Effects of Ultraviolet Radiation on Developing Variegated

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Ultraviolet Radiation on Developing Variegated EFFECTS OF ULTRAVIOLET RADIATION ON DEVELOPING VARIEGATED SEA URCHINS, LYTECHINUS VARIEGATUS by Eric Cary Tauchman B.S., The University of Wisconsin—Madison, 2001 A thesis submitted to the Department of Biology College of Arts and Sciences The University of West Florida In partial fulfillment of the requirements for the degree of Master of Science 2008 The thesis of Eric Cary Tauchman is approved: ____________________________________________ _________________ Theodore C. Fox, Ph.D., Committee Member Date ____________________________________________ _________________ Wade H. Jeffrey, Ph.D., Committee Member Date ____________________________________________ _________________ Christopher M. Pomory, Ph.D., Committee Chair Date Accepted for the Department/Division: ____________________________________________ _________________ George L. Stewart, Ph.D., Chair Date Accepted for the University: ____________________________________________ _________________ Richard S. Podemski, Ph.D., Dean of Graduate Studies Date ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Pomory, for presenting me with the opportunity to work on this thesis. He offered teachings and advice on all things science and many things not. I also had the most knowledgeable, available, and reasonable committee members a budding scientist could ask for—something I truly appreciate Drs. Fox and Jeffrey. When one takes twice as long to complete this program as expected, focus wanders and new ideas pop up. The UWF biology and even chemistry faculty displayed wonderful patience and generosity of time and resources in abetting some less- than-entirely thought out ideas on where this research could go (some of them enough to have their names on this paper). I also did a bit of teaching during my tenure at UWF. Human Anatomy and Physiology and Cell Biology were my homes away from home sometimes. I could not have been influenced by better mentors in teaching and life than Mr. Davis and Dr. Pritchard. I’ve also made some great friends in my time at UWF (aforementioned definitely not excluded). I am grateful for you. I think that’s all. kidding. I will boldly put on paper that I owe my beautiful, new wife Jenny forever. She stayed on my side for four years of grad school, then still married me. She’s also great at data entry and proofreading and knows more about UVR effects on sea urchin larvae than she ever wanted. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................... iii LIST OF TABLES ............................................................................................................... v LIST OF FIGURES ........................................................................................................... vi ABSTRACT ..................................................................................................................... vii INTRODUCTION ............................................................................................................... 1 METHODS .......................................................................................................................... 8 A. Collection and Maintenance of Adults ..................................................... 8 B. Gamete Extraction and Fertilization ......................................................... 8 C. Ultraviolet Exposure ................................................................................. 9 D. Phytoplankton Culture for Larval Food .................................................. 10 E. Larval Maintenance ................................................................................ 10 F. Measurement of Morphological Effects ................................................. 11 G. Induction of Settlement ........................................................................... 12 H. Experiment 1 ........................................................................................... 13 I. Experiment 2 ........................................................................................... 14 J. Experiment 3 ........................................................................................... 15 RESULTS .......................................................................................................................... 18 A. Larval Condition ..................................................................................... 