Eocene Vertebrates, Coprolites, and Plants in the Golden Valley Formation of Western North Dakota

Total Page:16

File Type:pdf, Size:1020Kb

Eocene Vertebrates, Coprolites, and Plants in the Golden Valley Formation of Western North Dakota GLENN L. JEPSEN Dept. Geology, Princeton University, Princeton, N. J. Eocene Vertebrates, Coprolites, and Plants in the Golden Valley Formation of Western North Dakota Abstract: An early Eocene date for the origin of this early Tertiary biofacies indicate warm, humid, the Golden Valley Formation in North Dakota is swampy lowlands with subtropical forests bordering confirmed by the discovery of fossil fish, amphib- sluggish streams. Montmorillonite in the formation ians, reptiles, birds, and mammals. Riparian and may represent ash from volcanoes to the west. aquatic animals and plants that were associated in CONTENTS Introduction 673 References cited 683 Acknowledgments 673 Salvinia preauriculata as an index fossil. 675 Figure Age of the Kingsbury Conglomerate. 676 1. Distribution of the Golden Valley Formation Naming of the Golden Valley Formation. 677 in part of Stark County, North Dakota . 674 Fossils of the Golden Valley Formation . 678 Vertebrates 678 Plate Facing Coprolites 680 1. Rocks and fossils of the Golden Valley Forma- Plants 681 tion, Stark County, North Dakota .... 676 "Hard Siliceous" layer 681 2. Vertebrate Coprolites from the Golden Valley Conclusions 682 Formation, Stark County, North Dakota . 677 faculty members and students from universities INTRODUCTION and other schools in Colorado, Connecticut, Recent discoveries of many fossil vertebrates Massachusetts, Montana, New Hampshire, in Stark County, western North Dakota, New Jersey, New York, North Dakota, Ohio, validate an early Eocene (Sparnacian, Wasatch- and South Dakota participated in a program of ian) age for the Golden Valley Formation prospecting for fossils and quarrying in the and extend the known geographic distribution Golden Valley beds on the margins of the of North American, early Eocene land- Little Badlands synclinal basin area southwest vertebrate faunas several hundred miles east- of Dickinson, North Dakota, in the Heart ward. River drainage system (Fig. 1). This project, At least 18 orders, 29 families, 38 genera, and as part of a larger investigation of early Ter- 39 species of vertebrates from the Golden tiary rocks and fossils in western states, was Valley Formation are now represented in col- undertaken to test the validity of the paleo- lections at Princeton University, and additional botanical evidence adduced by the late Roland explorations in the region will undoubtedly W. Brown for the Eocene age of the Golden increase this number. Data derived from these Valley Formation and to try to find vertebrate new occurrences and associations suggest many fossils to aid in dating and correlating the interesting speculations about the ecology, formation. climate, terrain, and biofacies of early Ceno- zoic time east of the Rocky Mountains. ACKNOWLEDGMENTS At various times during parts of each sum- While field research was in progress on the mer field season of 1958 to 1961, inclusive, Golden Valley Formation south of South Geological Society of America Bulletin, v. 74, p. 673-684, 1 fig., 2 pis., June 1963 673 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/74/6/673/3417004/i0016-7606-74-6-673.pdf by guest on 30 September 2021 674 G. L. JEPSEN—EOCENE FOSSILS, GOLDEN VALLEY FORMATION, N. DAK. Heart, North Dakota, many friends helped in Museum, Ekalaka, Montana; Leonard Radin- defining and resolving some of the numerous sky, Yale University; Peter Robinson, Univer- problems of paleoecology, stratigraphy, sedi- sity of Colorado; and Elwyn Simons, Yale mentology, and geomorphology that are pre- University. sented by the fossils and rocks of the area. For enthusiastic work with pick and shovel Especially useful suggestions and criticisms in and air compressor many student diggers de- the field were offered by Erling Dorf and serve a vote of thanks. Parish A. Jenkins, Jr., Donald Baird, Princeton University; William participated in the field work of two seasons E. Benson, National Science Foundation; and expanded his research into a senior thesis Robert Chaifee, Dartmouth College; H. D. (1961, Princeton Univ.) on the lithology, co- Holland, Jr., University of North Dakota; prolites, and paleoecology of the Golden Wilson M. Laird, State Geologist of North Valley Formation. Clara Langdon of Dickinson Dakota; Marshall Lambert, Carter County and John A. Dvorak of South Heart generously 103° | I Twr White River Group -FORT UNION I Teg Golden Valley Formation NORTH DAKOTA I Tft Tongue River Member of 0 Fort Union Formation SENTINEL BUTTE I • A, B Fossil sites Figure 1. Distribution of the Golden Valley Formation in part of Stark County, North Dakota. Modified from Benson (1951). Fossil vertebrate localities: A, White Butte Site; B, Turtle Valley Site Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/74/6/673/3417004/i0016-7606-74-6-673.pdf by guest on 30 September 2021 ACKNOWLEDGMENTS 675 provided home and camp accomodations for grown explosively and covers more than 200 some members of the field