Description and Correlation of Eocene Rocks in Stratigraphie Reference Sections for the Green River and Washakie Basins, Southwest Wyoiming

Total Page:16

File Type:pdf, Size:1020Kb

Description and Correlation of Eocene Rocks in Stratigraphie Reference Sections for the Green River and Washakie Basins, Southwest Wyoiming Description and Correlation of Eocene Rocks in Stratigraphie Reference Sections for the Green River and Washakie Basins, Southwest Wyoiming U.S. GEOLOGICAL SURVEY PROFESSIONAE PAPER 1506-D Description and Correlation of Eocene Rocks in Stratigraphic Reference Sections for the Green River and Washakie Basins, Southwest Wyoming By HENRY W. ROEHLER GEOLOGY OF THE EOCENE WASATCH, GREEN RIVER, AND BRIDGER (WASHAKIE) FORMATIONS, GREATER GREEN RIVER BASIN, WYOMING, UTAH, AND COLORADO U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1506-D Includes analyses of Eocene rocks in the Washakie basin UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1992 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging in Publication Data Roehler, Henry W. Description and correlation of Eocene rocks in stratigraphic reference sections for the Green River and Washakie basins, Southwest Wyoming : includes analyses of Eocene rocks in the Washakie Basin / by Henry W. Roehler. p. cm. (Geology of the Eocene Wasatch, Green River and Bridger (Washakie) formations, greater Green River Basin, Wyoming, Utah, and Colorado) (U.S. Geological Survey professional paper ; 1506-D) Includes bibliographical references. Supt. of Docs, no.: I 19.16:1506-D 1. Geology, Stratigraphic Eocene. 2. Stratigraphic correlation Wyoming. 3. Geology Wyoming. I. Title. II. Series. III. Series: U.S. Geological Survey professional paper : 1506-D. QE692.2.R58 1992 551.7'84'09787 dc20 91-4442 CIP For sale by Book and Open-File Report Sales, U.S. Geological Survey, Federal Center, Box 25286, Denver, CO 80225 CONTENTS Page Page Abstract......................................................................................... Dl Location and description of rocks comprising the Washakie Introduction ................................................................................. 1 basin Eocene reference section Continued Accessibility of the reference sections ................................ 3 Washakie Formation Continued Field dates and methodology .............................................. 3 Adobe Town Member ................................................. D12 Definition and intertonguing relationships of the Wasatch, Previous correlations of Eocene rocks in the Green River Green River, and Bridger (Washakie) Formations ............... 3 and Washakie basins .................................................... 12 Depositional environments ......................................................... 3 Biostratigraphic correlations ............................................ 12 Location and description of rocks comprising the Green Chronostratigraphic correlations ..................................... 15 River basin Eocene reference section ............................. 5 Lithostratigraphic correlations ........................................ 15 Wasatch Formation .............................................................. 5 Correlation of the Green River and Washakie basin Main body ...................................................................... 5 reference sections .................................................................. 16 Niland Tongue ............................................................... 5 Analysis of Eocene rocks in the Washakie basin reference Green River Formation ........................................................ 6 section ............................................................................ 16 Luman Tongue .............................................................. 6 Petrography ....................................................................... 16 Scheggs Bed of Tipton Shale Member ......................... 6 Nonopaque heavy minerals .............................................. 18 Rife Bed of Tipton Shale Member ............................... 6 X-ray diffraction ................................................................ 20 Wilkins Peak Member .................................................. 6 Chlorite ....................................................................... 20 LaClede, Sand Butte, and Hartt Cabin Beds of the Kaolinite ..................................................................... 21 Laney Member ........................................................... 7 Illite ............................................................................. 22 Bridger Formation ............................................................... 8 Montmorillonite .......................................................... 