University of Michigan University Library

Total Page:16

File Type:pdf, Size:1020Kb

University of Michigan University Library EARLY CENOZOIC PALEONTOLOGY AND STRATIGRAPHY OF THE BIGHORN BASIN, WYOMING PAPERS ON PALEONTOLOGY-RECENT NUMBERS 15. Cranial Anatomy and Evolution of Early Tertiary Plesiadapidae (Mammalia, Primates) by Philip D. Gingerich 16. Planning Photography of Microfossils by Robert V. Kesling 17. Devonian Strata of the Afton-Onaway Area, Michigan by R. V. Kesling, A. M. Johnson, and H. 0. Sorensen 18. Ostracods of the Middle Devonian Silica Formation (Volumes I and 11) by Robert V. Kesling and Ruth B. Chilman 19. Late Pleistocene Cold-blooded Vertebrate Faunas from the Mid-Continental United States. I. Reptilia; Testudines, Crocodilia. by Robert E. Preston 20. The Maple Block Knoll Reef in the Bush Bay Dolostone (Silurian, Engadine Group), Northern Peninsula of Michigan by Allan M. Johnson, Robert V. Kesling, Richard T. Lilienthal, and Harry 0. Sorensen 21. A Synopsis of Fossil Grasshopper Mice, Genus Onychomys, and their Relationships to Recent Species by Michael D. Carleton and Ralph E. Eshelman Museum of Paleontology The University of Michigan Ann Arbor, Michigan 48109 EARLY CENOZOIC PALEONTOLOGY AND STRATIGRAPHY OF THE BIGHORN BASIN Frontispiece: Sketch map of the Bighorn Basin, northwestern Wyoming, showing major physiographic features (from Bown, 1979) EARiY CENOZOIC PALEONTOLOGY AND STRATIGRAPHY OF THE BIGHORN BASIN, WYOMING Commemorating the 100th Anniversary of J. L. Wortman's Discovery of Fossil Mammals in the Bighorn Basin Edited by Philip D. Gingerich UNIVERSITY OF MICHIGAN PAPERS ON PALEONTOLOGY NO. 24 Papers on Paleontology No. 24 Museum of Paleontology The University of Michigan Ann Arbor, Michigan 48109 Gerald R. Smith, Director June 1, 1980 CONTENTS Preface and Acknowledgments .................................................... vi The Bighorn Basin-Why is it so Important? PHILIP D. GINGERICH ....................................................... 1 History of Early Cenozoic Vertebrate Paleontology in the Bighorn Basin PHILIP D. GINGERICH ..................................................... 7 Summary of Latest Cretaceous and Cenozoic Sedimentary, Tectonic, and Erosional Events, Bighorn Basin, Wyoming THOMAS M. BOWN ..................................................... 25 Paleocene Stratigraphy and Flora of the Clark's Fork Basin LEO J. HICKEY ........................................................... 33 Early Cenozoic Mammalian Faunas of the Clark's Fork Basin-Polecat Bench Area, Northwestern Wyoming PHILIP D. GINGERICH, KENNETH D. ROSE, and DAVID W. KRAUSE ..... 51 Early Tertiary Amphibians from the Bighorn Basin, Wyoming DAVID W. KRAUSE ........................................................ 69 Early Cenozoic Reptiles and Birds from the Bighorn Basin, Wyoming WILLIAM S. BARTELS ..................................................... 73 Taphonomy and Faunal Sampling in the Early Wasatchian of the Clark's Fork Basin DALE A. WINKLER ........................................................ 81 Genesis of a Fluvial Sheet Sandstone, Willwood Formation, Northwest Wyoming MARY J. KRAUS ........................................................... 87 Magnetic Polarity Stratigraphy and Paleocene-Eocene Biostratigraphy of Polecat Bench, Northwestern Wyoming ROBERT F. BUTLER, EVERETT H. LINDSAY, and PHILIP D. GINGERICH . 95 Faunal Zonation of the Willwood Formation in the Central Bighorn Basin, Wyoming DAVID M. SCHANKLER ................................................... 99 Turtle Stratigraphy of the Willwood Formation, Wyoming: Preliminary Results J. H. HUTCHISON ..........................................................115 Fossil Floras and Plant-bearing Beds of the Central Bighorn Basin SCOTT L. WING ............................................................ 119 The Willwood Formation (Lower Eocene) of the Southern Bighorn Basin, Wyoming, and its Mammalian Fauna THOMAS M. BOWN ........................................................ 