crews. Erling Dorf squares miles as a dense green floating carpet contributed the identifications and classifica- that is suffocating some of the fish and other tion of Golden Valley fossil plants herein listed, elements of the native aquatic biota (Huxley, and he plans to continue field work on the 1962). formation to extend the paleobotanical collec- The Cretaceous to Recent time range of the tions in preparation for additional publications genus is not unusual for plants but is very long about them. Richard Estes of Boston Univer- when compared with the duration of most sity helped identify and prepare a list of some mammalian genera. Despite Brown's insistence of the submammalian fossil vertebrates. that the putative absence of Salvinia from Princeton University supported this study Paleocene floras is an actual circumstance and through the William B. Scott Research Fund not merely a function of luck in collecting, it for Vertebrate Paleontology. seems obvious that this hardy oval-pinnuled fern eventually will be found in Paleocene SALVINIA PREAURICULATA rocks, thus closing or narrowing this hiatus of AS AN INDEX FOSSIL many millions of years in its distribution. In Brown (1948a; 1948b; 1952; in Benson, numerous localities all conditions past and pres- 1952; in Benson and Laird, 1947) originally ent seem to be satisfied for its presence and based his conclusions about the age of the preservation in Paleocene sediments. Golden Valley Formation solely and tenuously Berry's interesting speculation (1930, p. 48) upon the known occurrences and the assumed, that the species Salvinia preauriculata spread but not certainly delimited, time range of a northward to Wyoming from equatorial Amer- water-floating fern, Salvinia preauriculata. He ica during Eocene time is not supported by the had perceived a curious and unexplained time known place-time distribution of its geological distribution of Salvinia; although it occurs in occurrences (late Cretaceous of Colorado; North America in late Cretaceous and early early Wasatchian early Eocene of northern Eocene sediments, as well as mid-Eocene and Montana, western North Dakota, and various more recent deposits, it has not been found in localities in Wyoming; late Wasatchian early the intervening Paleocene beds. During a Eocene of Tennessee; and mid-Eocene Bridger- period of many years Brown (1948a, p. 1169) ian of the western Wyoming Wind River "... collected thousands of fossil plant spe- basin). Neither does the pattern clearly support cimens from hundreds of localities in the the migration direction (west to east) men- Paleocene ..." and "... never found a Paleo- tioned as a possibility by Benson (1952, open- cene Salvinia." He discovered the "Cretaceous file report, U. S. Geol. Survey, p. 90-91) species" in the " 'Laramie' Formation (Lance)" Waves of territorial extension may have oc- near Craig, Colorado, and also noted the species curred very rapidly in either of these or in preauriculata as an element of lakeside or slack- other directions as areas were opened by ap- stream vegetation in the mid-Eocene (Bridger- propriate climatic conditions to the spread of ian, Lutetian) Aycross Formation of the Wind the species, but the known distribution in time River basin, Wyoming (Berry, 1930), as well as and area of the taxon is too coarse a measuring part of a coastal and lagoon-border flora in the device to determine such comparatively fine early Eocene (Wasatchian, Ypresian) Wilcox details of its geographical habits. Group in the Tennessee region. Berry (p. 48) A real, rather than merely an apparent, ab- said that the latter form is very similar to the sence of Salvinia from Paleocene strata in the living S. auriculata of Cuba and Central and United States is fully in accord with the pre- South America and, further, that S. zeillerifmm sumptive absence therefrom of several mam- the Sparnacian of the Paris basin is more similar malian groups such as artiodactyls, perisso- to S. freauriculata of the Wilcox than to any of dactyls, and adapid primates. None of these the later Tertiary forms. animals or their ancestors, however, are known Living representatives of various species of to have been present in America in Cretaceous Salvinia are found chiefly in quiet equatorial time, and their apparently sudden arrival in the waters in the Americas, Europe, and Asia. S. earliest Eocene strongly indicates a territorial auriculata, introduced into tropical Africa, has expansion or migration rather than a mere become a serious limnological problem in shift of ecologic conditions. Vertebrate paleon- Kariba Lake on the Zambezi River, the largest tologists for many years have eagerly but fruit- man-made lake in the world, where it has lessly sought (and will continue to search for) Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/74/6/673/3417004/i0016-7606-74-6-673.pdf by guest on 30 September 2021 676 G. L. JEPSEN-EOCENE FOSSILS, GOLDEN VALLEY FORMATION, N. DAK. fossils of pre-Eocene forms that can be rec- prior to the time that the term and concept ognized as representing the populations from "Paleocene" was generally accepted in this which "dawn horses," "dawn cattle," and country.