22 Bishop Conglomerate capping Twin Buttes ....................... 8 Magnesium smectite .................................................. 23 Location and description of rocks comprising the Washakie Potassium feldspar .................................................... 24 basin Eocene reference section ........................................ 8 Analcime ..................................................................... 24 Wasatch Formation .............................................................. 8 Clinoptilolite ............................................................... 25 Main body ...................................................................... 8 Mordenite ................................................................... 33 Niland Tongue ............................................................... 9 X-ray fluorescence ............................................................. 33 Cathedral Bluffs Tongue .............................................. 9 Oil shale assays ................................................................. 33 Green River Formation ........................................................ 9 Luman Tongue ........................................................... 37 Luman Tongue .............................................................. 9 Scheggs Bed of Tipton Shale Member ...................... 37 Scheggs Bed of Tipton Shale Member ......................... 10 Rife Bed of Tipton Shale Member ............................ 37 Rife Bed of Tipton Shale Member ............................... 10 Wilkins Peak Member ............................................... 37 Wilkins Peak Member .................................................. 10 Laney Member ........................................................... 37 LaClede Bed of Laney Member ................................... 10 Palynomorphs .................................................................... 38 Sand Butte Bed of Laney Member .............................. 11 Reference section of Eocene rocks in the Green River basin 43 Washakie Formation ............................................................ 11 Reference section of Eocene rocks in the Washakie basin .... 58 Kinney Rim Member .................................................... 11 References cited ........................................................................ 82 ILLUSTRATIONS [Plates are in pocket] PLATE 1. Columnar section of Eocene rocks in the Green River basin reference section, southwest Wyoming. 2. Columnar section of Eocene rocks in the Washakie basin reference section, southwest Wyoming. Ill IV CONTENTS FIGURE 1. Map showing locations of reference sections, Green River and Washakie basins................................................................. D2 2. Generalized cross section of Eocene rocks in greater Green River basin............................................................................... 4 3. Cross section and map of the Bridger A, B, C, D, and E faunal zones in Green River basin.............................................. 13 4. Columnar section of the Bridger Formation in Green River basin showing faunal zones A-E and stratigraphic positions of white layer marker beds................................................................................................................................ 14 5. Columnar section of the Washakie Formation showing numbered beds in faunal divisions A and B................................ 14 6. Correlation chart of Eocene rocks in Green River and Washakie basin reference sections................................................. 17 7-19. Photomicrographs of Eocene rocks in Washakie basin reference section: 7. Stream channel sandstone in main body of the Wasatch Formation (bed 9)....................................................... 18 8. Freshwater pond limestone in main body of the Wasatch Formation (bed 79).................................................... 20 9. Freshwater lacustrine shoreline sandstone in the Niland Tongue of the Wasatch Formation (bed 206).......... 20 10. Mudflat sandstone in the Wilkins Peak Member of the Green River Formation (bed 292)................................ 21 11. Flood-plain splay sandstone in the Cathedral Bluffs Tongue of the Wasatch Formation (bed 346)................... 21 12. Analcime in the LaClede Bed of the Laney Member of the Green River Formation (bed 433).......................... 22 13. Oil shale in the LaClede Bed of the Laney Member of the Green River Formation (bed 447)........................... 22 14. Algal limestone in the Sand Butte Bed of the Laney Member of the Green River Formation (bed 502)........... 23 15. Altered vitric tuff in sandstone overlying the lower brown sandstone of the Adobe Town Member of the Washakie Formation (bed 572).........................................................................................................................
