Depositional History of the Chadron Formation in North Dakota

Total Page:16

File Type:pdf, Size:1020Kb

Depositional History of the Chadron Formation in North Dakota Depositional History of the Chadron Formation in North Dakota by Clint A. Boyd1 and John R. Webster2 1North Dakota Geological Survey 2Geosciences, Minot State University REPORT OF INVESTIGATION NO. 120 NORTH DAKOTA GEOLOGICAL SURVEY Edward C. Murphy, State Geologist Lynn D. Helms, Director Dept. of Mineral Resources 2018 Table of Contents Abstract ........................................................................................................................................... v Acknowledgements ........................................................................................................................ vi Introduction ..................................................................................................................................... 1 Late Eocene Paleosols of North Dakota ......................................................................................... 3 Paleosols at White and Haystack Buttes (Stark County) ............................................................ 4 Description of Section 1 .......................................................................................................... 5 Description of Section 2 .......................................................................................................... 7 History of Paleosol Development ......................................................................................... 13 Interpretation ......................................................................................................................... 16 Identification ......................................................................................................................... 18 Time for Formation ............................................................................................................... 20 Geographic Distribution ........................................................................................................ 21 Paleosols at Fitterer Ranch ....................................................................................................... 23 Description of Section ........................................................................................................... 25 Interpretation ......................................................................................................................... 26 Identification ......................................................................................................................... 27 Time for Formation ............................................................................................................... 28 Geographic Distribution ........................................................................................................ 28 Regional Correlations ............................................................................................................... 28 Biostratigraphy of the Chadron Formation in North Dakota ........................................................ 32 New Chadron Formation Outcrops in Adams County .............................................................. 33 Discovery .............................................................................................................................. 33 The Stover Site Local Fauna ................................................................................................. 36 Geographic Distribution ........................................................................................................ 37 Stratigraphic Relationships ................................................................................................... 41 Medicine Pole Hills Local Fauna .............................................................................................. 43 Other Fossils from the Chalky Buttes Member ........................................................................ 44 Fossils from the South Heart Member ...................................................................................... 45 Heavy Mineral Analysis of the Chadron Formation in the Williston Basin ................................. 47 Sampling Locations .................................................................................................................. 48 Methodology ............................................................................................................................. 51 Disaggregation and Cleaning ................................................................................................ 51 Grain-size Separation ............................................................................................................ 51 i Heavy-liquid Separation ....................................................................................................... 51 Grain-mount Preparation ...................................................................................................... 52 Heavy Mineral Analysis ....................................................................................................... 52 Results ....................................................................................................................................... 53 Interpretation of Grain Size Differences in Heavy Minerals ................................................ 55 Cluster Analyses of Chalky Buttes Member Samples .......................................................... 55 Cluster Analysis Including South Heart Member Samples .................................................. 