Recommended publications
  • South Dakota to Nebraska
    Geological Society of America Special Paper 325 1998 Lithostratigraphic revision and correlation of the lower part of the White River Group: South Dakota to Nebraska Dennis O. Terry, Jr. Department of Geology, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0340 ABSTRACT Lithologic correlations between type areas of the White River Group in Nebraska and South Dakota have resulted in a revised lithostratigraphy for the lower part of the White River Group. The following pedostratigraphic and lithostratigraphic units, from oldest to youngest, are newly recognized in northwestern Nebraska and can be correlated with units in the Big Badlands of South Dakota: the Yellow Mounds Pale- osol Equivalent, Interior and Weta Paleosol Equivalents, Chamberlain Pass Forma- tion, and Peanut Peak Member of the Chadron Formation. The term “Interior Paleosol Complex,” used for the brightly colored zone at the base of the White River Group in northwestern Nebraska, is abandoned in favor of a two-part division. The lower part is related to the Yellow Mounds Paleosol Series of South Dakota and rep- resents the pedogenically modified Cretaceous Pierre Shale. The upper part is com- posed of the unconformably overlying, pedogenically modified overbank mudstone facies of the Chamberlain Pass Formation (which contains the Interior and Weta Paleosol Series in South Dakota). Greenish-white channel sandstones at the base of the Chadron Formation in Nebraska (previously correlated to the Ahearn Member of the Chadron Formation in South Dakota) herein are correlated to the channel sand- stone facies of the Chamberlain Pass Formation in South Dakota. The Chamberlain Pass Formation is unconformably overlain by the Chadron Formation in South Dakota and Nebraska.
    [Show full text]
  • Petrology of Sandstones from the Bullion Creek and Sentinel Butte Formations (Paleocene), Little Missouri Badlands, North Dakota Mark A
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects 1978 Petrology of sandstones from the Bullion Creek and Sentinel Butte Formations (Paleocene), Little Missouri Badlands, North Dakota Mark A. Steiner University of North Dakota Follow this and additional works at: https://commons.und.edu/theses Part of the Geology Commons Recommended Citation Steiner, Mark A., "Petrology of sandstones from the Bullion Creek and Sentinel Butte Formations (Paleocene), Little iM ssouri Badlands, North Dakota" (1978). Theses and Dissertations. 286. https://commons.und.edu/theses/286 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. PETROLOGY OF SANDSTONES FROM THE BULLION CREEK AND SENTINEL BUTTE FORNATIONS (PALEOCENE), LITTLE MISSOURI BADLANDS, NORTH DAKOTA by Mark A. Steiner Bachelor of Arts, College of St. Thomas, 1972 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Arts Grand Forks, North Dakota December 1978 This thesis submitted by Mark A. Steiner in partial fulfillment of the requirements for the Degree of Master of Arts from the University of North Dakota is hereby approved by the Faculty Advisory Committee under whom the work has been done. (Chairman) .// ' (r~· _j {~µ..~ Dean of the Graduate School 11 Permission PETROLOGY OF SANDSTONES FROM THE BULLION CREEK AND SENTINEL BUTTE FORMATIONS (PALEOCENE), Title------------'-'--=----~------------------- LITTLE MISSOURI BADLANDS, NORTH DAKOTA In presenting this thesis in partial fulfillment of the require­ ments for a graduate degree from the University of North Dakota, I agree that the Library of this University shall make it freely avail­ able for inspection.