Recommended publications
  • Zootaxa, a Species Level Revision of Bridgerian And
    ZOOTAXA 1837 A species level revision of Bridgerian and Uintan brontotheres (Mammalia, Perissodactyla) exclusive of Palaeosyops BRYN J. MADER Magnolia Press Auckland, New Zealand Bryn J. Mader A species level revision of Bridgerian and Uintan brontotheres (Mammalia, Perissodactyla) exclusive of Palaeosyops (Zootaxa 1837) 85 pp.; 30 cm. 30 July 2008 ISBN 978-1-86977-249-9 (paperback) ISBN 978-1-86977-250-5 (Online edition) FIRST PUBLISHED IN 2008 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2008 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 1837 © 2008 Magnolia Press MADER Zootaxa 1837: 1–85 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) A species level revision of Bridgerian and Uintan brontotheres (Mammalia, Perissodactyla) exclusive of Palaeosyops BRYN J. MADER Department of Biological Sciences and Geology, Queensborough Community College, 222-05 56th Avenue, Bayside, NY, 11364-1497 Long Island Natural History Museum,
    [Show full text]
  • A New Brontothere from the Eocene of South China
    A new brontothere from the Eocene of South China ALEXANDER AVERIANOV, IGOR DANILOV, WEN CHEN, and JIANHUA JIN Averianov, A., Danilov, I., Chen, W., and Jin, J. 2018. A new brontothere from the Eocene of South China. Acta Palae- ontologica Polonica 63 (X): xxx–xxx. The upper Eocene Youganwo Formation in Maoming Province, Guangdong Province, China, produced abundant re- mains of turtles and crocodiles, but mammalian remains are rare. The previously found mammals from Youganwo Formation include a nimravid carnivore and an amynodontid perissodactyl. Here we report on a new brontotheriid perissodactyl from the Youganwo Formation. Maobrontops paganus gen. et sp. nov. is described based on a maxillary fragment with P4 and M1–2 (SYSU-M-4). Maobrontops paganus gen. et sp. nov. is characterized by the combination of a simple P4 without a hypocone with derived molars having large molar fossae and large anterolingual cingular cusp. A parsimony implied weighting character analysis places Maobrontops gen. nov. in the clade Embolotheriita as a sister taxon to the terminal subclade containing Nasamplus, Protembolotherium, and Embolotherium. Maobrontops paganus gen. et sp. nov. is one of the largest Asian brontotheres. The brontotheriid fauna of South China is endemic and includes at least three valid taxa: Dianotitan from Brontotheriita and Pygmaetitan and Maobrontops gen. nov. from Embolotheriita. Key words: Mammalia, Perissodactyla, Brontotheriidae, Eocene, China. Alexander Averianov [[email protected]], State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Zoological Institute of the Russian Academy of Sciences, Universitetskaya Nab. 1, St Petersburg 199034, Russia; and Institute of Geology and Petroleum Technology, Kazan Federal University, Kremlevskaya Str.
    [Show full text]
  • The Stratigraphic Importance of the Brontothere (Cf. Diplacodon Elatus) in the Brennan Basin Member of the Duchesne River Formation of Utah
    Foss. Rec., 17, 69–74, 2014 www.foss-rec.net/17/69/2014/ doi:10.5194/fr-17-69-2014 © Author(s) 2014. CC Attribution 3.0 License. The stratigraphic importance of the brontothere (cf. Diplacodon elatus) in the Brennan Basin Member of the Duchesne River Formation of Utah B. J. Burger and L. Tackett II Department of Geology, Utah State University, Uintah Basin Regional Campus 320 North Aggie Blvd. Vernal, UT 84078, USA Correspondence to: B. J. Burger ([email protected]) Received: 10 June 2014 – Revised: 6 August 2014 – Accepted: 12 August 2014 – Published: 27 August 2014 Abstract. We report on the first occurrence of an early southern Mississippia (Gazin and Sullivan, 1942), and the horned brontothere in the Brennan Basin Member of the Pacific Northwest (Mihlbacher, 2007). But nowhere is the Duchesne River Formation in northeastern Utah. This is the record of brontotheres as diverse as the fossil record ob- first record of a brontothere from the Brennan Basin Member. tained from the middle Eocene depositional basins located in Previously, brontotheres have been reported from the higher northeastern Utah, southwestern Wyoming and northwestern stratigraphic La Point Member (Duchesneodus uintensis) Colorado (Lull, 1905; Cook, 1926; Douglass, 1909; Gregory, and the lower stratigraphic Uinta Formation (Sphenocoelus 1912; Gunnell and Yarborough, 2000; Hatcher, 1895; Lucas uintensis, Fossendorhinus diploconus, Metarhinus fluviatilis, et al., 2004; Lucas and Holbrook, 2004; Lucas and Schoch, Metarhinus abbotti, Sthenodectes incisivum, Metatelmath- 1982; Mader, 2000, 2009a, b, Mihlbacher, 2008, 2011; Os- erium ultimum, Protitanotherium emarginatum, Pollyosbor- born, 1889, 1895, 1908, 1913, 1929; Peterson, 1914a, b, nia altidens, Diplacodon elatus).