127 Preliminary Report on Paleontological Exploration of the Southeastern Absaroka Range, Wyoming JEFFREY G. EATON ....................................................... 139 Remaining Evidence of Oligocene Sedimentary Rocks Previously Present Across the Bighorn Basin, Wyoming MALCOLM C. McKENNA ................................................... 143 PREFACE AND ACKNOWLEDGMENTS This volume was originally conceived as a guidebook for a field conference commemorating 100 years of Cenozoic vertebrate paleontology in the Bighorn Basin. The field conference itself, sponsored jointly by the Society of Vertebrate Paleontology and the Department of Geological Sciences and Museum of Paleontology at the University of Michigan, is scheduled for the first four days of August, 1980. The results of paleontological inquiry, like those of any scientific endeavor, are cumulative. As this book began to take shape, it became increasingly clear that there has been a tremendous increase in our understanding of early Cenozoic paleontology in the Bighorn Basin in the past twenty years, not only in vertebrate paleontology but also in the related fields of paleobotany, fluvial sedimentology, taphonomy, and paleomagnetic stratigraphy. The present volume represents an attempt to bring together summaries of results achieved to date by each of the principal research groups working on early Cenozoic and related problems in the Bighorn Basin. A guidebook format has been retained only in the three appendices giving road logs to be followed during the field conference. I am confident that the papers presented here will have lasting value in promoting an integrated approach to paleontological field work in the Bighorn Basin. The kinds of evolutionary questions that are interesting in paleontology today require a holistic approach integrating faunas, floras, paleoenvironments, and refined geochronology. There is not a single paper on the Paleocene or early Eocene in this volume that does not relate in an important way to all of the other papers. Eaton's brief contribution on middle-late Eocene faunas and McKenna's paper on the Oligocene fit less obviously into the whole, but nonetheless contribute to understanding the later geological and faunal history of the Bighorn Basin. Many people have helped to make this compilation a reality. Our present state of knowledge, as reflected in the following papers, is literally the result of a century of field work in the Bighorn Basin. Each of the contributions presented here builds on what Wortman, Cope, Osborn, Sinclair, Granger, Stein, Simpson, Jepsen, and others learned before us. Our association with the Churchill family of Powell, Wyoming, does not go back quite so far in time, but it is fitting to record here as well the debt of gratitude we owe three generations of Churchills for the many summers of support they have generously given to paleontologists working in the Bighorn Basin. At the University of Michigan, Gerald R. Smith, Evelyn Peer, Donna Robbins, Karna Steelquist, David Krause, William Bartels, Gregg Gunnell, and Amanda Alexander all helped in preparing manuscripts for the printer. Mrs. Peer and Mr. Krause, in particular, did far more than their share of the work to make this volume a reality. Publication has been partially supported by grants from the Scott Turner Fund of the Department of Geological Sciences at the University of Michigan and from the National Science Foundation (DEB 77-13465). PDG THE BIGHORN BASIN-WHY IS IT SO IMPORTANT? Philip D. Gingerich Abstract.