    [Show full text]
  • Basin-Margin Depositional Environments of the Fort Union and Wasatch Formations in the Buffalo-Lake De Smet Area, Johnson County, Wyoming
    U.S. DEPARTMENT OF INTERIOR GEOLOGICAL SURVEY Basin-Margin Depositional Environments of the Fort Union and Wasatch Formations in the Buffalo-Lake De Smet area, Johnson County, Wyoming By Stanley L. Obernyer Open-File Report 79-712 1979 Contents Page Abstract 1 Introduction 5 Methods of investigation 8 Previ ous work - 9 General geol ogy 10 Acknowledgments 16 Descriptive stratigraphy of the Fort Union and Wasatch Formations 18 Fort Union Formation- 18 Lower member 20 Conglomerate member 21 Wasatch Formation 30 Kingsbury Conglomerate Member 32 Moncrief Member 38 Coal-bearing strata Wasatch Formation 45 Conglomeratic sandstone sequence 46 The Lake De Smet coal bed 53 Very fine to medium-grained sandstone sequence 69 Fossil marker beds 78 Environments of Deposition 79 General 79 Alluvial fan environment 82 Braided stream environments 86 Alluvial valley environments 89 Tectonics and Sedimentation 92 Conglomerates and tectonics- 92 Coals and tectonics 98 Conclusions 108 References 111 11 ILLUSTRATIONS Plates Plate 1. Bedrock geologic map of the Buffalo-Lake De Smet area, Johnson County, Wyoming In pocket 2. Geologic cross sections along the Bighorn Mountain Front, Buffalo-Lake De Smet area, Johnson County, Wyoming In pocket FIGURES Page Figure 1. Location map sh wing the major structural units surround­ ing the Powder River Basin, Wyoming and Montana 7 2. Composite geologic section of the rocks exposed in in the Buffalo-Lake De Smet area- 11 3. Generalized geologic map of the Powder River Basin 12 4. Isopach map of the Fort Union and Wasatch Formations, Powder River Basin, from Curry (1971) 14 5. Generalized stratigraphic column of the conglomerate sequences 19 6.
    [Show full text]
  • Theodore Roosevelt National Park Geologic Resource Evaluation Report
    National Park Service U.S. Department of the Interior Natural Resource Program Center Theodore Roosevelt National Park Geologic Resource Evaluation Report Natural Resource Report NPS/NRPC/GRD/NRR—2007/006 THIS PAGE: The Little Missouri River flows near the Juniper Campground in the North Unit of Theodore Roosevelt NP, ND. ON THE COVER: View from the Oxbow Overlook Theodore Roosevelt NP, ND. Photos by: Dave Krueger Theodore Roosevelt National Park Geologic Resource Evaluation Report Natural Resource Report NPS/WASO/NRPC/GRD—2007/006 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Lakewood, Colorado 80225 June 2007 U.S. Department of the Interior Washington, D.C. The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer- reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. Natural Resource Reports are the designated medium for disseminating high priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. Examples of the diverse array of reports published in this series include vital signs monitoring plans; "how to" resource management papers; proceedings of resource management workshops or conferences; annual reports of resource programs or divisions of the Natural Resource Program Center; resource action plans; fact sheets; and regularly- published newsletters.