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Artiodactyla and Perissodactyla (Mammalia) from the Early-Middle Eocene Kuldana Formation of Kohat (Pakistan)
    CO"uTK1BL 11015 FKOLI IHt \lC5tLL1 OF I' ALEO\ IOLOG1 THE UNIVERSITY OF IVICHIGAN VOI 77 Lo 10 p 717-37.1 October 33 1987 ARTIODACTYLA AND PERISSODACTYLA (MAMMALIA) FROM THE EARLY-MIDDLE EOCENE KULDANA FORMATION OF KOHAT (PAKISTAN) BY J. G. M. THEWISSEN. P. D. GINGERICH and D. E. RUSSELL MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Charles B. Beck, Director Jennifer A. Kitchell, Editor This series of contributions from the Museum of Paleontology is a medium for publication of papers based chiefly on collections in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate issues may also be obtained by request. Correspond- ence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan 48109. VOLS. II-XXVII. Parts of volumes may be obtained if available. Price lists are available upon inquiry. I ARTIODACTI L .-I A\D PERISSODACTYL4 (kl.iihlhlAL1A) FROM THE EARLY-h1IDDLE EOCEUE KCLD..I\4 FORMATIO\ OF KOHAT (PAKISTAY) J. G. M. THEWISSEN. P. D. GINGERICH AND D. E. RUSSELL Ah.strcict.-Chorlakki. yielding approximately 400 specimens (mostly isolated teeth and bone fragments). is one of four major early-to-middle Eocene niammal localities on the Indo-Pakistan subcontinent. On the basis of ung~~latesclescribed in this paper we consider the Chorlakki fauna to be younger than that from Barbora Banda.
    [Show full text]
  • Download File
    Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2015 Kaori Tsukui All rights reserved ABSTRACT Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui The age of the Bridgerian/Uintan boundary has been regarded as one of the most important outstanding problems in North American Land Mammal “Age” (NALMA) biochronology. The Bridger Basin in southwestern Wyoming preserves one of the best stratigraphic records of the faunal boundary as well as the preceding Bridgerian NALMA. In this dissertation, I first developed a chronological framework for the Eocene Bridger Formation including the age of the boundary, based on a combination of magnetostratigraphy and U-Pb ID-TIMS geochronology. Within the temporal framework, I attempted at making a regional correlation of the boundary-bearing strata within the western U.S., and also assessed the body size evolution of three representative taxa from the Bridger Basin within the context of Early Eocene Climatic Optimum. Integrating radioisotopic, magnetostratigraphic and astronomical data from the early to middle Eocene, I reviewed various calibration models for the Geological Time Scale and intercalibration of 40Ar/39Ar data among laboratories and against U-Pb data, toward the community goal of achieving a high precision and well integrated Geological Time Scale. In Chapter 2, I present a magnetostratigraphy and U-Pb zircon geochronology of the Bridger Formation from the Bridger Basin in southwestern Wyoming.
    [Show full text]
  • Origin and Beyond
    EVOLUTION ORIGIN ANDBEYOND Gould, who alerted him to the fact the Galapagos finches ORIGIN AND BEYOND were distinct but closely related species. Darwin investigated ALFRED RUSSEL WALLACE (1823–1913) the breeding and artificial selection of domesticated animals, and learned about species, time, and the fossil record from despite the inspiration and wealth of data he had gathered during his years aboard the Alfred Russel Wallace was a school teacher and naturalist who gave up teaching the anatomist Richard Owen, who had worked on many of to earn his living as a professional collector of exotic plants and animals from beagle, darwin took many years to formulate his theory and ready it for publication – Darwin’s vertebrate specimens and, in 1842, had “invented” the tropics. He collected extensively in South America, and from 1854 in the so long, in fact, that he was almost beaten to publication. nevertheless, when it dinosaurs as a separate category of reptiles. islands of the Malay archipelago. From these experiences, Wallace realized By 1842, Darwin’s evolutionary ideas were sufficiently emerged, darwin’s work had a profound effect. that species exist in variant advanced for him to produce a 35-page sketch and, by forms and that changes in 1844, a 250-page synthesis, a copy of which he sent in 1847 the environment could lead During a long life, Charles After his five-year round the world voyage, Darwin arrived Darwin saw himself largely as a geologist, and published to the botanist, Joseph Dalton Hooker. This trusted friend to the loss of any ill-adapted Darwin wrote numerous back at the family home in Shrewsbury on 5 October 1836.
