Marine Ice Sheet Instability Amplifies and Skews Uncertainty In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Heterogenous Thinning and Subglacial Lake Activity on Thwaites Glacier, West Antarctica Andrew O
https://doi.org/10.5194/tc-2020-80 Preprint. Discussion started: 9 April 2020 c Author(s) 2020. CC BY 4.0 License. Brief Communication: Heterogenous thinning and subglacial lake activity on Thwaites Glacier, West Antarctica Andrew O. Hoffman1, Knut Christianson1, Daniel Shapero2, Benjamin E. Smith2, Ian Joughin2 1Department of Earth and Space Sciences, University of Washington, Seattle, 98115, United States of America 5 2Applied Physics Laboratory, University of Washington, 98115, United States of America Correspondence to: Andrew O. Hoffman ([email protected]) Abstract. A system of subglacial laKes drained on Thwaites Glacier from 2012-2014. To improve coverage for subsequent drainage events, we extended the elevation and ice velocity time series on Thwaites Glacier through austral winter 2019. These new observations document a second drainage cycle and identified two new laKe systems located in the western tributaries of 10 Thwaites and Haynes Glaciers. In situ and satellite velocity observations show temporary < 3% speed fluctuations associated with laKe drainages. In agreement with previous studies, these observations suggest that active subglacial hydrology has little influence on Thwaites Glacier thinning and retreat on decadal to centennial timescales. 1 Introduction Although subglacial laKes beneath the Antarctic Ice Sheet were first discovered more than 50 years ago (Robin et al., 1969; 15 Oswald and Robin, 1973), they remain one of the most enigmatic components of the subglacial hydrology system. Initially identified in ice-penetrating radar data as flat, bright specular reflectors (Oswald and Robin, 1973; Carter et al., 2007) subglacial laKes were thought to be relatively steady-state features of the basal hydrology system with little impact on the dynamics of the overlying ice on multi-year timescales. -
Genesis and Geographical Aspects of Glaciers - Vladimir M
HYDROLOGICAL CYCLE – Vol. IV - Genesis and Geographical Aspects of Glaciers - Vladimir M. Kotlyakov GENESIS AND GEOGRAPHICAL ASPECTS OF GLACIERS Vladimir M. Kotlyakov Institute of Geography, Russian Academy of Sciences, Moscow, Russia Keywords: Chionosphere, cryosphere, equilibrium line, firn line, glacial climate, glacier, glacierization, glaciosphere, ice, seasonal snow line, snow line, snow-patch Contents 1. Introduction 2. Properties of natural ice 3. Cryosphere, glaciosphere, chionosphere 4. Snow-patches and glaciers 5. Basic boundary levels of snow and ice 6. Measures of glacierization 7. Occurrence of glaciers 8. Present-day glacierization of the Arctic Glossary Bibliography Biographical Sketch Summary There exist ten crystal variants of ice and one amorphous form in Nature, however only one form ice-1 is distributed on the Earth. Ten other ice variants steadily exist only under a certain combinations of pressure, specific volume and temperature of medium, and those are not typical for our planet. The ice density is less than that of water by 9%, and owing to this water reservoirs are never totally frozen., Thus life is sustained in them during the winter time. As a rule, ice is much cleaner than water, and specific gas-ice compounds called as crystalline hydrates are found in ice. Among the different spheres surrounding our globe there are cryosphere (sphere of the cold), glaciosphere (sphere of snow and ice) and chionosphere (that part of the troposphere where the annual amount of solid precipitation exceeds their losses). The chionosphere envelopes the Earth with a shell 3 to 5 km in thickness. In the present epoch, snow and ice cover 14.2% of the planet’s surface and more than half of the land surface. -
Ground (Subsurface) Ice Shumskii, P