58 Cluster Analysis Without Biotite .......................................................................................... 58 Cluster Analysis Without Epidote ........................................................................................ 61 Cluster Analysis Without Epidote and Biotite ...................................................................... 62 Cluster Analysis Without Volcanic Minerals ....................................................................... 65 Discussion ................................................................................................................................. 65 Implications for the Stover Site Heavy Mineral Sources ...................................................... 67 Implications for Relative Ages of Chadronian Deposits ...................................................... 69 Reinterpretation of the Deposition of the Chadron Formation in North Dakota .......................... 72 The Chalky Buttes Member ...................................................................................................... 72 The South Heart Member ......................................................................................................... 76 Future Research Directions ........................................................................................................... 77 References ..................................................................................................................................... 79 Appendices .................................................................................................................................... 84 Tables Table 1. Faunal list for the Stover Site local fauna (NDGS L236) from the Chalky Buttes Member of the Chadron Formation in Adams County, North Dakota. .............. 39 Table 2. Measurement data for leptomerycid lower molars from the Medicine Pole Hills and Stover Site local faunas compared to reported values for the Chadronian taxa Leptomeryx mammifer, Leptomeryx speciosus, and Leptomeryx yoderi. ............... 40 Table 3. Heavy minerals identified (raw and normalized values) from the two grain size fractions from the Stover Site sample STOV-3. ............................................ 54 Table 4. Summary of dominant and minor heavy minerals by group and sub-group resulting from the analysis of all 36 Chadron Formation samples. ............................... 61 Table 5. Tracking the various positions of heavy mineral samples that move between groups in the cluster analyses depending on what minerals are included. ..................... 67 ii Table 6. Stratigraphic pattern of heavy minerals in the Chalky Buttes area (including Rattlesnake Butte) of North Dakota. ............................................................ 70 Table 7. Stratigraphic pattern of heavy minerals at South Cave Hills in South Dakota. .............. 71 Figures Figure 1. Updated North Dakota stratigraphic column of upper Paleocene through Miocene......... rocks................................................................................................................................ 2 Figure 2. Map showing geographic locations within the Williston Basin region in Montana, North Dakota, and South Dakota that are discussed in this study. ................................. 3 Figure 3. Diagram of White Butte paleosol at section one at White Butte (Stark County) ............ 5 Figure 4. Photograph of a sheer vertical outcrop of the White Butte paleosol near section one .... 6 Figure 5. Pedogenic features in the White Butte paleosols ............................................................ 8 Figure 6. A horizons within the White Butte paleosols .................................................................. 9 Figure 7. B horizons within the White Butte paleosols. ............................................................... 10 Figure 8. Diagram of White Butte paleosol at section two at White Butte (Stark County).. ........ 11 Figure
Recommended publications
  • South Dakota to Nebraska
    Geological Society of America Special Paper 325 1998 Lithostratigraphic revision and correlation of the lower part of the White River Group: South Dakota to Nebraska Dennis O. Terry, Jr. Department of Geology, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0340 ABSTRACT Lithologic correlations between type areas of the White River Group in Nebraska and South Dakota have resulted in a revised lithostratigraphy for the lower part of the White River Group. The following pedostratigraphic and lithostratigraphic units, from oldest to youngest, are newly recognized in northwestern Nebraska and can be correlated with units in the Big Badlands of South Dakota: the Yellow Mounds Pale- osol Equivalent, Interior and Weta Paleosol Equivalents, Chamberlain Pass Forma- tion, and Peanut Peak Member of the Chadron Formation. The term “Interior Paleosol Complex,” used for the brightly colored zone at the base of the White River Group in northwestern Nebraska, is abandoned in favor of a two-part division. The lower part is related to the Yellow Mounds Paleosol Series of South Dakota and rep- resents the pedogenically modified Cretaceous Pierre Shale. The upper part is com- posed of the unconformably overlying, pedogenically modified overbank mudstone facies of the Chamberlain Pass Formation (which contains the Interior and Weta Paleosol Series in South Dakota). Greenish-white channel sandstones at the base of the Chadron Formation in Nebraska (previously correlated to the Ahearn Member of the Chadron Formation in South Dakota) herein are correlated to the channel sand- stone facies of the Chamberlain Pass Formation in South Dakota. The Chamberlain Pass Formation is unconformably overlain by the Chadron Formation in South Dakota and Nebraska.
