Sea Urchins (Echinodermata: Echinoidea): Their Biology, Culture and Bioactive Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Sea Urchins (Echinodermata: Echinoidea): Their Biology, Culture and Bioactive Compounds International Conference on Agricultural, Ecological and Medical Sciences (AEMS-2014) July 3-4, 2014 London (United Kingdom) Sea Urchins (Echinodermata: Echinoidea): Their Biology, Culture and Bioactive Compounds M. Aminur Rahman*, A. Arshad, and Fatimah Md. Yusoff fishery is closely connected to that of the fisheries, whose fortune Abstract—The gonads of both male and female sea urchins, will eventually depend upon the stock enhancement, culture commonly known as "Sea urchin Roe”, are culinary delicacies in improvement, quality roe production and market forces that will many parts of the world. The roe of sea urchins is considered as a shape this rising industry in a very worthwhile and significant prized delicacy in Asian, Mediterranean and Western Hemisphere manner. countries and have long been using as luxury foods in Japan. Japanese demand for sea urchins raised concerns about overfishing, Keywords—Sea urchin, Biology, Aquaculture, Enhancement, thus making it one of the most valuable sea foods in the world. The Roe, Bioactive compounds. population of the Asian Pacific Region has been using it for long time as a remedy for improving general living tone and treatment for I. INTRODUCTION a number of diseases. Sea urchin gonads are also rich in valuable EA urchins are classic objects of research in different bioactive compounds, such as polyunsaturated fatty acids (PUFAs) S fields of biology, ecology, biodiversity and evolution. At and β-carotene. PUFAs, especially eicosapentaenoic acid (EPA, the same time, they are used as raw material to produce C20:5) (n-3)) and docosahexaenoic acid (DHA C22:6 (n-3)), have foodstuff, in particular, the product of processing gonads significant preventive effects on arrhythmia, cardiovascular diseases known as "Sea urchin Roe" [1−3]. The roe of sea urchins is and cancer. β-Carotene and some xanthophylls have strong pro- vitamin A activity and can be used to prevent tumor development considered to be a prized delicacy due to its tasty qualities in and light sensitivity. Sea urchin fisheries have expanded so greatly Asian and Mediterranean countries, and also in Western in recent years that the natural population of sea urchins in Japan, Hemisphere countries such as Barbados and Chile [1, 4−6]. France, Chile, the northeastern United States, the Canadian The gonads of sea urchins either fresh or in the form of Maritime Provinces, and the west coast of North America from processed food have long been using as luxury foods in Japan California to British Colombia have been overfished to meet the [7]. Sea urchin is usually known as “uni” in Japan and its roe great demand. Not surprisingly, the decrease in supply and the can retail for as much as AU$450/kg [8]. It is served raw as continued strong demand have led to a great increase in interest in sashimi or in sushi, with soy sauce and wasabi. Japan imports aquaculture of sea urchins. Most, if not all, sea urchin fisheries have large quantities from the United States, South Korea and followed the same pattern of rapid expansion to an unsustainable peak, followed by an equally rapid decline. World landings of sea other producers. Japanese demand for sea urchin has raised urchin, having peaks at 120,000 mt in 1995, are now in the state of concerns about overfishing, thus making it one of the most about 82,000 mt. However, over half this catch comes from the valuable sea foods in the world [9]. The population of the recently expanded Chilean fishery for Loxechinus albus. In Europe, Asian Pacific Region has also been using it for long time as a the sea urchin stocks (Paracentrotus lividus) of first France and then remedy for improving general living tone, treatment for a Ireland were overfished in the 1980s to supply the French markets. number of diseases and strengthening of the sexual potency of These decreasing patterns clearly reflect the overexploitation of men, especially the middle aged [5, 10]. Sea urchin fisheries most fishery grounds and highlight the need for conservation have expanded so greatly in recent years that the natural policies, fishery management and aquaculture development. When population of sea urchins in Japan, France, Chile, the the wild stocks decline, high market demand for food, nutraceuticals and pharmaceuticals, raises the price of the product and, as a result, northeastern United States, the Canadian maritime provinces, culturing is most likely to become commercially viable. As this and the west coast of North America from California to review shows, there have been dramatic advances in the culture British Colombia have been overfished to meet the great methods of sea urchins in the last 15–20 years; we can conclude that demand [11−15]. Not surprisingly, the decrease in supply and currently the major obstacles to successful cultivation are indeed the continued strong demand have led to a great increase in managerial, cultural, conservational and