shelf break that can sustain to specific phases of their life cycle. Significant highest large biomasses of benthopelagic fish and recruits. The abundance of recruits and juveniles was observed for structure of fish assemblages in the central Mediterra- Merluccius merluccius, Helicolenus dactylopterus, Phycis nean Sea (central-western coast of Italy), analysed on blennoides, Parapenaeus longirostris and Capros aper in the basis of surveys carried out in summer and autumn at least one of the two seasons. Similarly, an increased from 1997 to 2001, revealed the presence of a well-de- abundance of spawners of red mullet Mullus barbatus fined group of species on the shelf break. This area, and four-spotted megrim Lepidorhombus boscii was ob- occurring at a depth of between 120 and 170 m, is served on the shelf break. Results of this study may have characterised by detritic organogenic sediments colon- important consequences for management of fish stocks ised by the crinoid L. phalangium, a suspension-feeding and assemblages in the central Mediterranean.
    [Show full text]
  • Two Sides to Every Flatfish
    Sherkin Comment 2003 - Issue No. 35....................................................................................................................................................................Page 11 Two Sides to Every Flatfish are placed (ocular side) is usually of abnormalities from a significant Photos: © Declan Quigley By Declan T. Quigley Figure 1: Partial albinism in Black Sole coloured, while the opposite side area of Irish coastal waters. (ocular side) MORE than 600 species of flatfish (blind side) is usually unpigmented. Albinism, which appears to be (Order: Pleuronectiformes) have In general, the percentage of con- relatively uncommon, is usually been described. The group has been genital abnormalities occurring in incomplete (partial albinism); part remarkably successful in colonising a fish is considered to be highest of the ocular side retaining its nor- wide range of habitats, from Arctic among the Pleuronectiformes, possi- mal colour. The condition appears to seas to the tropics, and from shallow bly due to the complex occur most frequently in black sole estuarine waters (including freshwa- morphological changes which occur (Figure 1) in Irish waters. Albinism, ter) down to considerable ocean during larval metamorphosis. How- and particularly partial albinism depths (≥1830m). However, they ever, it should be noted that several (13.6%), has accounted for about appear to be absent from the deeper other factors can give rise to abnor- 16% of all the anomalous flatfish abyssal and hadal zones. malities e.g. disease, nutritional known to have been recorded in Figure 4: Partially ambicoloured turbot, Only 22 species of flatfish have deficiencies, injury and pollution. Irish waters to date (44). blind side above and ocular side below been recorded from Irish waters Some species of flatfish appear to More commonly, the blind side (Table 1).
    [Show full text]
  • UNEP-MAP RAC/SPA 2010. the Mediterranean Sea Biodiversity: State of the Ecosystems, Pressures, Impacts and Future Priorities
    United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas The Mediterranean Sea Biodiversity: state of the ecosystems, pressures, impacts and future priorities A September, 2010 CA D C Note: The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP or RAC/SPA concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. ©2010 United Nations Environment Programme (UNEP) Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du Leader Yasser Arafat BP 337 –1080 Tunis Cedex –TUNISIA E-mail : [email protected] This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP-MAP-RAC/SPA would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication maybe made for resale of for another commercial purpose what over without permission in writing from UNEP-MAP-RAC/SPA. This report should be quoted as: UNEP-MAP RAC/SPA 2010. The Mediterranean Sea Biodiversity: state of the ecosystems, pressures, impacts and future priorities. By Bazairi, H., Ben Haj, S., Boero, F., Cebrian, D., De Juan, S., Limam, A., Lleonart, J., Torchia, G., and Rais, C., Ed. RAC/SPA, Tunis; 100 pages. © Art drawings by Alberto Gennari CONTENTS INTRODUCTORY NOTE ....................................................................................................................................
    [Show full text]
  • Diet, Growth and Reproduction of Four Flatfishes on the Portuguese Coast
    Scientia Marina 74(2) June 2010, 223-233, Barcelona (Spain) ISSN: 0214-8358 doi: 10.3989/scimar.2010.74n2223 Diet, growth and reproduction of four flatfishes on the Portuguese coast CÉLIA M. TEIXEIRA, MARISA I. BATISTA and HENRIQUE N. CABRAL Universidade de Lisboa, Faculdade de Ciências, Centro de Oceanografia, Campo Grande, 1749-016 Lisboa, Portugal. E-mail: [email protected] SUMMARY: Four flatfish species were collected between January 2003 and June 2005 from commercial fishing vessels operating with gill nets and bottom trawls along the Portuguese coast in order to examine feeding habits, age and growth and reproduction. Citharus linguatula (Linnaeus, 1758), Lepidorhombus boscii (Risso, 1810) and Microchirus azevia (de Brito Capello, 1867) fed mainly on crustaceans, whereas Platichthys flesus (Linnaeus, 1758) fed mainly on echinoderms and crus- taceans. Feeding activity was highest in spring and summer; females and small individuals showed the lowest vacuity index values. For all the species, significant differences were found in the proportion of prey items according to season, sex and size class. M. azevia had the largest diet spectrum. Ages were determined from sagittal otoliths. The von Bertalanffy growth equation coefficients differed between sexes. The asymptotic length L∞ of females was higher than that of males, except in C. linguatula. The lowest growth coefficient was obtained for P. flesus (k=0.11 for males and k=0.10 for females) and M. azevia showed the highest growth coefficient estimates (k=0.40 for females and k=0.30 for males). The highest proportion of indi- viduals at spawning stage was recorded in winter for L.