18 B. Experiment 1 ........................................................................................... 18 C. Experiment 2 ........................................................................................... 21 D. Experiment 3 ........................................................................................... 27 DISCUSSION .................................................................................................................... 32 A. Experimental Outcomes .......................................................................... 32 B. Effects on Larval Post-oral Arms ........................................................... 33 C. Effects on Larval Settlement .................................................................. 35 D. Implications of UVR Effects .................................................................. 36 REFERENCES .................................................................................................................. 42 iv LIST OF TABLES 1. Number of Lytechinus variegatus Larvae Transferred to Glass Bowls by Treatment to Examine Settlement Success in Experiment 2 ......................................... 12 2. Number of Lytechinus variegatus Larvae Transferred to Glass Bowls by Treatment to Examine Settlement Success in Experiment 3 ......................................... 13 3. Total Exposure in kJ m-2 Administered to Lytechinus variegatus Larvae in Experiment 1 for 0, 45, 90, or 135 Minutes. .................................................................. 14 4. Experiment 1: Statistical Outcome of ANOVA for Linear Regression of Right and Left Post-Oral Arm Lengths of Lytechinus variegatus Larvae Exposed to UV Radiation for Different Lengths of Time at the Gastrula Stage ..................................... 21 5. Experiment 2: Statistical Outcome from One-Way ANOVA of Mean Left and Right Post-Oral Arm Lengths of Lytechinus variegatus Larvae Exposed to 30 Minutes of UV Radiation at the Blastula, Gastrula, or Pluteus Stage and an Unexposed Control ........................................................................................................ 24 6. Experiment 2: Fisher-Hayter Multiple Comparison Tests (Α = 0.01) for Differences in Mean Left and Right Post-Oral Arm Length by Day of Measure in Lytechinus variegatus Larvae Exposed to 30 Minutes of UV Radiation at the Blastula, Gastrula, or Pluteus Stage and an Unexposed Control. Different Letters Indicate Difference, A < B < C ..................................................................................... 25 7. Experiment 3: Statistical Outcome from One-Way ANOVA of Mean Left and Right Post-Oral Arm Lengths of Lytechinus variegatus Larvae Following Exposure to Natural Sunlight with UV Filters of 280 nm, 320 nm, 395 nm or Completely Covered (Control) at the Gastrula Stage. No Statistically Significant Differences Are Present .............................................................................. 31 v LIST OF FIGURES 1. Experiment 1: Right post-oral arm length (µm) of Lytechinus variegatus larvae exposed to UVR for different lengths of time at the gastrula stage by days following fertilization. .......................................................................................... 19 2. Experiment 1: Left post-oral arm length (µm) of Lytechinus variegatus larvae exposed to UVR for different lengths of time at the gastrula stage by days following fertilization. .......................................................................................... 20 3. Experiment 2: Mean right post-oral arm lengths (µm ±SE) of Lytechinus variegatus larvae exposed to UVR for 30 minutes at the blastula, gastrula, or pluteus stage and an unexposed control by days following fertilization. ..................... 22 4. Experiment 2: Mean left post-oral arm lengths (µm ±SE) of Lytechinus variegatus larvae exposed to UVR for 30 minutes at the blastula, gastrula, or pluteus stage and an unexposed control by days following fertilization. ..................... 23 5. Experiment 2: Mean percent settlement (±SE) of Lytechinus variegatus larvae 28 and 48 days following 30 minutes of UVR exposure at the blastula, gastrula, or pluteus stage and an unexposed control. ....................................................................... 26 6. Experiment 3: Mean right post-oral arm lengths (µm ±SE) of Lytechinus variegatus larvae following exposure to natural sunlight with UVR filters of 280 nm, 320 nm, 395 nm or completely covered (control) at the gastrula stage. ......... 28 7. Experiment 3: Mean left post-oral arm lengths (µm ±SE) of Lytechinus variegatus larvae following exposure to natural sunlight with UVR filters of 280 nm, 320 nm, 395 nm or completely covered (control) at the gastrula stage. ......... 29 8. Experiment 3: Mean percent settlement (±SE) of Lytechinus variegatus larvae 17 and 24 days following exposure to natural sunlight with UVR filters of 280 nm, 320 nm, 395 nm or completely covered (control) at the gastrula stage. ......... 31 vi ABSTRACT EFFECTS OF ULTRAVIOLET RADIATION ON DEVELOPING VARIEGATED SEA URCHINS,