    [Show full text]
  • The Stratigraphic Importance of the Brontothere (Cf. Diplacodon Elatus) in the Brennan Basin Member of the Duchesne River Formation of Utah
    Foss. Rec., 17, 69–74, 2014 www.foss-rec.net/17/69/2014/ doi:10.5194/fr-17-69-2014 © Author(s) 2014. CC Attribution 3.0 License. The stratigraphic importance of the brontothere (cf. Diplacodon elatus) in the Brennan Basin Member of the Duchesne River Formation of Utah B. J. Burger and L. Tackett II Department of Geology, Utah State University, Uintah Basin Regional Campus 320 North Aggie Blvd. Vernal, UT 84078, USA Correspondence to: B. J. Burger ([email protected]) Received: 10 June 2014 – Revised: 6 August 2014 – Accepted: 12 August 2014 – Published: 27 August 2014 Abstract. We report on the first occurrence of an early southern Mississippia (Gazin and Sullivan, 1942), and the horned brontothere in the Brennan Basin Member of the Pacific Northwest (Mihlbacher, 2007). But nowhere is the Duchesne River Formation in northeastern Utah. This is the record of brontotheres as diverse as the fossil record ob- first record of a brontothere from the Brennan Basin Member. tained from the middle Eocene depositional basins located in Previously, brontotheres have been reported from the higher northeastern Utah, southwestern Wyoming and northwestern stratigraphic La Point Member (Duchesneodus uintensis) Colorado (Lull, 1905; Cook, 1926; Douglass, 1909; Gregory, and the lower stratigraphic Uinta Formation (Sphenocoelus 1912; Gunnell and Yarborough, 2000; Hatcher, 1895; Lucas uintensis, Fossendorhinus diploconus, Metarhinus fluviatilis, et al., 2004; Lucas and Holbrook, 2004; Lucas and Schoch, Metarhinus abbotti, Sthenodectes incisivum, Metatelmath- 1982; Mader, 2000, 2009a, b, Mihlbacher, 2008, 2011; Os- erium ultimum, Protitanotherium emarginatum, Pollyosbor- born, 1889, 1895, 1908, 1913, 1929; Peterson, 1914a, b, nia altidens, Diplacodon elatus).
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska)
    St. Cloud State University theRepository at St. Cloud State Culminating Projects in Cultural Resource Management Department of Anthropology 10-2019 Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska) Samantha Mills Follow this and additional works at: https://repository.stcloudstate.edu/crm_etds Part of the Archaeological Anthropology Commons Recommended Citation Mills, Samantha, "Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska)" (2019). Culminating Projects in Cultural Resource Management. 28. https://repository.stcloudstate.edu/crm_etds/28 This Thesis is brought to you for free and open access by the Department of Anthropology at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Cultural Resource Management by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska) by Samantha M. Mills A Thesis Submitted to the Graduate Faculty of St. Cloud State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Functional Morphology October, 2019 Thesis Committee: Matthew Tornow, Chairperson Mark Muñiz Bill Cook Tafline Arbor 2 Abstract Toward the end of the Middle Eocene (40-37mya), the environment started to decline on a global scale. It was becoming more arid, the tropical forests were disappearing from the northern latitudes, and there was an increase in seasonality. Research of the Chadronian (37- 33.7mya) in the Great Plains region of North America has documented the persistence of several mammalian taxa (e.g. primates) that are extinct in other parts of North America.
    [Show full text]
  • Publications (Published, in Press, Accepted, Or in Revision). * Indicates Undergraduate Mentee
    Publications (published, in press, accepted, or in revision). * indicates undergraduate mentee 14. Scarpetta SG. Iguanian lizards from the Split Rock Formation, Wyoming: exploring the modernization of the North American lizard fauna. Journal of Systematic Palaeontology. In press. 13. Scarpetta SG, Ledesma DT, Llauger FO, White BA. 2020. Evolution of North American lizards. eLS 1(4), 705-717. https://doi.org/10.1002/9780470015902.a0029078. Invited submission. All authors contributed equally to this work. 12. Scarpetta SG. 2020. Effects of phylogenetic uncertainty on fossil identification illustrated by a new and enigmatic Eocene iguanian. Scientific Reports 10(1), 1-10. https://doi.org/10.1038/s41598-020-72509-2 11. Scarpetta SG. 2020. Combined-evidence analyses of ultraconserved elements and morphological data: an empirical example in iguanian lizards. Biology Letters 16(8), 20200356. https://doi.org/10.1098/rsbl.2020.0356 10. Scarpetta SG. 2020. Unusual lizard fossil from the Miocene of Nebraska and a minimum age for cnemidophorine teiids. Royal Society Open Science 7(8), 200317. http://dx.doi.org/10.1098/rsos.200317 9. Scarpetta SG, Bell CJ. 2020. Novel and bizarre abnormalities of the tooth row in side- blotched lizards (Uta) and rock lizards (Petrosaurus). The Anatomical Record 303, 2014-2025. https://doi.org/10.1002/ar.24279 8. Scarpetta SG. 2019. The first known fossil Uma: Ecological evolution and the origins of North American fringe-toed lizards. BMC Evolutionary Biology 19(178), 1-22. https://doi.org/10.1186/s12862-019-1501-5 7. Scarpetta SG. 2019. Aneides hardii (Sacramento Mountains Salamander). Catalogue of American Amphibians and Reptiles 921, 1-23.