- The Bighorn Basin of Wyoming is important paleontologically for two reasons. First, it is the only place in the world where the early Cenozoic diversification of mammalian life is recorded through such a long sequence of continental sediments representing virtually continuous deposition. The major groups of modern mammals appeared during this interval, and the Bighorn Basin is the best place to study how this happened. Secondly, many areas of the Bighorn Basin are richly fossiliferous, making it possible to trace evolutionary changes through time in much more detail than is possible elsewhere. Such studies promise to contribute in an important way to our understanding of the evolutionary process itself, both as it affects individual species and as it influences whole faunas. A better knowledge of species-level evolution contributes in turn to biostratigraphy and the refined biochronology necessary to understand the timing of mountain building and other events in the geological history of western North America. Thus the paleontological resources of the Bighorn Basin are of exceptional scientific interest and importance. INTRODUCTION history of the Bighorn Basin in technical terms. In this introductory chapter I want to outline some of the One hundred years ago, in 1880, the paleontologist background knowledge necessary to put these in a Jacob L. Wortman first crossed the Bridger Moun- broader geological and biological perspective. tains and entered the Bighorn Basin of northwestern Wyoming. He obtained a small collection of fossil mammals, and then returned in 188 1 to make a much EARTH HISTORY larger collection. The extraordinary richness of this Earth history is divided into several major inter- new fossil field has since become world renowned. vals, based in part on the forms of life present in each Indeed it is unique, no other place has been dis- interval. The earth itself is thought to have originated covered anywhere that has such a thick, continuous, about 5 billion years ago, judging from the study of richly fossiliferous sequence of sedimentary rocks radioactive isotopes of chemical elements
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • A New Xinjiangchelyid Turtle from the Middle Jurassic of Xinjiang, China and the Evolution of the Basipterygoid Process in Mesozoic Turtles Rabi Et Al
    A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles Rabi et al. Rabi et al. BMC Evolutionary Biology 2013, 13:203 http://www.biomedcentral.com/1471-2148/13/203 Rabi et al. BMC Evolutionary Biology 2013, 13:203 http://www.biomedcentral.com/1471-2148/13/203 RESEARCH ARTICLE Open Access A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles Márton Rabi1,2*, Chang-Fu Zhou3, Oliver Wings4, Sun Ge3 and Walter G Joyce1,5 Abstract Background: Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Results: Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes.
    [Show full text]
  • Artiodactyla and Perissodactyla (Mammalia) from the Early-Middle Eocene Kuldana Formation of Kohat (Pakistan)
    CO"uTK1BL 11015 FKOLI IHt \lC5tLL1 OF I' ALEO\ IOLOG1 THE UNIVERSITY OF IVICHIGAN VOI 77 Lo 10 p 717-37.1 October 33 1987 ARTIODACTYLA AND PERISSODACTYLA (MAMMALIA) FROM THE EARLY-MIDDLE EOCENE KULDANA FORMATION OF KOHAT (PAKISTAN) BY J. G. M. THEWISSEN. P. D. GINGERICH and D. E. RUSSELL MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Charles B. Beck, Director Jennifer A. Kitchell, Editor This series of contributions from the Museum of Paleontology is a medium for publication of papers based chiefly on collections in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate issues may also be obtained by request. Correspond- ence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan 48109. VOLS. II-XXVII. Parts of volumes may be obtained if available. Price lists are available upon inquiry. I ARTIODACTI L .-I A\D PERISSODACTYL4 (kl.iihlhlAL1A) FROM THE EARLY-h1IDDLE EOCEUE KCLD..I\4 FORMATIO\ OF KOHAT (PAKISTAY) J. G. M. THEWISSEN. P. D. GINGERICH AND D. E. RUSSELL Ah.strcict.-Chorlakki. yielding approximately 400 specimens (mostly isolated teeth and bone fragments). is one of four major early-to-middle Eocene niammal localities on the Indo-Pakistan subcontinent. On the basis of ung~~latesclescribed in this paper we consider the Chorlakki fauna to be younger than that from Barbora Banda.