Recommended publications
  • Effects of Ocean Warming and Acidification on Fertilization Success and Early Larval Development in the Green Sea Urchin, Lytechinus Variegatus Brittney L
    Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 12-1-2017 Effects of Ocean Warming and Acidification on Fertilization Success and Early Larval Development in the Green Sea Urchin, Lytechinus variegatus Brittney L. Lenz Nova Southeastern University, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Brittney L. Lenz. 2017. Effects of Ocean Warming and Acidification on Fertilization Success and Early Larval Development in the Green Sea Urchin, Lytechinus variegatus. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, . (457) https://nsuworks.nova.edu/occ_stuetd/457. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Thesis of Brittney L. Lenz Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science M.S. Marine Biology Nova Southeastern University Halmos College of Natural Sciences and Oceanography December 2017 Approved: Thesis Committee Major Professor: Joana Figueiredo Committee Member: Nicole Fogarty Committee Member: Charles Messing This thesis is available at NSUWorks: https://nsuworks.nova.edu/occ_stuetd/457 HALMOS COLLEGE OF NATURAL SCIENCES AND
    [Show full text]
  • Marc Slattery University of Mississippi Department of Pharmacognosy School of Pharmacy Oxford, MS 38677-1848 (662) 915-1053 [email protected]
    Marc Slattery University of Mississippi Department of Pharmacognosy School of Pharmacy Oxford, MS 38677-1848 (662) 915-1053 [email protected] EDUCATION: Ph.D. Biological Sciences. University of Alabama at Birmingham (1994); Doctoral Dissertation: A comparative study of population structure and chemical defenses in the soft corals Alcyonium paessleri May, Clavularia frankliniana Roule, and Gersemia antarctica Kukenthal in McMurdo Sound, Antarctica. M.A. Marine Biology. San Jose State University at the Moss Landing Marine Laboratories (1987); Masters Thesis: Settlement and metamorphosis of red abalone (Haliotis rufescens) larvae: A critical examination of mucus, diatoms, and γ-aminobutyric acid (GABA) as inductive substrates. B.S. Biology. Loyola Marymount University (1981); Senior Thesis: The ecology of sympatric species of octopuses (Octopus fitchi and O. diguetti) at Coloraditos, Baja Ca. RESEARCH INTERESTS: Chemical defenses/natural products chemistry of marine & freshwater invertebrates, and microbes. Evolutionary ecology, and ecophysiological adaptations of organisms in aquatic communities; including coral reef, cave, sea grass, kelp forest, and polar ecosystems. Chemical signals in reproductive biology and larval ecology/recruitment, and their applications to aquaculture and biomedical sciences. Cnidarian, Sponge, Molluscan, and Echinoderm biology/ecology, population structure, symbioses and photobiological adaptations. Marine microbe competition and culture. Environmental toxicology. EMPLOYMENT: Professor of Pharmacognosy and
    [Show full text]
  • The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
    FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities.
    [Show full text]
  • An Invitation to Monitor Georgia's Coastal Wetlands
    An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources).
    [Show full text]
  • Curriculum Vitae October 2020
    GARY MICHAEL WESSEL Curriculum vitae October 2020 BUSINESS ADDRESS Brown University, Box G-L168 185 Meeting Street Division of Biology and Medicine Providence, Rhode Island 02912 Phone: (401)863-1051 Fax: (401)863-1182 e-mail: [email protected] website: www.brown.edu/Research/Wessel_Lab/ Orchid ID: 0000-0002-1210-9279 EDUCATION and TRAINING Undergraduate University of Virginia, Charlottesville, Virginia B.A. 1978; Biology and Environmental Sciences Graduate Duke University, Durham, North Carolina Ph.D. 1986; Anatomy Mentors: Drs. David R. McClay and Richard B. Marchase Postgraduate University of Texas M.D. Anderson Cancer Center, Houston, Texas Department of Biochemistry and Molecular