NRC Publications Archive Archives des publications du CNRC Ground (subsurface) ice Shumskii, P. A.; National Research Council of Canada. Division of Building Research For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous. Publisher’s version / Version de l'éditeur: https://doi.org/10.4224/20386780 Technical Translation (National Research Council of Canada), 1964 NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=b714ab23-775f-4f1d-9a1e-ab4bc8f71c00 https://publications-cnrc.canada.ca/fra/voir/objet/?id=b714ab23-775f-4f1d-9a1e-ab4bc8f71c00 Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à [email protected]. -
Novel Hydraulic Structures and Water Management in Iran: a Historical Perspective
Novel hydraulic structures and water management in Iran: A historical perspective Shahram Khora Sanizadeh Department of Water Resources Research, Water Research Institute������, Iran Summary. Iran is located in an arid, semi-arid region. Due to the unfavorable distribution of surface water, to fulfill water demands and fluctuation of yearly seasonal streams, Iranian people have tried to provide a better condition for utilization of water as a vital matter. This paper intends to acquaint the readers with some of the famous Iranian historical water monuments. Keywords. Historic – Water – Monuments – Iran – Qanat – Ab anbar – Dam. Structures hydrauliques et gestion de l’eau en Iran : une perspective historique Résumé. L’Iran est situé dans une région aride, semi-aride. La répartition défavorable des eaux de surface a conduit la population iranienne à créer de meilleures conditions d’utilisation d’une ressource aussi vitale que l’eau pour faire face à la demande et aux fluctuations des débits saisonniers annuels. Ce travail vise à faire connaître certains des monuments hydrauliques historiques parmi les plus fameux de l’Iran. Mots-clés. Historique – Eau – Monuments – Iran – Qanat – Ab anbar – Barrage. I - Introduction Iran is located in an arid, semi-arid region. Due to the unfavorable distribution of surface water, to fulfill water demands and fluctuation of yearly seasonal streams, Iranian people have tried to provide a better condition for utilization of water as a vital matter. Iran is located in the south of Asia between 44º 02´ and 63º 20´ eastern longitude and 25º 03´ to 39º 46´ northern latitude. The country covers an area of about 1.648 million km2. -
© Cambridge University Press Cambridge
Cambridge University Press 978-0-521-80620-6 - Creep and Fracture of Ice Erland M. Schulson and Paul Duval Index More information Index 100-year wave force, 336 friction and fracture, 289, 376 60° dislocations, 17, 82, 88 indentation failure, 345 microstructure, 45, 70, 237, 255, 273 abrasion, 337 multiscale fracture and frictional accommodation processes of basal slip, 165 sliding, 386 acoustic emission, 78, 90, 108 nested envelopes, 377 across-column cleavage cracks, 278 pressure–area relationship, 349, 352 across-column confinement, 282 S2 growth texture, 246, 273 across-column cracks, 282, 306, SHEBA faults, 371 across-column loading, 275 SHEBA stress states, 377 across-column strength, 246, 249, 275 Arctic Ocean, 1, 45, 190, 361 activation energy, 71, 84, 95, 111, 118, 131 aspect ratio, 344 activation volume, 114, 182 atmospheric ice, 219, 221, 241, 243 activity of pyramidal slip systems, 158 atmospheric icing, 31 activity of slip systems, 168 atmospheric impurities, 113 adiabatic heating, 291, 348 atomic packing factor, 9 adiabatic softening, 291 audible report, 240 affine self-consistent model, 160 avalanches, 206 air bubbles, 38 air-hydrate crystals, 37 bands, 89 albedo, 363 basal activity, 162 aligned first-year sea ice, 246 basal dislocations, 77 along-column confinement, 282 basal planes, 214, along-column confining stress, 282, basal screw dislocations, 77, 87 along-column strength, 244, 275 basal shear bands, 163 ammonia dihydrate, 181 basal slip, 18, 77, 127, 228 ammonia–water system, 186 basal slip lines, 77 amorphous forms -
The University of Texas at Austin • Jackson School Of