    [Show full text]
  • Paleocene Mammalian Faunas of the Bison Basin in South-Central Wyoming
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 131, NUMBER 6 Cftarlesi ©, anb JHarp ^aux SKHalcott 3Res!earcf) Jf unb PALEOCENE MAMMALIAN FAUNAS OF THE BISON BASIN IN SOUTH-CENTRAL WYOMING (With 16 Plates) By C. LEWIS GAZIN Curator, Division of Vertebrate Paleontology United States National Museum Smithsonian Institution (Publication 4229) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION FEBRUARY 28, 1956 THE LORD BALTIMORE PRESS, INC. BALTIMORE, MD., U. S. A. CONTENTS Page Introduction i Acknowledgments 2 History of investigation 2 Occurrence and preservation of material 3 The Bison basin faunas 4 Environment and relationships between the Bison basin faunas 7 Age and correlation of the faunas lo Systematic description of vertebrate remains I2 Reptilia 12 Sauria 12 Anguidae 12 Mammalia 12 Multitubcrculata 12 Ptilodontidae 12 Marsupialia 14 Didelphidae 14 Insectivora 15 Leptictidae 15 Pantolestidae 17 Primates 19 Plesiadapidae 19 Carnivora 25 Arctocyonidae 25 Mesonychidae 35 Miacidae 35 Condylarthra 36 Hyopsodontidae 36 Phenacodontidae 42 Pantodonta 47 Coryphodontidae 47 References 51 Explanation of plates 54 ILLUSTRATIONS Plates (All plates following page 58.) 1. Mullituberculates and insectivores from the Bison basin Paleocene. 2. Primates and marsupials from the Bison basin Paleocene. 3. Pronothodcctes from the Bison basin Paleocene. 4. Plcsiadapis from the Bison basin Paleocene. 5. Triccntcs and Chriacus from the Bison basin Paleocene. 6. Thryptacodon from the Bison basin Paleocene. 7. Clacnodon from the Bison basin Paleocene. 8. Litomylus and Protoselcnc? from the Bison basin Paleocene. 9. Haplaletes and Gidleyina from the Bison basin Paleocene. 10. Phcnacodusl from the Bison basin Paleocene. 11. Condylarths and Titanoidcs from the Bison basin Paleocene. 12. Caenolambda from the Bison basin Paleocene.
    [Show full text]
  • Download File
    Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2015 Kaori Tsukui All rights reserved ABSTRACT Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui The age of the Bridgerian/Uintan boundary has been regarded as one of the most important outstanding problems in North American Land Mammal “Age” (NALMA) biochronology. The Bridger Basin in southwestern Wyoming preserves one of the best stratigraphic records of the faunal boundary as well as the preceding Bridgerian NALMA. In this dissertation, I first developed a chronological framework for the Eocene Bridger Formation including the age of the boundary, based on a combination of magnetostratigraphy and U-Pb ID-TIMS geochronology. Within the temporal framework, I attempted at making a regional correlation of the boundary-bearing strata within the western U.S., and also assessed the body size evolution of three representative taxa from the Bridger Basin within the context of Early Eocene Climatic Optimum. Integrating radioisotopic, magnetostratigraphic and astronomical data from the early to middle Eocene, I reviewed various calibration models for the Geological Time Scale and intercalibration of 40Ar/39Ar data among laboratories and against U-Pb data, toward the community goal of achieving a high precision and well integrated Geological Time Scale. In Chapter 2, I present a magnetostratigraphy and U-Pb zircon geochronology of the Bridger Formation from the Bridger Basin in southwestern Wyoming.
    [Show full text]
  • Multituberculate Mammals from the Wahweap
    MULTITUBERCULATE MAMMALS FROM THE WAHWEAP (CAMPANIAN, AQUILAN) AND KAIPAROWITS (CAMPANIAN, JUDITHIAN) FORMATIONS, WITHIN AND NEAR GRAND STAIRCASE-ESCALANTE NATIONAL MONUMENT, SOUTHERN UTAH Jeffrey G. Eaton Department of Geosciences Weber State University Ogden, UT 84408-2507 phone: (801) 626-6225 fax: (801) 626-7445 e-mail: [email protected] Cover photo by author: Powell Point in “The Blues,” the early Tertiary Claron Formation on the horizon and the Kaiparowits Formation in the foreground. ISBN 1-55791-665-9 Reference to any specific commercial product by trade name, trademark, or manufacturer does not constitute endorsement or recommendation by the Utah Geological Survey MISCELLANEOUS PUBLICATION 02-4 UTAH GEOLOGICAL SURVEY a division of 2002 Utah Department of Natural Resources STATE OF UTAH Michael O. Leavitt, Governor DEPARTMENT OF NATURAL RESOURCES Robert Morgan, Executive Director UTAH GEOLOGICAL SURVEY Richard G. Allis, Director UGS Board Member Representing Robert Robison (Chairman) ...................................................................................................... Minerals (Industrial) Geoffrey Bedell.............................................................................................................................. Minerals (Metals) Stephen Church .................................................................................................................... Minerals (Oil and Gas) E.H. Deedee O’Brien .......................................................................................................................