financial rather than interest in aquaculture of sea urchins, particularly, in those biological and ecological. Therefore, the fate of the sea urchin areas where their populations have been depleted [4]. The sea urchin gonads that are of commercial importance can be M. Aminur Rahman*, Laboratory of Marine Biotechnology, Institute of obtained from a number of genera: Centrostephanus, Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Diadema, Arbacia, Echinus, Loxechinus, Paracentrotus, Malaysia. A. Arshad, and Fatimah Md. Yusoff are with Laboratory of Marine Psammechinus, Anthocidaris, Colobocentrotus, Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Echinometra, Evechinus, Heliocidaris, Hemicentrotus, Serdang, Selangor, Malaysia and Department of Aquaculture, Faculty of Strongylocentrotus, Lytechinus, Pseudoboletia, Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia Pseudocentrotus, Toxopneustes, and Tripneustes [16−19]. *Corresponding author's E-mail: [email protected] Most, if not all, sea urchin fisheries have followed the same http://dx.doi.org/10.15242/IICBE.C714075 39 International Conference on Agricultural, Ecological and Medical Sciences (AEMS-2014) July 3-4, 2014 London (United Kingdom) pattern of rapid expansion to an unsustainable peak, followed substrates and is found at depths of 2 to 30 meters [19]. They by an equally rapid decline. World landings of sea urchin graze near the substrate, and their diet comprises algae, (Fig. 1), having peaks at 120,000 mt in 1995, are now in the periphyton, and sea grass. Growth is rapid and longevity low. state of about 82,000 mt with an alarming decreasing rate of A maximum size of 160 mm TD (test diameter) is reported, 32% [20, 21]. Nevertheless, over half amounts of this catch which corresponds to an age of four to five years. Individuals comes from the recently expanded sea urchin (Loxechinus can reach 75 mm TD in the first year. Tripneustes gratilla albus) fishery from Chile [22]. The other major sea urchin has an annual reproductive cycle mediated by seawater temperature, day length and feeding activity. Spawning fisheries, in terms of tonnage landed, are in Japan, Maine occurs during mid and later winter, when temperatures and (USA), British Colombia (Canada) and California (USA) day lengths are the lowest. [23]. In Europe, the sea urchin (Paracentrotus lividus) fishery of France and Ireland were overfished to supply the French Kina (Evechinus chloroticus) markets [24]. There are large populations of edible urchins in Kina is endemic to New Zealand where its distribution is Scotland (Echinus esculentus and Psammechinus miliaris) strongly associated with kelp beds with individuals occurring and Norway (Strongylocentrotus droebachiensis), but these either within beds or aggregating in adjacent barrens. Kina is stocks are not suitable to commercial fishing as their roe usually found from the intertidal zone to 14 m but have been content is either very low or too variable [22, 25−27]. recorded from 60 m. It has a moderate growth rate with However the continuous decreasing patterns clearly reflect the individuals reaching 50 mm TD at 4 years of age. The overexploitation of most fishery grounds and highlight the maximum size of 80 to 100 mm TD is attained in 8 to 9 need for appropriate conservation strategies, fishery years. The mean longevity of individuals varies between sites management policies and aquaculture development but is between 10 to 20 years [28]. Kina attains sexual maturity at 40 to 50 mm TD (3 to 4 years of age) and initiatives. spawning occurs in spring. Purple sea urchin (Heliocidaris erythrogramma) This sea urchin is distributed in the shallow coastal waters (intertidal to 35 m) of southern Australia. In Tasmania, it is common in kelp communities and in barrens, where it feeds by grazing and capturing drift weeds. On the Australian mainland, it can occur in high densities in association with sea grass beds [29]. Growth rates vary depending on nutrition but are generally moderate with individuals attaining 40 mm TD at one year and harvestable sizes (60 mm TD) at 3 to 5 years. Invalidated aging suggests that individuals can live for over 10 years and maximum sizes of 122 mm TD have been observed [30]. Sexual maturity is reached at 40–50 mm TD Fig. 1. Global sea urchin fisheries from 1950 to 2008 by fishing and 5 to 6 years of age [31]. Spawning occurs from summer [20]. to autumn with the best roe recoveries (10–14%) in August to December. II. SEA URCHIN BIOLOGY AND ECOLOGY The major sea urchin producing areas of the world are Erizo (Loxechinus albus) associated with major sites of primary productivity. In the The erizo or Chilean Red Sea Urchin, Loxechinus albus, is temperate regions, these are usually associated with kelp a relatively slow-growing urchin found along the Pacific coast forests and in the subtropical and tropical regions, with sea of South America from Isla Lobos de Afuera in Peru to the grass beds. Given the similar habitat types, the various Southern tip of South America at depths ranging from species of edible sea urchins share some similarities in intertidal to as deep as 340 m.