THE UNIVERSITY OF TEXAS AT AUSTIN • JACKSON SCHOOL OF GEOSCIENCES • 2014 NEWSLETTER NEWSLETTER 2014 • GEOSCIENCES OF SCHOOL JACKSON • AUSTIN AT TEXAS OF UNIVERSITY THE Ne2014wsletter Newsletter insidecover_final_outlined.indd 1 9/15/2014 4:07:08 PM CONTENTS 2 WELCOME 3 BRIEFS 18 FIELD EXPERIENCES 20 IN THE NEWS 25 AWARDS & HONORS 29 LIBRARY REPORT 30 SCIENTISTS On the cover: Jackson School of Geosciences research professor Ian Dalziel with Eugenia Sangines at Siccar Point in Scotland. See pages 32 SUMMER FIELD CAMPS 82-83 for more about the 2014 Texas Exes trip. FEATURES 36 OPENING UP Mexico deregulates its state-run oil industry. By Tracy Idell Hamilton 39 PREPPING FOR SPACE A Jackson School geologist trains astronauts for trip to space. By John Williams 42 DISSECTING A GLACIER Research helps reveal Thwaites Glacier’s role in sea level rise. By Tim Green 44 STRIKING IT BIG WITH NANOTECH Scientists unlock the potential of nanotechnology in energy. By Joshua Zaffos 46 LIFELESS WATERS Mississippi River pollution a likely contributor to Gulf dead zone. By John Williams 49 RIDE HIGH AND SEEK Lidar is giving researchers an eagle-eyed view of the land. By Joshua Zaffos 51 BACK FROM TOTTEN The Newsletter, a tradition since 1950, is Ice alters research plans. By Terry Britt published annually for friends and alumni of the Jackson School of Geosciences at the 52 GEOFORCE TURNS 10 University of Texas at Austin. Program introduces high-schoolers to geoscience. By Angela Curtis EDITOR: Anton Caputo 54 A CLASSROOM AT THE EDGE OF THE WORLD ASSOCIATE EDITOR: Melissa Weber Students and professors take a journey to the Arctic. -
I!Ij 1)11 U.S
u... I C) C) co 1 USGS 0.. science for a changing world co :::2: Prepared in cooperation with the Scott Polar Research Institute, University of Cambridge, United Kingdom Coastal-change and glaciological map of the (I) ::E Bakutis Coast area, Antarctica: 1972-2002 ;::+' ::::r ::J c:r OJ ::J By Charles Swithinbank, RichardS. Williams, Jr. , Jane G. Ferrigno, OJ"" ::J 0.. Kevin M. Foley, and Christine E. Rosanova a :;:,..... CD ~ (I) I ("') a Geologic Investigations Series Map I- 2600- F (2d ed.) OJ ~ OJ '!; :;:, OJ ::J <0 co OJ ::J a_ <0 OJ n c; · a <0 n OJ 3 OJ "'C S, ..... :;:, CD a:r OJ ""a. (I) ("') a OJ .....(I) OJ <n OJ n OJ co .....,...... ~ C) .....,0 ~ b 0 C) b C) C) T....., Landsat Multispectral Scanner (MSS) image of Ma rtin and Bea r Peninsulas and Dotson Ice Shelf, Bakutis Coast, CT> C) An tarctica. Path 6, Row 11 3, acquired 30 December 1972. ? "T1 'N 0.. co 0.. 2003 ISBN 0-607-94827-2 U.S. Department of the Interior 0 Printed on rec ycl ed paper U.S. Geological Survey 9 11~ !1~~~,11~1!1! I!IJ 1)11 U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP I-2600-F (2d ed.) U.S. GEOLOGICAL SURVEY COASTAL-CHANGE AND GLACIOLOGICAL MAP OF THE BAKUTIS COAST AREA, ANTARCTICA: 1972-2002 . By Charles Swithinbank, 1 RichardS. Williams, Jr.,2 Jane G. Ferrigno,3 Kevin M. Foley, 3 and Christine E. Rosanova4 INTRODUCTION areas Landsat 7 Enhanced Thematic Mapper Plus (ETM+)), RADARSAT images, and other data where available, to compare Background changes over a 20- to 25- or 30-year time interval (or longer Changes in the area and volume of polar ice sheets are intri where data were available, as in the Antarctic Peninsula). -
Greenland Ice Sheet Solid Ice Discharge from 1986 Through 2019 Kenneth D
Discussions https://doi.org/10.5194/essd-2019-240 Earth System Preprint. Discussion started: 20 January 2020 Science c Author(s) 2020. CC BY 4.0 License. Open Access Open Data Greenland Ice Sheet solid ice discharge from 1986 through 2019 Kenneth D. Mankoff1, Anne Solgaard1, William Colgan1, Andreas P. Ahlstrøm1, Shfaqat Abbas Khan2, and Robert S. Fausto1 1Department of Glaciology and Climate, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark 2DTU Space, National Space Institute, Department of Geodesy, Technical University of Denmark, Kgs. Lyngby, Denmark Correspondence: Ken Mankoff ([email protected]) Abstract. We present a 1986 through 2019 estimate of Greenland Ice Sheet ice discharge. Our data include all discharging ice that flows faster than 100 m yr-1 and are generated through an automatic and adaptable