Biology NIH Postdoctoral Fellow; May 1986 - April 1989 Mentors: Drs. William H. Klein and William J. Lennarz Employment Research Assistant, Department of Zoology, Duke University 1978-1981 APPOINTMENTS • University of Texas M.D. Anderson Cancer Center; Assistant Professor of Biochemistry and Molecular Biology; May 1989 - July 1990 • Brown University, Division of Biology and Medicine; Assistant Professor of Biology; July 1990 - July 1996 • Brown University, Division of Biology and Medicine; Associate Professor of Biology; July 1996 – 2000 • Brown University, Division of Biology and Medicine; Professor of Biology; June 2000 – present • Marine Biological Laboratory, Woods Hole, MA; Senior Scientist (Adjunct); Eugene Bell Center for Regenerative Biology and Tissue Engineering, December 2005 – present Gary M. Wessel curriculum vitae October 2020 • Professor (Adjunct),
    [Show full text]
  • Feeding Preferences of Echinoids for Plant and Animal Food Models
    SHORTPAPERS 365 Throndsen, J. 1972. Coccolithophorids from the Caribbean Sea. Norw. J. Bot. 19: 51-60. Zernova, V. V. 1970. Phytoplankton of the Gulf of Mexico and Caribbean Sea. Oceanological Re- search 20: 68-103. (In Russian.) --. 1974. Distributions of the phytoplankton biomass in the tropical Atlantic. Okeanologiya 14: 882-887. (rn Russian.) --, and V. Krylov. 1974. Species of monocellular algae in the Gulf of Mexico and Caribbean Sea. Pages 132-134 in Invest. Pesqueras Sovietico-Cubanas. (In Russian.) DATEACCEPTED: June II, 1980. ADDRESS: (HGM) Department of Biological Sciences, Old Dominion University, Norfolk. Virginia 23508; (lAS) lelm, Wyoming 82063. BULLETINOF MARINESCIENCE.32(1): 365-369, 1982 FEEDING PREFERENCES OF ECHINOIDS FOR PLANT AND ANIMAL FOOD MODELS J. B. McClintock, T. S. Klinger and J. M. Lawrence ABSTRACT-The echinoids, Echinometra lucunter, Lytechinus variegatus, and Eucidaris tribuloides showed a feeding response for prey models prepared with animal food (the bivalve, DOllax variabilis) as great or greater than that for prey models prepared with plant food (the seagrass, Thalassia testudinum). The feeding response of E. tribuloides was sig- nificantly greater for animal models as for plant models. The feeding response of L. vari- egallls was strong and as great for animal models as for plant models. The feeding response of E. II/cullter was very weak, but as great for animal as for plant models. These results indicate that although plant foods may be the predominant type offood ingested by echinoids, preference for animal food is high. This cannot be ignored when considering the evolutionary basis for food preference in echinoids. Animals may be under strong selective pressure to eat those foods in the pro- portion that will yield maximum "value" per unit time (Emlen, 1973).
    [Show full text]
  • Sea Urchin Aquaculture
    American Fisheries Society Symposium 46:179–208, 2005 © 2005 by the American Fisheries Society Sea Urchin Aquaculture SUSAN C. MCBRIDE1 University of California Sea Grant Extension Program, 2 Commercial Street, Suite 4, Eureka, California 95501, USA Introduction and History South America. The correct color, texture, size, and taste are factors essential for successful sea The demand for fish and other aquatic prod- urchin aquaculture. There are many reasons to ucts has increased worldwide. In many cases, develop sea urchin aquaculture. Primary natural fisheries are overexploited and unable among these is broadening the base of aquac- to satisfy the expanding market. Considerable ulture, supplying new products to growing efforts to develop marine aquaculture, particu- markets, and providing employment opportu- larly for high value products, are encouraged nities. Development of sea urchin aquaculture and supported by many countries. Sea urchins, has been characterized by enhancement of wild found throughout all oceans and latitudes, are populations followed by research on their such a group. After World War II, the value of growth, nutrition, reproduction, and suitable sea urchin products increased in Japan. When culture systems. Japan’s sea urchin supply did not meet domes- Sea urchin aquaculture first began in Ja- tic needs, fisheries developed in North America, pan in 1968 and continues to be an important where sea urchins had previously been eradi- part of an integrated national program to de- cated to protect large kelp beds and lobster fish- velop food resources from the sea (Mottet 1980; eries (Kato and Schroeter 1985; Hart and Takagi 1986; Saito 1992b). Democratic, institu- Sheibling 1988).