Recommended publications
  • Future Warming and Acidification Result in Multiple Ecological Impacts to a Temperate Coralline
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Online @ ECU Edith Cowan University Research Online ECU Publications Post 2013 8-1-2018 Future warming and acidification esultr in multiple ecological impacts to a temperate coralline alga Megan J. Huggett Edith Cowan University, [email protected] Kathryn Mcmahon Edith Cowan University, [email protected] Rachele Bernasconi Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013 Part of the Algae Commons 10.1111/1462-2920.14113 Huggett, M. J., McMahon, K., & Bernasconi, R. (2018). Future warming and acidification esultr in multiple ecological impacts to a temperate coralline alga. Environmental microbiology, 20 (8), p. 2769-2782. Available here "This is the peer reviewed version of the following article: Huggett, M. J., McMahon, K., & Bernasconi, R. (2018). Future warming and acidification esultr in multiple ecological impacts to a temperate coralline alga. Environmental microbiology, 20 (8), p. 2769-2782 which has been published in final form at https://doi.org/10.1111/1462-2920.14113. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions." This Journal Article is posted at Research Online. https://ro.ecu.edu.au/ecuworkspost2013/4737 Future warming and acidification result in multiple ecological impacts to a temperate coralline alga Megan J. Huggett1,2,3 , Kathryn McMahon1, Rachele Bernasconi1 Centre for Marine Ecosystems Research 1 and Centre for Ecosystem Management2, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup 6027, WA Australia; School of Environmental and Life Sciences, The University of Newcastle, Ourimbah 2258, NSW Australia3.
    [Show full text]
  • Beach Treasures
    BEACH TREASURES – HAVE YOU SEEN THEM? … Peter Crowcroft, Eco-Logic Education and Environment Services … Drawings by Kaye Traynor As the weather warms, and walking on the beach becomes much more appealing, keep a lookout along the high tide line for these two interesting, but rarely seen, beach treasures. Argonauta nodosa: Known as the Knobby Argonaut, or often, mistakenly, called the Paper Nautilus, this animal is actually a species of octopus that freely swims in the open ocean, in what is known as the pelagic zone – i.e. neither close to the bottom nor near the shore. It is in the family Argonautidae. Females of this species grow significantly larger than males, and secrete their paper-thin egg casing, that is such a rare and special find along our southern Australian beaches. To find a specimen in pristine condition, without any breakages, is considered by many as the pinnacle of beach combing fortune. Although this fragile structure acts as a shell, protecting and housing the female argonaut, it is unlike other cephalopod, true shells, and is regarded as an evolutionary novelty, unique to this family. The egg casing is typically around 150 mm in length, though some extraordinary Argonauta nodosa Knobby Argonaut specimens at 250 mm, or even larger, are known to grace some mantelpieces. Due to the radical dimorphism between male and females, not much was known about male Argonauts until relatively recently. Unlike the females, they do not secrete and live in an egg case, they reach only a fraction of the female size, and live a much shorter lifespans – only mating once, unlike the females that produce numerous broods of eggs throughout their lives.