method, as opposed to conventional hand-picked gates. We position gates near the present-year termini and estimate problematic bed topography (ice thickness) values where necessary. In addition to using annual time-varying ice thickness, our time series uses velocity maps that begin 5 with sparse spatial and temporal coverage and ends with near-complete spatial coverage and twelve-day updates to velocity. The 2010 through 2019 average ice discharge through the flux-gates is ~487 49 Gt yr-1. The 10 % uncertainty stems primarily ± from uncertain ice bed location (ice thickness). We attribute the ~50 Gt yr-1 differences among our results and previous studies to our use of updated bed topography from BedMachine v3. Discharge is approximately steady from 1986 to 2000, increases sharply from 2000 to 2005, then is approximately steady again. -
Gibbs Energy of Ices III, V and VI: Wholistic Thermodynamics and Elasticity of the Water Phase Diagram to 2300 Mpa. 1. Abstract
Gibbs energy of ices III, V and VI: wholistic thermodynamics and elasticity of the water phase diagram to 2300 MPa. B. Journaux*1, J.M. Brown1, A. Pakhomova2, I. E. Collings3,4, S. Petitgirard5, P. Espinoza1, J. Ott1,6, F. Cova3,7, G. Garbarino3, M. Hanfland3 1. Abstract: Gibbs energy representations for ice III, V and VI are reported. These were constructed using new measurements of volumes at high pressure over a range of low temperatures combined with calculated vibrational energies grounded in statistical physics. The collection of representations including ice Ih and water (released as the open source “SeaFreeze” framework) allow accurate determinations of thermodynamics properties (phase boundaries, density, heat capacity, bulk modulus, thermal expansivity, chemical potentials) and seismic wave velocities over the entire range of conditions encountered in hydrospheres in our solar system (220-500K to 2300 MPa). These comprehensive representations allow exploration of the rich spectrum of thermodynamic behavior in the H2O system. Although the results are broadly applicable in science and engineering, their use in habitability analysis in water-rich planetary bodies of our solar system and beyond is particularly relevant. 2. Introduction Water is a fundamentally important molecule in scientific fields ranging from biology to engineering, earth and environmental sciences, chemistry or astrophysics. As a common molecular species in our cosmic neighborhood, water ice polymorphs at high pressures in planetary interiors could be the most abundant “mineral group” in the Universe (Hanslmeier 2011). A focus on potentially habitable icy moons and ocean exoplanets hydrospheres (Sotin and Tobie 2004; Vance and Brown 2013; Journaux et al. -
The Last Glaciation of Bear Peninsula, Central Amundsen Sea
Quaternary Science Reviews 178 (2017) 77e88 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev The last glaciation of Bear Peninsula, central Amundsen Sea Embayment of Antarctica: Constraints on timing and duration revealed by in situ cosmogenic 14Cand10Be dating * Joanne S. Johnson a, , James A. Smith a, Joerg M. Schaefer b, Nicolas E. Young b, Brent M. Goehring c, Claus-Dieter Hillenbrand a, Jennifer L. Lamp b, Robert C. Finkel d, Karsten Gohl e a British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK b Lamont-Doherty Earth Observatory, Columbia University, Route 9W, Palisades, New York NY 10964, USA c Department of Earth & Environmental Sciences, Tulane University, New Orleans, LA 70118, USA d Lawrence Livermore National Laboratory, Center for Accelerator Mass Spectrometry, 7000 East Avenue Avenue, Livermore, CA 94550-9234, USA e Alfred Wegener Institute for Polar and Marine Research, Postfach 120161, D-27515 Bremerhaven, Germany article info abstract Article history: Ice streams in the Pine Island-Thwaites region of West Antarctica currently dominate contributions to sea Received 6 April 2017 level rise from the Antarctic ice sheet. Predictions of future ice-mass loss from this area rely on physical Received in revised form models that are validated with geological constraints on past extent, thickness and timing of ice cover. 18 October 2017 However, terrestrial records of ice sheet history from the region remain sparse, resulting in significant Accepted 1 November 2017 model uncertainties. We report glacial-geological evidence for the duration and timing of the last glaciation of Hunt Bluff, in the central Amundsen Sea Embayment. -