    [Show full text]
  • A Note on the Obligate Symbiotic Association Between Crab Zebrida
    Journal of Threatened Taxa | www.threatenedtaxa.org | 26 August 2015 | 7(10): 7726–7728 Note The Toxopneustes pileolus A note on the obligate symbiotic (Image 1) is one of the most association between crab Zebrida adamsii venomous sea urchins. Venom White, 1847 (Decapoda: Pilumnidae) ISSN 0974-7907 (Online) comes from the disc-shaped and Flower Urchin Toxopneustes ISSN 0974-7893 (Print) pedicellariae, which is pale-pink pileolus (Lamarck, 1816) (Camarodonta: with a white rim, but not from the OPEN ACCESS white tip spines. Contact of the Toxopneustidae) from the Gulf of pedicellarae with the human body Mannar, India can lead to numbness and even respiratory difficulties. R. Saravanan 1, N. Ramamoorthy 2, I. Syed Sadiq 3, This species of sea urchin comes under the family K. Shanmuganathan 4 & G. Gopakumar 5 Taxopneustidae which includes 11 other genera and 38 species. The general distribution of the flower urchin 1,2,3,4,5 Marine Biodiversity Division, Mandapam Regional Centre of is Indo-Pacific in a depth range of 0–90 m (Suzuki & Central Marine Fisheries Research Institute (CMFRI), Mandapam Takeda 1974). The genus Toxopneustes has four species Fisheries, Tamil Nadu 623520, India 1 [email protected] (corresponding author), viz., T. elegans Döderlein, 1885, T. maculatus (Lamarck, 2 [email protected], 3 [email protected], 1816), T. pileolus (Lamarck, 1816), T. roseus (A. Agassiz, 5 [email protected] 1863). James (1982, 1983, 1986, 1988, 1989, 2010) and Venkataraman et al. (2013) reported the occurrence of Members of five genera of eumedonid crabs T. pileolus from the Andamans and the Gulf of Mannar, (Echinoecus, Eumedonus, Gonatonotus, Zebridonus and but did not mention the association of Zebrida adamsii Zebrida) are known obligate symbionts on sea urchins with this species.
    [Show full text]
  • Rapid Biodiversity Assessment of REPUBLIC of NAURU
    RAPID BIODIVERSITY ASSESSMENT OF REPUBLIC OF NAURU JUNE 2013 NAOERO GO T D'S W I LL FIRS SPREP Library/IRC Cataloguing-in-Publication Data McKenna, Sheila A, Butler, David J and Wheatley, Amanda. Rapid biodiversity assessment of Republic of Nauru / Sheila A. McKeena … [et al.] – Apia, Samoa : SPREP, 2015. 240 p. cm. ISBN: 978-982-04-0516-5 (print) 978-982-04-0515-8 (ecopy) 1. Biodiversity conservation – Nauru. 2. Biodiversity – Assessment – Nauru. 3. Natural resources conservation areas - Nauru. I. McKeena, Sheila A. II. Butler, David J. III. Wheatley, Amanda. IV. Pacific Regional Environment Programme (SPREP) V. Title. 333.959685 © SPREP 2015 All rights for commercial / for profit reproduction or translation, in any form, reserved. SPREP authorises the partial reproduction or translation of this material for scientific, educational or research purposes, provided that SPREP and the source document are properly acknowledged. Permission to reproduce the document and / or translate in whole, in any form, whether for commercial / for profit or non-profit purposes, must be requested in writing. Secretariat of the Pacific Regional Environment Programme P.O. Box 240, Apia, Samoa. Telephone: + 685 21929, Fax: + 685 20231 www.sprep.org The Pacific environment, sustaining our livelihoods and natural heritage in harmony with our cultures. RAPID BIODIVERSITY ASSESSMENT OF REPUBLIC OF NAURU SHEILA A. MCKENNA, DAVID J. BUTLER, AND AmANDA WHEATLEY (EDITORS) NAOERO GO T D'S W I LL FIRS CONTENTS Organisational Profiles 4 Authors and Participants 6 Acknowledgements
    [Show full text]
  • Microbial Composition and Genes for Key Metabolic Attributes in the Gut
    Article Microbial Composition and Genes for Key Metabolic Attributes in the Gut Digesta of Sea Urchins Lytechinus variegatus and Strongylocentrotus purpuratus Using Shotgun Metagenomics Joseph A. Hakim 1,†, George B. H. Green 1, Stephen A. Watts 1, Michael R. Crowley 2, Casey D. Morrow 3,* and Asim K. Bej 1,* 1 Department of Biology, The University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA; [email protected] (J.A.H.); [email protected] (G.B.H.G.); [email protected] (S.A.W.) 2 Department of Genetics, Heflin Center Genomics Core, School of Medicine, The University of Alabama at Birmingham, 705 South 20th Street, Birmingham, AL 35294, USA; [email protected] 3 Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA * Correspondence: [email protected] (C.D.M.); [email protected] (A.K.B.); Tel.: +1-205-934-5705 (C.D.M.); +1-205-934-9857 (A.K.B.) † Current Address: School of Medicine (M.D.), The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL 35233, USA. Abstract: This paper describes the microbial community composition and genes for key metabolic genes, particularly the nitrogen fixation of the mucous-enveloped gut digesta of green (Lytechinus variegatus) and purple (Strongylocentrotus purpuratus) sea urchins by using the shotgun metagenomics Citation: Hakim, J.A.; Green, G.B.H.; approach. Both green and purple urchins showed high relative abundances of Gammaproteobacteria Watts, S.A.; Crowley, M.R.; Morrow, at 30% and 60%, respectively. However, Alphaproteobacteria in the green urchins had higher relative C.D.; Bej, A.K.