    [Show full text]
  • Effects of Ocean Warming and Acidification on Fertilization Success and Early Larval Development in the Green Sea Urchin, Lytechinus Variegatus Brittney L
    Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 12-1-2017 Effects of Ocean Warming and Acidification on Fertilization Success and Early Larval Development in the Green Sea Urchin, Lytechinus variegatus Brittney L. Lenz Nova Southeastern University, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Brittney L. Lenz. 2017. Effects of Ocean Warming and Acidification on Fertilization Success and Early Larval Development in the Green Sea Urchin, Lytechinus variegatus. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, . (457) https://nsuworks.nova.edu/occ_stuetd/457. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Thesis of Brittney L. Lenz Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science M.S. Marine Biology Nova Southeastern University Halmos College of Natural Sciences and Oceanography December 2017 Approved: Thesis Committee Major Professor: Joana Figueiredo Committee Member: Nicole Fogarty Committee Member: Charles Messing This thesis is available at NSUWorks: https://nsuworks.nova.edu/occ_stuetd/457 HALMOS COLLEGE OF NATURAL SCIENCES AND
    [Show full text]
  • Marc Slattery University of Mississippi Department of Pharmacognosy School of Pharmacy Oxford, MS 38677-1848 (662) 915-1053 [email protected]
    Marc Slattery University of Mississippi Department of Pharmacognosy School of Pharmacy Oxford, MS 38677-1848 (662) 915-1053 [email protected] EDUCATION: Ph.D. Biological Sciences. University of Alabama at Birmingham (1994); Doctoral Dissertation: A comparative study of population structure and chemical defenses in the soft corals Alcyonium paessleri May, Clavularia frankliniana Roule, and Gersemia antarctica Kukenthal in McMurdo Sound, Antarctica. M.A. Marine Biology. San Jose State University at the Moss Landing Marine Laboratories (1987); Masters Thesis: Settlement and metamorphosis of red abalone (Haliotis rufescens) larvae: A critical examination of mucus, diatoms, and γ-aminobutyric acid (GABA) as inductive substrates. B.S. Biology. Loyola Marymount University (1981); Senior Thesis: The ecology of sympatric species of octopuses (Octopus fitchi and O. diguetti) at Coloraditos, Baja Ca. RESEARCH INTERESTS: Chemical defenses/natural products chemistry of marine & freshwater invertebrates, and microbes. Evolutionary ecology, and ecophysiological adaptations of organisms in aquatic communities; including coral reef, cave, sea grass, kelp forest, and polar ecosystems. Chemical signals in reproductive biology and larval ecology/recruitment, and their applications to aquaculture and biomedical sciences. Cnidarian, Sponge, Molluscan, and Echinoderm biology/ecology, population structure, symbioses and photobiological adaptations. Marine microbe competition and culture. Environmental toxicology. EMPLOYMENT: Professor of Pharmacognosy and
    [Show full text]
  • Satellite Monitoring of Coastal Marine Ecosystems a Case from the Dominican Republic
    Satellite Monitoring of Coastal Marine Ecosystems: A Case from the Dominican Republic Item Type Report Authors Stoffle, Richard W.; Halmo, David Publisher University of Arizona Download date 04/10/2021 02:16:03 Link to Item http://hdl.handle.net/10150/272833 SATELLITE MONITORING OF COASTAL MARINE ECOSYSTEMS A CASE FROM THE DOMINICAN REPUBLIC Edited By Richard W. Stoffle David B. Halmo Submitted To CIESIN Consortium for International Earth Science Information Network Saginaw, Michigan Submitted From University of Arizona Environmental Research Institute of Michigan (ERIM) University of Michigan East Carolina University December, 1991 TABLE OF CONTENTS List of Tables vi List of Figures vii List of Viewgraphs viii Acknowledgments ix CHAPTER ONE EXECUTIVE SUMMARY 1 The Human Dimensions of Global Change 1 Global Change Research 3 Global Change Theory 4 Application of Global Change Information 4 CIESIN And Pilot Research 5 The Dominican Republic Pilot Project 5 The Site 5 The Research Team 7 Key Findings 7 CAPÍTULO UNO RESUMEN GENERAL 9 Las Dimensiones Humanas en el Cambio Global 9 La Investigación del Cambio Global 11 Teoría del Cambio Global 12 Aplicaciones de la Información del Cambio Global 13 CIESIN y la Investigación Piloto 13 El Proyecto Piloto en la República Dominicana 14 El Lugar 14 El Equipo de Investigación 15 Principales Resultados 15 CHAPTER TWO REMOTE SENSING APPLICATIONS IN THE COASTAL ZONE 17 Coastal Surveys with Remote Sensing 17 A Human Analogy 18 Remote Sensing Data 19 Aerial Photography 19 Landsat Data 20 GPS Data 22 Sonar
    [Show full text]
  • ASSESSMENT of COASTAL WATER RESOURCES and WATERSHED CONDITIONS at CHANNEL ISLANDS NATIONAL PARK, CALIFORNIA Dr. Diana L. Engle
    National Park Service U.S. Department of the Interior Technical Report NPS/NRWRD/NRTR-2006/354 Water Resources Division Natural Resource Program Centerent of the Interior ASSESSMENT OF COASTAL WATER RESOURCES AND WATERSHED CONDITIONS AT CHANNEL ISLANDS NATIONAL PARK, CALIFORNIA Dr. Diana L. Engle The National Park Service Water Resources Division is responsible for providing water resources management policy and guidelines, planning, technical assistance, training, and operational support to units of the National Park System. Program areas include water rights, water resources planning, marine resource management, regulatory guidance and review, hydrology, water quality, watershed management, watershed studies, and aquatic ecology. Technical Reports The National Park Service disseminates the results of biological, physical, and social research through the Natural Resources Technical Report Series. Natural resources inventories and monitoring activities, scientific literature reviews, bibliographies, and proceedings of technical workshops and conferences are also disseminated through this series. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service. Copies of this report are available from the following: National Park Service (970) 225-3500 Water Resources Division 1201 Oak Ridge Drive, Suite 250 Fort Collins, CO 80525 National Park Service (303) 969-2130 Technical Information Center Denver Service Center P.O. Box 25287 Denver, CO 80225-0287 Cover photos: Top Left: Santa Cruz, Kristen Keteles Top Right: Brown Pelican, NPS photo Bottom Left: Red Abalone, NPS photo Bottom Left: Santa Rosa, Kristen Keteles Bottom Middle: Anacapa, Kristen Keteles Assessment of Coastal Water Resources and Watershed Conditions at Channel Islands National Park, California Dr. Diana L.