A Submarine Wall Protecting the Amundsen Sea Intensifies Melting
The Cryosphere, 13, 2317–2324, 2019 https://doi.org/10.5194/tc-13-2317-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Brief communication: A submarine wall protecting the Amundsen Sea intensifies melting of neighboring ice shelves Özgür Gürses1, Vanessa Kolatschek1, Qiang Wang1, and Christian Bernd Rodehacke1,2 1Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany 2Danish Meteorological Institute, Copenhagen Ø, 2100, Denmark Correspondence: Christian B. Rodehacke ([email protected]) Received: 11 February 2019 – Discussion started: 15 March 2019 Revised: 22 July 2019 – Accepted: 14 August 2019 – Published: 6 September 2019 Abstract. Disintegration of ice shelves in the Amundsen Sea, In Antarctica, remotely sensed, modeled and paleoclima- in front of the West Antarctic Ice Sheet, has the potential tological proxy data indicate that the highest potential sea to cause sea level rise by inducing an acceleration of ice level contribution will come from the West Antarctic Ice discharge from upstream grounded ice. Moore et al. (2018) Sheet (Bamber et al., 2009; Golledge et al., 2013; Joughin proposed that using a submarine wall to block the penetra- and Alley, 2011; Pollard and DeConto, 2009; Sutter et al., tion of warm water into the subsurface cavities of these ice 2016), particularly from the Amundsen Sea sector, where shelves could reduce this risk. We use a global sea ice–ocean the progressive thinning of its ice shelves over the last model to show that a wall shielding the Amundsen Sea be- 2.5 decades has greatly enhanced rates of ice mass loss em- low 350 m depth successfully suppresses the inflow of warm anating from this sector (Pritchard et al., 2012; Rignot et al., water and reduces ice shelf melting. -
Revised Release on the Pressure Along the Melting and Sublimation Curves of Ordinary Water Substance
IAPWS R14-08(2011) The International Association for the Properties of Water and Steam Plzeň, Czech Republic September 2011 Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance 2011 International Association for the Properties of Water and Steam Publication in whole or in part is allowed in all countries provided that attribution is given to the International Association for the Properties of Water and Steam President: Mr. Karol Daucik Larok s.r.o. SK 96263 Pliesovce, Slovakia Executive Secretary: Dr. R. B. Dooley Structural Integrity Associates, Inc. 2616 Chelsea Drive Charlotte, NC 28209, USA email: [email protected] This revised release replaces the corresponding revised release of 2008 and contains 7 pages. This release has been authorized by the International Association for the Properties of Water and Steam (IAPWS) at its meeting in Plzeň, Czech Republic, 4-9 September, 2011, for issue by its Secretariat. The members of IAPWS are: Britain and Ireland, Canada, the Czech Republic, Germany, Greece, Japan, Russia, Scandinavia (Denmark, Finland, Norway, Sweden), and the United States of America, and associate members Argentina and Brazil, France, Italy, and Switzerland. In 1993, IAPWS issued a “Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance.” The empirical equations presented were fitted to relatively old experimental data for the several sections of the melting curve and the sublimation curve. Thus, these equations are not thermodynamically consistent with the subsequently developed IAPWS equations of state for fluid and solid H2O. These equations are “The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use” [1, 2] and “The Equation of State of H2O Ice Ih” [3, 4].