    [Show full text]
  • Patterns of Dispersion, Movement and Feeding of the Sea Urchin Lytechinus Variegatus, and the Potential Implications for Grazing Impact on Live Seagrass
    Gulf and Caribbean Research Volume 32 Issue 1 2021 Patterns of Dispersion, Movement and Feeding of the Sea Urchin Lytechinus variegatus, and the Potential Implications for Grazing Impact on Live Seagrass Adrianna Parson Augusta University, [email protected] Joseph M. Dirnberger Kennesaw State University, [email protected] Troy Mutchler Kennesaw State University, [email protected] Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Marine Biology Commons, and the Population Biology Commons Recommended Citation Parson, A., J. M. Dirnberger and T. Mutchler. 2021. Patterns of Dispersion, Movement and Feeding of the Sea Urchin Lytechinus variegatus, and the Potential Implications for Grazing Impact on Live Seagrass. Gulf and Caribbean Research 32 (1): 8-18. Retrieved from https://aquila.usm.edu/gcr/vol32/iss1/3 DOI: https://doi.org/10.18785/gcr.3201.03 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. VOLUME 25 VOLUME GULF AND CARIBBEAN Volume 25 RESEARCH March 2013 TABLE OF CONTENTS GULF AND CARIBBEAN SAND BOTTOM MICROALGAL PRODUCTION AND BENTHIC NUTRIENT FLUXES ON THE NORTHEASTERN GULF OF MEXICO NEARSHORE SHELF RESEARCH Jeffrey G. Allison, M. E. Wagner, M. McAllister, A. K. J. Ren, and R. A. Snyder....................................................................................1—8 WHAT IS KNOWN ABOUT SPECIES RICHNESS AND DISTRIBUTION ON THE OUTER—SHELF SOUTH TEXAS BANKS? Harriet L. Nash, Sharon J. Furiness, and John W. Tunnell, Jr.
    [Show full text]
  • Scaling in the Aristotle's Lantern of Lytechinus Variegatus (Echinodermata: Echinoidea) C.M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aquila Digital Community Gulf of Mexico Science Volume 29 Article 5 Number 2 Number 2 2011 Scaling in the Aristotle's Lantern of Lytechinus variegatus (Echinodermata: Echinoidea) C.M. Pomory University of West Florida M.T. Lares University of Mary DOI: 10.18785/goms.2902.05 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Pomory, C. and M. Lares. 2011. Scaling in the Aristotle's Lantern of Lytechinus variegatus (Echinodermata: Echinoidea). Gulf of Mexico Science 29 (2). Retrieved from https://aquila.usm.edu/goms/vol29/iss2/5 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Pomory and Lares: Scaling in the Aristotle's Lantern of Lytechinus variegatus (Echi SHORT PAPERS AND NOTES Gulf of Mexico Science, 2011(2), pp. 119–125 grazed more material than sea urchins with E 2011 by the Marine Environmental Sciences Consortium of Alabama smaller lanterns. Any phenotyptic response must take place within the scope of sizes determined SCALING IN THE ARISTOTLE’S LANTERN OF by the growth pattern of the lantern as sea LYTECHINUS VARIEGATUS (ECHINODERMA- urchins grow from newly settled recruits to TA: ECHINOIDEA).—Size matters. This is a adults, the lantern’s relation to other structures two-word conclusion supported by numerous inside the test, and room available inside the test.
    [Show full text]