    [Show full text]
  • Unclassified Unclassified
    .'C /ts*.r .:_, UNCLASSIFIED TEI-61(Pts. i and GEOLOGY AND MINERALOGY U. S. DEPARTMENT OF THE INTERIOR RECONNAISSANCE FOR TRACE ELEMENTS IN NORTH DAKOTA AND EASTERN MONTANA PART 1. GEOLOGY AND RADIOACTIVITY PART 2. RESERVES AND SUMMARY By Donald G. Wyant Ernest P. Beroni This report is preliminary and has not been edited or reviewed for conformity with U. S. Geological Survey standards and nomenclature. February i960 .4Geological Survey. Washington, D. C. Prepared by Geological Survey for the UNITED STATES ATOMIC ENERGY COMMISSION Technical Information Service Extension, Oak Ridge, Tennessee UNCLASSIFIED Date Declassified: March 9, 1956. This report has been reproduced directly from the best available copy. Issuance of this document does not constitute authority for declassification of classified material of the same or similar content and title by the same au­ thors. Printed in USA. Price $1.00. Available from the Office of Technical Services, Department of Commerce, Washington 25, D. C. AEC Technical Information Service Extension Oak Ridge. Tennessee CONTENTS Page PART I—GEOLOGY AND RADIOACTIVITY Abstract ................ 5 Introduction ............... 5 General Geology .............. 6 General Stratigraphy ............. 7 Structure ............... 8 Radioactivity ............... 8 Non-radioactive or slightly radioactive rocks ........ 9 Benton formation ............. 9 Niobrara formation ............. 9 Pierre shale .............. 9 Fox Hills sandstone ............. 10 Hell Creek formation ............ 10 Ludlow formation ............. 10 Cannonball formation ............ 11 Fort Union formation ............ 11 Golden Valley formation ............ 13 White River formation ............ 13 Pleistocene and Recent deposits . .13 Mineral deposits ............. 13 Radioactive rocks .............. 13 Sentinel Butte Member of the Fort Union formation ....... 13 Sentinel Butte area ............. 14 Flat Top Butte area ............. 14 Bullion Butte area ............. 15 H-T-White Buttes area ...........
    [Show full text]
  • Depositional History of the Chadron Formation in North Dakota
    Depositional History of the Chadron Formation in North Dakota by Clint A. Boyd1 and John R. Webster2 1North Dakota Geological Survey 2Geosciences, Minot State University REPORT OF INVESTIGATION NO. 120 NORTH DAKOTA GEOLOGICAL SURVEY Edward C. Murphy, State Geologist Lynn D. Helms, Director Dept. of Mineral Resources 2018 Table of Contents Abstract ........................................................................................................................................... v Acknowledgements ........................................................................................................................ vi Introduction ..................................................................................................................................... 1 Late Eocene Paleosols of North Dakota ......................................................................................... 3 Paleosols at White and Haystack Buttes (Stark County) ............................................................ 4 Description of Section 1 .......................................................................................................... 5 Description of Section 2 .......................................................................................................... 7 History of Paleosol Development ......................................................................................... 13 Interpretation ......................................................................................................................... 16
    [Show full text]
  • The Geologic Column Contents Abstract
    The Geologic Column and its Implications for the Flood Copyright © 2001 by Glenn Morton [Last Update: February 17, 2001] Contents Abstract and Introduction The Geologic Column in North Dakota Conclusion References Abstract This article is a detailed examination of the young earth creationist claim that the geologic column does not exist. It is shown that the entire geologic column exists in North Dakota. I do this not to disprove the Bible but to encourage Christians who are in the area of apologetics to do a better job of getting the facts straight. I recently had a private discussion with a gentleman concerning the nature of the Haymond beds in Southwestern Texas. The issues which this raised might be of some interest. The Haymond beds consist of 15,000 alternating layers of sand and shale. The sands have several characteristic sedimentary features which are found on turbidite deposits. Turbidites are deep water deposits in which each sand layer is deposited in a brief period of time, by a submarine "landslide" (I am trying to avoid jargon here) and the shale covering it is deposited over a long period of time. I made the comment that one feature of this deposit made it an excellent argument for an old earth and local flood. Earle F. McBride (1969, p. 87-88) writes: Two thirds of the Haymond is composed of a repetitious alternation of fine- and very fine- grained olive brown sandstone and black shale in beds from a millimeter to 5 cm thick. The formation is estimated to have more than 15,000 sandstone beds greater than 5 mm thick." p.