    [Show full text]
  • (Echinoidea, Echinidae) (Belgium) by Joris Geys
    Meded. Werkgr. Tert. Kwart. Geol. 26(1) 3-10 1 fig., 1 tab., 1 pi. Leiden, maart 1989 On the presence of Gracilechinus (Echinoidea, Echinidae) in the Late Miocene of the Antwerp area (Belgium) by Joris Geys University of Antwerp (RUCA), Antwerp, Belgium and Robert Marquet Antwerp, Belgium. Geys, J., & R. Marquet. On the presence of Gracilechinus (Echinoidea, in the of — Echinidae) Late Miocene the Antwerp area (Belgium). Meded. Werkgr. Tert. Kwart. Geol., 26(1): 00-00, 1 fig., 1 tab., 1 pi. Leiden, March 1989. Some well-preserved specimens of the regular echinoid Gracilechinus gracilis nysti (Cotteau, 1880) were collected in a temporary outcrop at Borgerhout-Antwerp, in sandstones reworked from the Deurne Sands (Late Miocene). The systematic status of this subspecies is discussed. The present state of knowledge of the Echinidae from the Neogene of the North Sea Basin is reviewed. Prof. Dr J. Geys, Dept. of Geology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium. Dr R. Marquet, Constitutiestraat 50, B-2008 Antwerp, Belgium, Contents — 3 Introduction, p. 4 Systematic palaeontology, p. 6 Discussion, p. Echinidae in the Neogene of the North Sea Basin—some considerations on 8 systematics, p. 10. References, p. INTRODUCTION extensive excavations the of E17-E18 indicated E3 Because of along western verge motorway (also as ‘Kleine and Ring’) at Borgerhout-Antwerp (Belgium), a remarkable outcrop of Neogene Quaternary beds accessible from The was March to November 1987. outcrop was situated between this motorway and the and extended from the the both ‘Singel’-road, ‘Stenenbrug’ to ‘Zurenborgbrug’, on sides 4 of the exit.