    [Show full text]
  • Fossil Amphibians and Reptiles from the Neogene Locality of Maramena (Greece), the Most Diverse European Herpetofauna at the Miocene/Pliocene Transition Boundary
    Palaeontologia Electronica palaeo-electronica.org Fossil amphibians and reptiles from the Neogene locality of Maramena (Greece), the most diverse European herpetofauna at the Miocene/Pliocene transition boundary Georgios L. Georgalis, Andrea Villa, Martin Ivanov, Davit Vasilyan, and Massimo Delfino ABSTRACT We herein describe the fossil amphibians and reptiles from the Neogene (latest Miocene or earliest Pliocene; MN 13/14) locality of Maramena, in northern Greece. The herpetofauna is shown to be extremely diverse, comprising at least 30 different taxa. Amphibians include at least six urodelan (Cryptobranchidae indet., Salamandrina sp., Lissotriton sp. [Lissotriton vulgaris group], Lissotriton sp., Ommatotriton sp., and Sala- mandra sp.), and three anuran taxa (Latonia sp., Hyla sp., and Pelophylax sp.). Rep- tiles are much more speciose, being represented by two turtle (the geoemydid Mauremys aristotelica and a probable indeterminate testudinid), at least nine lizard (Agaminae indet., Lacertidae indet., ?Lacertidae indet., aff. Palaeocordylus sp., ?Scin- cidae indet., Anguis sp., five morphotypes of Ophisaurus, Pseudopus sp., and at least one species of Varanus), and 10 snake taxa (Scolecophidia indet., Periergophis micros gen. et sp. nov., Paraxenophis spanios gen. et sp. nov., Hierophis cf. hungaricus, another distinct “colubrine” morphotype, Natrix aff. rudabanyaensis, and another dis- tinct species of Natrix, Naja sp., cf. Micrurus sp., and a member of the “Oriental Vipers” complex). The autapomorphic features and bizarre vertebral morphology of Perier- gophis micros gen. et sp. nov. and Paraxenophis spanios gen. et sp. nov. render them readily distinguishable among fossil and extant snakes. Cryptobranchids, several of the amphibian genera, scincids, Anguis, Pseudopus, and Micrurus represent totally new fossil occurrences, not only for the Greek area, but for the whole southeastern Europe.
    [Show full text]
  • Petrology of Sandstones from the Bullion Creek and Sentinel Butte Formations (Paleocene), Little Missouri Badlands, North Dakota Mark A
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects 1978 Petrology of sandstones from the Bullion Creek and Sentinel Butte Formations (Paleocene), Little Missouri Badlands, North Dakota Mark A. Steiner University of North Dakota Follow this and additional works at: https://commons.und.edu/theses Part of the Geology Commons Recommended Citation Steiner, Mark A., "Petrology of sandstones from the Bullion Creek and Sentinel Butte Formations (Paleocene), Little iM ssouri Badlands, North Dakota" (1978). Theses and Dissertations. 286. https://commons.und.edu/theses/286 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. PETROLOGY OF SANDSTONES FROM THE BULLION CREEK AND SENTINEL BUTTE FORNATIONS (PALEOCENE), LITTLE MISSOURI BADLANDS, NORTH DAKOTA by Mark A. Steiner Bachelor of Arts, College of St. Thomas, 1972 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Arts Grand Forks, North Dakota December 1978 This thesis submitted by Mark A. Steiner in partial fulfillment of the requirements for the Degree of Master of Arts from the University of North Dakota is hereby approved by the Faculty Advisory Committee under whom the work has been done. (Chairman) .// ' (r~· _j {~µ..~ Dean of the Graduate School 11 Permission PETROLOGY OF SANDSTONES FROM THE BULLION CREEK AND SENTINEL BUTTE FORMATIONS (PALEOCENE), Title------------'-'--=----~------------------- LITTLE MISSOURI BADLANDS, NORTH DAKOTA In presenting this thesis in partial fulfillment of the require­ ments for a graduate degree from the University of North Dakota, I agree that the Library of this University shall make it freely avail­ able for inspection.