    [Show full text]
  • Fish and Cephalopods Monitoring on the Bay of Biscay and Celtic Sea
    Discussions https://doi.org/10.5194/essd-2021-146 Earth System Preprint. Discussion started: 13 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data 1 Fish and cephalopods monitoring on the Bay of Biscay and Celtic 2 Sea continental shelves 3 Pascal Laffargue1, Damien Delaunay3, Vincent Badts1, Olivier Berthele1, Anne-Sophie 4 Cornou1, François Garren2 5 1 IFREMER, RBE-EMH research unit, Nantes, 44311, France 6 2 IFREMER, RBE-STH research unit, Brest, 29280, France 7 3 IFREMER, ODE-VIGIES research unit, Brest, 29280, France 8 9 Correspondence to: [email protected] , [email protected] 10 Abstract 11 The demersal fish and cephalopod communities of the continental shelves of the Bay of Biscay and the Celtic Sea 12 have been monitored for more than 30 years by the EVHOE series of fisheries surveys. Since 1987, a total of 4247 13 stations have been sampled in the fall with a GOV bottom trawl in a depth range of 15 to 600m. The main objective 14 of these surveys is to monitor 22 benthic fish stocks and 10 cephalopods but also to provide a description of the 15 distribution of a total of 250 fish and 50 commercial invertebrate taxa. The dataset 16 (https://doi.org/10.17882/80041) provides abundance and biomass information by station for all observed taxa. 17 Size distributions for a selection of species are also available. These data are part of a larger set of standardized 18 European surveys that provide essential information for monitoring demersal communities in the Northeast 19 Atlantic.
    [Show full text]
  • Atlas of the Maturity Stages of Mediterranean Fishery Resources
    Food and AgricultureFood and Agriculture General Fisheries CommissionGeneral Fisheries Commission for the Mediterraneanfor the Mediterranean Organization ofOrganization the of the Commission généraleCommission des pêches générale des pêches United Nations United Nations pour la Méditerranéepour la Méditerranée STUDIES AND REVIEWS 99 ISSN 1020-9549 ATLAS ON THE MATURITY STAGES OF MEDITERRANEAN FISHERY RESOURCES Follesa, M.C., Carbonara, P., eds. 2018. Atlas of the maturity stages of Mediterranean fishery resources. Studies and Reviews n. 99. General Fisheries Commission for the Mediterranean. Rome. pp. 273. Cover design: Maria Cristina Follesa and José Luis Castilla Civit. GENERAL FISHERIES COMMISSION FOR THE MEDITERRANEAN STUDIES AND REVIEWS 99 ATLAS OF THE MATURITY STAGES OF MEDITERRANEAN FISHERY RESOURCES Edited by Maria Cristina Follesa Università di Cagliari Dipartimento di Scienze della Vita e dell’Ambiente Cagliari (Italy) Pierluigi Carbonara COISPA Tecnologia & Ricerca Stazione Sperimentale per lo Studio delle Risorse del Mare Bari (Italy) FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2019 Required citation: Follesa, M.C., Carbonara, P., eds. 2019. Atlas of the maturity stages of Mediterranean fishery resources. Studies and Reviews n. 99. Rome, FAO. 268 pp. Licence: CC BY-NC-SA 3.0 IGO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Molecular and Morphological Analysis of Living and Fossil Taxa
    Received: 22 December 2018 | Revised: 10 June 2019 | Accepted: 10 June 2019 DOI: 10.1111/zsc.12372 ORIGINAL ARTICLE Origins and relationships of the Pleuronectoidei: Molecular and morphological analysis of living and fossil taxa Matthew A. Campbell1 | Bruno Chanet2 | Jhen‐Nien Chen1 | Mao‐Ying Lee1 | Wei‐Jen Chen1 1Institute of Oceanography, National Taiwan University, Taipei, Taiwan Abstract 2Département Origines et Évolution, Flatfishes (Pleuronectiformes) are a species‐rich and distinct group of fishes charac- Muséum National d‘Histoire Naturelle, terized by cranial asymmetry. Flatfishes occupy a wide diversity of habitats, includ- Paris, France ing the tropical deep‐sea and freshwaters, and often are small‐bodied fishes. Most Correspondence scientific effort, however, has been focused on large‐bodied temperate marine species Wei‐Jen Chen, Institute of Oceanography, important in fisheries. Phylogenetic study of flatfishes has also long been limited in National Taiwan University, Room 301, scope and focused on the placement and monophyly of flatfishes. As a result, several No.1 Sec. 4 Roosevelt Rd., Taipei 10617, Taiwan. questions in systematic biology have persisted that molecular phylogenetic study can Email: [email protected] answer. We examine the Pleuronectoidei, the largest suborder of Pleuronectiformes with >99% of species diversity of the order, in detail with a multilocus nuclear and Funding information Ministry of Science and Technology, mitochondrial data set of 57 pleuronectoids from 13 families covering a wide range of Taiwan, Grant/Award Number: 102-2923- habitats. We combine the molecular data with a morphological matrix to construct a B-002 -001 and 107-2611-M-002-007; Fulbright Taiwan; Agence Nationale de la total evidence phylogeny that places fossil flatfishes among extant lineages.