    [Show full text]
  • Origin and Beyond
    EVOLUTION ORIGIN ANDBEYOND Gould, who alerted him to the fact the Galapagos finches ORIGIN AND BEYOND were distinct but closely related species. Darwin investigated ALFRED RUSSEL WALLACE (1823–1913) the breeding and artificial selection of domesticated animals, and learned about species, time, and the fossil record from despite the inspiration and wealth of data he had gathered during his years aboard the Alfred Russel Wallace was a school teacher and naturalist who gave up teaching the anatomist Richard Owen, who had worked on many of to earn his living as a professional collector of exotic plants and animals from beagle, darwin took many years to formulate his theory and ready it for publication – Darwin’s vertebrate specimens and, in 1842, had “invented” the tropics. He collected extensively in South America, and from 1854 in the so long, in fact, that he was almost beaten to publication. nevertheless, when it dinosaurs as a separate category of reptiles. islands of the Malay archipelago. From these experiences, Wallace realized By 1842, Darwin’s evolutionary ideas were sufficiently emerged, darwin’s work had a profound effect. that species exist in variant advanced for him to produce a 35-page sketch and, by forms and that changes in 1844, a 250-page synthesis, a copy of which he sent in 1847 the environment could lead During a long life, Charles After his five-year round the world voyage, Darwin arrived Darwin saw himself largely as a geologist, and published to the botanist, Joseph Dalton Hooker. This trusted friend to the loss of any ill-adapted Darwin wrote numerous back at the family home in Shrewsbury on 5 October 1836.
    [Show full text]
  • Download Vol. 11, No. 3
    BULLETIN OF THE FLORIDA STATE MUSEUM BIOLOGICAL SCIENCES Volume 11 Number 3 CATALOGUE OF FOSSIL BIRDS: Part 3 (Ralliformes, Ichthyornithiformes, Charadriiformes) Pierce Brodkorb M,4 * . /853 0 UNIVERSITY OF FLORIDA Gainesville 1967 Numbers of the BULLETIN OF THE FLORIDA STATE MUSEUM are pub- lished at irregular intervals. Volumes contain about 800 pages and are not nec- essarily completed in any one calendar year. WALTER AuFFENBERC, Managing Editor OLIVER L. AUSTIN, JA, Editor Consultants for this issue. ~ HILDEGARDE HOWARD ALExANDER WErMORE Communications concerning purchase or exchange of the publication and all manuscripts should be addressed to the Managing Editor of the Bulletin, Florida State Museum, Seagle Building, Gainesville, Florida. 82601 Published June 12, 1967 Price for this issue $2.20 CATALOGUE OF FOSSIL BIRDS: Part 3 ( Ralliformes, Ichthyornithiformes, Charadriiformes) PIERCE BRODKORBl SYNOPSIS: The third installment of the Catalogue of Fossil Birds treats 84 families comprising the orders Ralliformes, Ichthyornithiformes, and Charadriiformes. The species included in this section number 866, of which 215 are paleospecies and 151 are neospecies. With the addenda of 14 paleospecies, the three parts now published treat 1,236 spDcies, of which 771 are paleospecies and 465 are living or recently extinct. The nominal order- Diatrymiformes is reduced in rank to a suborder of the Ralliformes, and several generally recognized families are reduced to subfamily status. These include Geranoididae and Eogruidae (to Gruidae); Bfontornithidae
    [Show full text]
  • Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology
    Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology by Paul David Polly B.A. (University of Texas at Austin) 1987 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Paleontology in the GRADUATE DIVISION of the UNIVERSITY of CALIFORNIA at BERKELEY Committee in charge: Professor William A. Clemens, Chair Professor Kevin Padian Professor James L. Patton Professor F. Clark Howell 1993 Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology © 1993 by Paul David Polly To P. Reid Hamilton, in memory. iii TABLE OF CONTENTS Introduction ix Acknowledgments xi Chapter One--Revolution and Evolution in Taxonomy: Mammalian Classification Before and After Darwin 1 Introduction 2 The Beginning of Modern Taxonomy: Linnaeus and his Predecessors 5 Cuvier's Classification 10 Owen's Classification 18 Post-Darwinian Taxonomy: Revolution and Evolution in Classification 24 Kovalevskii's Classification 25 Huxley's Classification 28 Cope's Classification 33 Early 20th Century Taxonomy 42 Simpson and the Evolutionary Synthesis 46 A Box Model of Classification 48 The Content of Simpson's 1945 Classification 50 Conclusion 52 Acknowledgments 56 Bibliography 56 Figures 69 Chapter Two: Hyaenodontidae (Creodonta, Mammalia) from the Early Eocene Four Mile Fauna and Their Biostratigraphic Implications 78 Abstract 79 Introduction 79 Materials and Methods 80 iv Systematic Paleontology 80 The Four Mile Fauna and Wasatchian Biostratigraphic Zonation 84 Conclusion 86 Acknowledgments 86 Bibliography 86 Figures 87 Chapter Three: A New Genus Eurotherium (Creodonta, Mammalia) in Reference to Taxonomic Problems with Some Eocene Hyaenodontids from Eurasia (With B. Lange-Badré) 89 Résumé 90 Abstract 90 Version française abrégéé 90 Introduction 93 Acknowledgments 96 Bibliography 96 Table 3.1: Original and Current Usages of Genera and Species 99 Table 3.2: Species Currently Included in Genera Discussed in Text 101 Chapter Four: The skeleton of Gazinocyon vulpeculus n.
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • Mammal Faunal Change in the Zone of the Paleogene Hyperthermals ETM2 and H2
    Clim. Past, 11, 1223–1237, 2015 www.clim-past.net/11/1223/2015/ doi:10.5194/cp-11-1223-2015 © Author(s) 2015. CC Attribution 3.0 License. Mammal faunal change in the zone of the Paleogene hyperthermals ETM2 and H2 A. E. Chew Department of Anatomy, Western University of Health Sciences, 309 E Second St., Pomona, CA 91767, USA Correspondence to: A. E. Chew ([email protected]) Received: 13 March 2015 – Published in Clim. Past Discuss.: 16 April 2015 Revised: 4 August 2015 – Accepted: 19 August 2015 – Published: 24 September 2015 Abstract. “Hyperthermals” are past intervals of geologically vulnerability in response to changes already underway in the rapid global warming that provide the opportunity to study lead-up to the EECO. Faunal response at faunal events B-1 the effects of climate change on existing faunas over thou- and B-2 is also distinctive in that it shows high proportions sands of years. A series of hyperthermals is known from of beta richness, suggestive of increased geographic disper- the early Eocene ( ∼ 56–54 million years ago), including sal related to transient increases in habitat (floral) complexity the Paleocene–Eocene Thermal Maximum (PETM) and two and/or precipitation or seasonality of precipitation. subsequent hyperthermals (Eocene Thermal Maximum 2 – ETM2 – and H2). The later hyperthermals occurred during warming that resulted in the Early Eocene Climatic Opti- mum (EECO), the hottest sustained period of the Cenozoic. 1 Introduction The PETM has been comprehensively studied in marine and terrestrial settings, but the terrestrial biotic effects of ETM2 The late Paleocene and early Eocene (ca.
    [Show full text]