    [Show full text]
  • The Sclerotic Ring: Evolutionary Trends in Squamates
    The sclerotic ring: Evolutionary trends in squamates by Jade Atkins A Thesis Submitted to Saint Mary’s University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of Master of Science in Applied Science July, 2014, Halifax Nova Scotia © Jade Atkins, 2014 Approved: Dr. Tamara Franz-Odendaal Supervisor Approved: Dr. Matthew Vickaryous External Examiner Approved: Dr. Tim Fedak Supervisory Committee Member Approved: Dr. Ron Russell Supervisory Committee Member Submitted: July 30, 2014 Dedication This thesis is dedicated to my family, friends, and mentors who helped me get to where I am today. Thank you. ! ii Table of Contents Title page ........................................................................................................................ i Dedication ...................................................................................................................... ii List of figures ................................................................................................................. v List of tables ................................................................................................................ vii Abstract .......................................................................................................................... x List of abbreviations and definitions ............................................................................ xi Acknowledgements ....................................................................................................
    [Show full text]
  • County of Riverside General Plan Reche Canyon/Badlands Area Plan
    County of Riverside General Plan Reche Canyon/Badlands Area Plan COUNTY OF RIVERSIDE Transportation and Land Management Agency 4080 Lemon Street, 12th Floor Riverside, CA 92501-3634 Phone: (951) 955-3200, Fax: (951) 955-1811 October 2011 County of Riverside General Plan Reche Canyon/Badlands Area Plan TABLE OF CONTENTS Vision Summary.......................................................................................................................................................... iv Introduction ................................................................................................................................................................. 1 A Special Note on Implementing the Vision ........................................................................................................ 2 Location ........................................................................................................................................................................ 3 Features ........................................................................................................................................................................ 7 Setting ....................................................................................................................................................................... 7 Unique Features ........................................................................................................................................................ 7 Badlands/Norton Younglove Preserve
    [Show full text]
  • Grand Canyon National Park Service U.S
    National Park Grand Canyon National Park Service U.S. Department of the Interior The Painted Map by Erwin Ralsz WHAT IS The Painted Desert is a well-known Formation. While several rock layers in THE PAINTED DESERT? Arizona landscape of very colorful "bad northeastern Arizona are colorful, it is the lands" extending across northeastern particular beauty of the Chinle Formation Arizona. (Badlands are intricately dis that gave rise to the notion of a Painted sected, barren, and rounded landscapes that Desert. Although the Chinle Formation can typically occur in arid regions where weak be seen elsewhere, in the Painted Desert the rock is prevalent). The Painted Desert is exposure of this rock is long and continu distinctly defined by exposures of a rock ous. layer known as the Chinle (Chin-lee) The Painted Desert is exposed in a of Winslow, Arizona along State Highway WHERE TO SEE band of rock trending northwest from 87. Winslow is 140 miles from Grand THE PAINTED DESERT Holbrook, Arizona to The Gap, Arizona. Canyon's South Rim. This band is wider in the Holbrook area and narrows significantly to the northwest. Few Closest to Grand Canyon, the Painted roads provide access to the Painted Desert. Desert is exposed in a narrow band along U.S. Highway 89 from about 3 miles north Unquestionably, the most famous part of Cameron, Arizona (at milepost#470) to of the Painted Desert is at Petrified Forest the small village of The Gap farther north. National Park, 190 miles from the South A small but visually striking example of the Rim of Grand Canyon.