    [Show full text]
  • Age and Growth of the Four-Spotted Megrim (Lepidorhombus Boscii Risso, 1810) from Saros Bay (Northern Aegean Sea, Turkey)
    Mediterranean Marine Science Vol. 14, 2013 Age and growth of four-spotted megrim (Lepidorhombus boscii Risso, 1810) from Saros Bay (Northern Aegean Sea, Turkey) CENGIZ O. Canakkale Onsekiz Mart University, Faculty of Fisheries, 17100, Canakkale, Turkey OZEKINCI U. Canakkale Onsekiz Mart University, Faculty of Fisheries, 17100, Canakkale, Turkey ISMEN A. Canakkale Onsekiz Mart University, Faculty of Fisheries, 17100, Canakkale, Turkey OZTEKIN A. Canakkale Onsekiz Mart University, Faculty of Fisheries, 17100, Canakkale, Turkey https://doi.org/10.12681/mms.328 Copyright © 2013 To cite this article: CENGIZ, O., OZEKINCI, U., ISMEN, A., & OZTEKIN, A. (2013). Age and growth of four-spotted megrim (Lepidorhombus boscii Risso, 1810) from Saros Bay (Northern Aegean Sea, Turkey). Mediterranean Marine Science, 14(1), 36-44. doi:https://doi.org/10.12681/mms.328 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 29/03/2020 22:39:27 | Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net http://dx.doi.org/10.12681/mms.328 Age and growth of the four-spotted megrim (Lepidorhombus boscii Risso, 1810) from Saros Bay (Northern Aegean Sea, Turkey) O. CENGIZ, U. OZEKINCI, A. ISMEN and A. OZTEKIN Canakkale Onsekiz Mart University, Faculty of Fisheries, 17100, Canakkale, Turkey Corresponding author: [email protected] Received: 17 November 2012; Accepted: 11 October 2012; Published on line: 20 February 2013 Abstract In this study, the growth parameters of the four-spotted megrim, (Lepidorhombus boscii Risso, 1810), were studied in Saros Bay, which had been closed to bottom trawl fishing since 2000.
    [Show full text]
  • Fernandes-Etal-NEE-2017-Coherent
    1 Loss of megafauna and regional discrepancy in status of Europe’s marine fishes 2 3 Paul G. Fernandes1, Gina M. Ralph2, Ana Nieto3, Mariana García Criado3, Paraskevas 4 Vasilakopoulos4, Christos D. Maravelias4, Robin Cook5, Nick Dulvy6, Riley A. Pollom7, 5 Marcelo Kovačić8, David Pollard9, Edward D. Farrell10, Ann-Britt Florin11, Beth A. 6 Polidoro12, Julia M. Lawson6, Pascal Lorance13, Franz Uiblein14, Matthew Craig15, David J. 7 Allen3, Sarah Fowler16, Rachel Walls6, Mia T. Comeros-Raynal2,17, Michael S. Harvey2, 8 Manuel Dureuil18, Manuel J Conceicao Biscoito19, Caroline Pollock3, Jørgen Nielsen20, 9 Sophy R. McCully Phillips21, Jim R. Ellis20, Constantinos Papaconstantinou4, Alen Soldo22, 10 Çetin Keskin23, Simona Clo24, Steen Wilhelm Knudsen25, Luís Gil de Sola26, Fabrizio 11 Serena27, Bruce Collette28, Kjell Nedreaas14, Emilie Stump2,7, Alvaro Abella27, Ning Chao29, 12 Barry C. Russell30, Silvia Garcia31, Pedro Afonso32, Jung Armelle33, Helena Alvarez33, Joao 13 Manuel Mendes Henriques Delgado34 & Kent E. Carpenter35. 1Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK. 2IUCN Marine Biodiversity Unit, Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529-0266 USA. 3Global Species Programme & Key Biodiversity Areas, IUCN, Rue Mauverney 28, 1196 Gland, Switzerland. 4 Hellenic Centre for Marine Research (HCMR), 46.7km Athens-Sounio ave., 19013 Anavyssos, Greece 5Dept. of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow, G1 1XH,UK
    [Show full text]