    [Show full text]
  • And Red Sea Urchins
    NEGATIVELY CORRELATED ABUNDANCE SUGGESTS COMPETITION BETWEEN RED ABALONE (Haliotis rufescens) AND RED SEA URCHINS (Mesocentrotus franciscanus) INSIDE AND OUTSIDE ESTABLISHED MPAs CLOSED TO COMMERCIAL SEA URCHIN HARVEST IN NORTHERN CALIFORNIA By Johnathan Centoni A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology Committee Membership Dr. Sean Craig, Committee Chair Dr. Brian Tissot, Committee Member Dr. Paul Bourdeau, Committee Member Dr. Joe Tyburczy, Committee Member Dr. Erik Jules, Program Graduate Coordinator May 2018 ABSTRACT NEGATIVELY CORRELATED ABUNDANCE SUGGESTS COMPETITION BETWEEN RED ABALONE (Haliotis rufescens) AND RED SEA URCHINS (Mesocentrotus franciscanus) INSIDE AND OUTSIDE ESTABLISHED MPAs CLOSED TO COMMERCIAL SEA URCHIN HARVEST IN NORTHERN CALIFORNIA Johnathan Centoni Red abalone and sea urchins are both important herbivores that potentially compete with each other for resources like food and space along the California coast. Red abalone supported a socioeconomically important recreational fishery during this study (which was closed in 2018) and red sea urchins support an important commercial fishery. Both red sea urchins and red abalone feed on the same macroalgae (including Pterygophora californica, Laminaria setchellii, Stephanocystis osmundacea, Costaria costata, Alaria marginata, Nereocystis leutkeana), and a low abundance of this food source during the period of this project may have created a highly competitive environment for urchins and abalone. Evidence that suggests competition between red abalone and red sea urchins can be seen within data collected during the years of this study (2014-2016): a significantly higher red sea urchin density, concomitant with a significantly lower red abalone density, was observed within areas closed to commercial sea urchin harvest (in MPAs) compared to nearby reference areas open to sea urchin harvest.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • DNA Variation and Symbiotic Associations in Phenotypically Diverse Sea Urchin Strongylocentrotus Intermedius
    DNA variation and symbiotic associations in phenotypically diverse sea urchin Strongylocentrotus intermedius Evgeniy S. Balakirev*†‡, Vladimir A. Pavlyuchkov§, and Francisco J. Ayala*‡ *Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525; †Institute of Marine Biology, Vladivostok 690041, Russia; and §Pacific Research Fisheries Centre (TINRO-Centre), Vladivostok, 690600 Russia Contributed by Francisco J. Ayala, August 20, 2008 (sent for review May 9, 2008) Strongylocentrotus intermedius (A. Agassiz, 1863) is an economically spines of the U form are relatively short; the length, as a rule, does important sea urchin inhabiting the northwest Pacific region of Asia. not exceed one third of the radius of the testa. The spines of the G The northern Primorye (Sea of Japan) populations of S. intermedius form are longer, reaching and frequently exceeding two thirds of the consist of two sympatric morphological forms, ‘‘usual’’ (U) and ‘‘gray’’ testa radius. The testa is significantly thicker in the U form than in (G). The two forms are significantly different in morphology and the G form. The morphological differences between the U and G preferred bathymetric distribution, the G form prevailing in deeper- forms of S. intermedius are stable and easily recognizable (Fig. 1), water settlements. We have analyzed the genetic composition of the and they are systematically reported for the northern Primorye S. intermedius forms using the nucleotide sequences of the mitochon- coast region (V.A.P., unpublished data). drial gene encoding the cytochrome c oxidase subunit I and the Little is known about the population genetics of S. intermedius; nuclear gene encoding bindin to evaluate the possibility of cryptic the available data are limited to allozyme polymorphisms (4–6).
    [Show full text]
  • The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
    FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities.
    [Show full text]
  • (Psammechinus Miliaris) and Their Response to Phenanthrene Exposure
    Marine Environmental Research xxx (2010) 1e9 Contents lists available at ScienceDirect Marine Environmental Research journal homepage: www.elsevier.com/locate/marenvrev Sex-specific biochemical and histological differences in gonads of sea urchins (Psammechinus miliaris) and their response to phenanthrene exposure Sabine Schäfer*,1, Doris Abele, Ellen Weihe, Angela Köhler Alfred Wegener Institute for Polar and Marine Research within the Helmholtz Association, Am Handelshafen 12, 27570 Bremerhaven, Germany article info abstract Article history: Female and male individuals of the same species often differ with respect to their susceptibility to Received 16 August 2010 toxicant stress. In the present study, sea urchins (Psammechinus miliaris) of both sexes were exposed to À À Received in revised form high (150 mgL 1) and environmentally relevant (5 mgL 1) concentrations of phenanthrene over 10 days. 14 October 2010 À While food intake was significantly decreased following exposure to 150 mgL 1 phenanthrene, histo- Accepted 19 October 2010 logical indices (lipofuscin accumulation, fibrosis, oocyte atresia), energetic status (energy charge, sum adenylates, AMP/ATP ratio) as well as ascorbate levels in the gonads showed either little or no effect upon Keywords: phenanthrene exposure. However, most parameters (vitamin C, energy charge, sum adenylates, AMP/ATP Sea urchin fi fi Gonad ratio, ATP and ADP concentrations, lipofuscin content, brosis) signi cantly differed between male and fi Lipofuscin female animals. This study illustrates the dif culties to identify toxic injury in reproductive tissue as it Energy charge may be superimposed by gametogenesis and spawning of gametes. Phenanthrene Ó 2010 Elsevier Ltd. All rights reserved. Ascorbate Sex-specific differences ATP ATP/AMP ratio Gametogenesis 1.
    [Show full text]