    [Show full text]
  • 6-3 Korth 2007A
    Paludicola 6(3):111-117 October 2007 © by the Rochester Institute of Vertebrate Paleontology MAMMALS FROM THE BLUE ASH LOCAL FAUNA (LATE OLIGOCENE), SOUTH DAKOTA, MARSUPIALIA AND LAGOMORPHA William W. Korth Rochester Institute of Vertebrate Paleontology, 265 Carling Road, Rochester, New York 14610 ABSTRACT Two marsupials (Herpetotherium fugax and Herpetotherium sp.) and three lagomorphs (Palaeolagus subhypsodus n. sp., Palaeolagus sp. cf. P. philoi, and Palaeolagus sp.) are identified from the Blue Ash local fauna of South Dakota. Of the species identified here, H. fugax is otherwise known from the Orellan to early Arikareean, Herpetotherium sp. is morphologically closest to the middle to late Arikareean H. youngi but is smaller in size, Palaeolagus subhypsodus is intermediate between the Whitneyan P. burkei and the Arikareean P. hypsodus, and the other lagomorphs are closest to Arikareean species morphologically. The age of the fauna is still not definite based on these species but it is suggested that it is slightly earlier than previously described Arikareean faunas. INTRODUCTION increases the number of formally described taxa from the fauna that can potentially help in the determination To date, only rodent species have been formally of the biochronologic age of the fauna. recognized from the Blue Ash local fauna (Martin, Dental nomenclature for marsupials is from 1974; Korth, 2007, in press; Emry and Korth, in press). Crochet (1980); that for lagomorphs is from White Earlier preliminary faunal lists presented by Martin (1987) for P2 and p3, and Dawson (1958) for the (1974) and Simpson (1985) included all of the molariform cheek teeth. Capital letters (e.g., M1) mammalian species present.
    [Show full text]
  • SMC 136 Gazin 1958 1 1-112.Pdf
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 136, NUMBER 1 Cftarlesi 3B, anb JKarp "^aux OTalcott 3^es(earcf) Jf unb A REVIEW OF THE MIDDLE AND UPPER EOCENE PRIMATES OF NORTH AMERICA (With 14 Plates) By C. LEWIS GAZIN Curator, Division of Vertebrate Paleontology United States National Museum Smithsonian Institution (Publication 4340) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JULY 7, 1958 THE LORD BALTIMORE PRESS, INC. BALTIMORE, MD., U. S. A. CONTENTS Page Introduction i Acknowledgments 2 History of investigation 4 Geographic and geologic occurrence 14 Environment I7 Revision of certain lower Eocene primates and description of three new upper Wasatchian genera 24 Classification of middle and upper Eocene forms 30 Systematic revision of middle and upper Eocene primates 31 Notharctidae 31 Comparison of the skulls of Notharctus and Smilodectcs z:^ Omomyidae 47 Anaptomorphidae 7Z Apatemyidae 86 Summary of relationships of North American fossil primates 91 Discussion of platyrrhine relationships 98 References 100 Explanation of plates 108 ILLUSTRATIONS Plates (All plates follow page 112) 1. Notharctus and Smilodectes from the Bridger middle Eocene. 2. Notharctus and Smilodectes from the Bridger middle Eocene. 3. Notharctus and Smilodectcs from the Bridger middle Eocene. 4. Notharctus and Hemiacodon from the Bridger middle Eocene. 5. Notharctus and Smilodectcs from the Bridger middle Eocene. 6. Omomys from the middle and lower Eocene. 7. Omomys from the middle and lower Eocene. 8. Hemiacodon from the Bridger middle Eocene. 9. Washakius from the Bridger middle Eocene. 10. Anaptomorphus and Uintanius from the Bridger middle Eocene. 11. Trogolemur, Uintasorex, and Apatcmys from the Bridger middle Eocene. 12. Apatemys from the Bridger middle Eocene.
    [Show full text]