    [Show full text]
  • Summary Description of the Geologic Environment of the Lignite Fields of the Williston Basin in North Dakota Is Intended to Provide The
    SUMMARY DESCRIPTION OF THE GEOLOGIC ENVIRONMENT OF THE WILLISTON BASIN LIGNITE FIELDS, NORTH DAKOTA Donald E. Trimble, compiler U.S. Geological Survey Open-file Report 78-920 This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards and nomenclature. Contents Page Introduction (untitled) 1 Sources of information 5 Physiographic description 6 ___ ^^ _ _ - ____ Q£ ____ _._-__ _ _._._-__^^__ _ ____________________ -_-.-_-__ ______ _ ._^________-___ ___ ______ 7^ Glaciated Missouri Plateau section 7 Unglaciated Missouri Plateau section 10 Geologic description 14 ""lJLgJL />V*O dpiljr T~»V_ tT«__» _ _» ___ __ ._ _ __ __»___ ___» __ __ __ _ _»__ _-»__.»___ X*r1 /I Pre-Hell Creek strata 16 Hell Creek Formation (Upper Cretaceous) 18 Fort Union Formation (Paleocene) 19 Golden Valley Formation (upper Paleocene and lower Eocene) 21 White River Formation or Group (Oligocene) 22 Chadron Formation 23 isruxe j orma t i.on'~^"~"~"~""> ""~'"~'"~'"~' ""~' ""~'^*>" ""~'"""""~' " " ""~'"~'^ " ""~'"~'~" ""~'^ -.j Arikaree Formation (Miocene) 23 Glacial deposits (Pleistocene) 24 Alluvium (Pleistocene and Holocene) 25 Page Geologic description Continued Stratigraphy Continued Landslide deposits (Holocene) 25 Structure 26 Williston Basin 26 Fold s 28 Fractures 29 Landscape geochemistry by Jon J. Connor - 31 Physical properties of the Fort Union Formation by E. E. McGregor, and W. K. Smith 52 Geologic hazards 61 Slope stability of the Fort Union Formation by W. Z. Savage - 62 Slope stability calculations - 62 Conclusions -. 57 Landslides by Roger B. Colton 68 Surface subsidence by C.
    [Show full text]
  • Eocene Vertebrates, Coprolites, and Plants in the Golden Valley Formation of Western North Dakota
    GLENN L. JEPSEN Dept. Geology, Princeton University, Princeton, N. J. Eocene Vertebrates, Coprolites, and Plants in the Golden Valley Formation of Western North Dakota Abstract: An early Eocene date for the origin of this early Tertiary biofacies indicate warm, humid, the Golden Valley Formation in North Dakota is swampy lowlands with subtropical forests bordering confirmed by the discovery of fossil fish, amphib- sluggish streams. Montmorillonite in the formation ians, reptiles, birds, and mammals. Riparian and may represent ash from volcanoes to the west. aquatic animals and plants that were associated in CONTENTS Introduction 673 References cited 683 Acknowledgments 673 Salvinia preauriculata as an index fossil. 675 Figure Age of the Kingsbury Conglomerate. 676 1. Distribution of the Golden Valley Formation Naming of the Golden Valley Formation. 677 in part of Stark County, North Dakota . 674 Fossils of the Golden Valley Formation . 678 Vertebrates 678 Plate Facing Coprolites 680 1. Rocks and fossils of the Golden Valley Forma- Plants 681 tion, Stark County, North Dakota .... 676 "Hard Siliceous" layer 681 2. Vertebrate Coprolites from the Golden Valley Conclusions 682 Formation, Stark County, North Dakota . 677 faculty members and students from universities INTRODUCTION and other schools in Colorado, Connecticut, Recent discoveries of many fossil vertebrates Massachusetts, Montana, New Hampshire, in Stark County, western North Dakota, New Jersey, New York, North Dakota, Ohio, validate an early Eocene (Sparnacian, Wasatch- and South Dakota participated in a program of ian) age for the Golden Valley Formation prospecting for fossils and quarrying in the and extend the known geographic distribution Golden Valley beds on the margins of the of North American, early Eocene land- Little Badlands synclinal basin area southwest vertebrate faunas several hundred miles east- of Dickinson, North Dakota, in the Heart ward.
    [Show full text]
  • Chapter 3 — Affected Environment
    Chapter 3 — Affected Environment his chapter describes the affected environment for the project alternatives. The affected T environment is the portion of the existing environment that could be affected by the project. The information in Chapter 3 describes existing conditions, before any of the alternatives are implemented. Chapter 4 describes the changes that are expected to occur from implementing the alternatives. The information presented here focuses on issues identified through the scoping process and interdisciplinary analyses. The affected environment varies for each issue. Both the nature of the issue and components of the proposed project and alternatives dictate this variation. The following sections concentrate on providing the specific environmental information necessary to assess the potential effects of the proposed action and alternatives. 3.1 General Physical Environment The Fort Berthold Indian Reservation encompasses about 1,583 square miles in portions of six counties in west-central North Dakota. The counties are Dunn, McKenzie, McLean, Mercer, Mountrail, and Ward. Surface elevations range from about 1,835 feet above mean sea level (AMSL) along Lake Sakakawea to more than 2,600 feet AMSL in Dunn County. The project area occurs at the confluence of two North Dakota ecoregions — the Missouri Coteau Slope and the Northwestern Glaciated Plains (Bryce et al. 1998). Physiographically, this area consists of nearly level till plains and rolling morainic hills and is also known as the glaciated Prairie Pothole Region (PPR). The PPR is a unique area of approximately 300,000 square miles in the United States and Canada that stretches northwest from northern Iowa through southwest Minnesota, eastern South Dakota, eastern and northern North Dakota, southwest Manitoba, and south Saskatchewan to southeast and east central Alberta and bordering areas of northern Montana (Kantrud et al.
    [Show full text]
  • Floristic Composition and Variation in Late Paleocene to Early Eocene Floras in North America
    Floristic composition and variation in late Paleocene to early Eocene floras in North America KATHLEEN B. PIGG & MELANIE L. DEVORE The late Paleocene and early Eocene megafossil floras in North America are found primarily in the Williston, Green River, Powder River, Bighorn, and Alberta Basins of the northern Rocky Mountains and Western Interior. A few rare sites occur in the Mississippi Embayment of the Southeast. In contrast to the abrupt floristic changes seen at the K/T boundary, these floras document a gradual transition in species turnover, or, in the case of the Bighorn Basin, a long-term decrease in taxonomic diversity. This gradual transition is also in marked contrast to the rapid speciation among mam- mals of the early Eocene. Both preservation, and ability to place these floras within a temporal scale, determine how use- ful they are in assessing floristic changes across the Paleocene-Eocene transition. In some regions such as the Bighorn Basin of Wyoming precise stratigraphic control has allowed for documentation of paleoclimate change at a highly resolved temporal scale. At others, such as the Almont flora of the Williston Basin in North Dakota, exceptional preser- vation has provided the basis for describing individual taxa with the precision necessary to better understand their evolu- tionary and biogeographical histories. This study examines well-known plant taxa in the late Paleocene and early Eocene in the context of their depositional settings and temporal and spatial distribution. Integration of paleoecological and tax- onomic studies is critical to understanding the evolutionary and depositional history of early Paleocene vegetation of North America.
    [Show full text]
  • Index to the Geologic Names of North America
    Index to the Geologic Names of North America GEOLOGICAL SURVEY BULLETIN 1056-B Index to the Geologic Names of North America By DRUID WILSON, GRACE C. KEROHER, and BLANCHE E. HANSEN GEOLOGIC NAMES OF NORTH AMERICA GEOLOGICAL SURVEY BULLETIN 10S6-B Geologic names arranged by age and by area containing type locality. Includes names in Greenland, the West Indies, the Pacific Island possessions of the United States, and the Trust Territory of the Pacific Islands UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.G. - Price 60 cents (paper cover) CONTENTS Page Major stratigraphic and time divisions in use by the U.S. Geological Survey._ iv Introduction______________________________________ 407 Acknowledgments. _--__ _______ _________________________________ 410 Bibliography________________________________________________ 410 Symbols___________________________________ 413 Geologic time and time-stratigraphic (time-rock) units________________ 415 Time terms of nongeographic origin_______________________-______ 415 Cenozoic_________________________________________________ 415 Pleistocene (glacial)______________________________________ 415 Cenozoic (marine)_______________________________________ 418 Eastern North America_______________________________ 418 Western North America__-__-_____----------__-----____ 419 Cenozoic (continental)___________________________________
    [Show full text]