    [Show full text]
  • SMC 136 Gazin 1958 1 1-112.Pdf
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 136, NUMBER 1 Cftarlesi 3B, anb JKarp "^aux OTalcott 3^es(earcf) Jf unb A REVIEW OF THE MIDDLE AND UPPER EOCENE PRIMATES OF NORTH AMERICA (With 14 Plates) By C. LEWIS GAZIN Curator, Division of Vertebrate Paleontology United States National Museum Smithsonian Institution (Publication 4340) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JULY 7, 1958 THE LORD BALTIMORE PRESS, INC. BALTIMORE, MD., U. S. A. CONTENTS Page Introduction i Acknowledgments 2 History of investigation 4 Geographic and geologic occurrence 14 Environment I7 Revision of certain lower Eocene primates and description of three new upper Wasatchian genera 24 Classification of middle and upper Eocene forms 30 Systematic revision of middle and upper Eocene primates 31 Notharctidae 31 Comparison of the skulls of Notharctus and Smilodectcs z:^ Omomyidae 47 Anaptomorphidae 7Z Apatemyidae 86 Summary of relationships of North American fossil primates 91 Discussion of platyrrhine relationships 98 References 100 Explanation of plates 108 ILLUSTRATIONS Plates (All plates follow page 112) 1. Notharctus and Smilodectes from the Bridger middle Eocene. 2. Notharctus and Smilodectes from the Bridger middle Eocene. 3. Notharctus and Smilodectcs from the Bridger middle Eocene. 4. Notharctus and Hemiacodon from the Bridger middle Eocene. 5. Notharctus and Smilodectcs from the Bridger middle Eocene. 6. Omomys from the middle and lower Eocene. 7. Omomys from the middle and lower Eocene. 8. Hemiacodon from the Bridger middle Eocene. 9. Washakius from the Bridger middle Eocene. 10. Anaptomorphus and Uintanius from the Bridger middle Eocene. 11. Trogolemur, Uintasorex, and Apatcmys from the Bridger middle Eocene. 12. Apatemys from the Bridger middle Eocene.
    [Show full text]
  • Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology
    Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology by Paul David Polly B.A. (University of Texas at Austin) 1987 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Paleontology in the GRADUATE DIVISION of the UNIVERSITY of CALIFORNIA at BERKELEY Committee in charge: Professor William A. Clemens, Chair Professor Kevin Padian Professor James L. Patton Professor F. Clark Howell 1993 Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology © 1993 by Paul David Polly To P. Reid Hamilton, in memory. iii TABLE OF CONTENTS Introduction ix Acknowledgments xi Chapter One--Revolution and Evolution in Taxonomy: Mammalian Classification Before and After Darwin 1 Introduction 2 The Beginning of Modern Taxonomy: Linnaeus and his Predecessors 5 Cuvier's Classification 10 Owen's Classification 18 Post-Darwinian Taxonomy: Revolution and Evolution in Classification 24 Kovalevskii's Classification 25 Huxley's Classification 28 Cope's Classification 33 Early 20th Century Taxonomy 42 Simpson and the Evolutionary Synthesis 46 A Box Model of Classification 48 The Content of Simpson's 1945 Classification 50 Conclusion 52 Acknowledgments 56 Bibliography 56 Figures 69 Chapter Two: Hyaenodontidae (Creodonta, Mammalia) from the Early Eocene Four Mile Fauna and Their Biostratigraphic Implications 78 Abstract 79 Introduction 79 Materials and Methods 80 iv Systematic Paleontology 80 The Four Mile Fauna and Wasatchian Biostratigraphic Zonation 84 Conclusion 86 Acknowledgments 86 Bibliography 86 Figures 87 Chapter Three: A New Genus Eurotherium (Creodonta, Mammalia) in Reference to Taxonomic Problems with Some Eocene Hyaenodontids from Eurasia (With B. Lange-Badré) 89 Résumé 90 Abstract 90 Version française abrégéé 90 Introduction 93 Acknowledgments 96 Bibliography 96 Table 3.1: Original and Current Usages of Genera and Species 99 Table 3.2: Species Currently Included in Genera Discussed in Text 101 Chapter Four: The skeleton of Gazinocyon vulpeculus n.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • (Mammalia) from the French Locality of Aumelas (Hérault), with Possible New Representatives from the Late Ypresian
    geodiversitas 2020 42 13 né – Car ig ni e vo P r e e s n a o f h t p h é e t S C l e a n i r o o z o m i e c – M DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR: Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Didier Merle ASSISTANT DE RÉDACTION / ASSISTANT EDITOR : Emmanuel Côtez ([email protected]) MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : Christine Argot (Muséum national d’Histoire naturelle, Paris) Beatrix Azanza (Museo Nacional de Ciencias Naturales, Madrid) Raymond L. Bernor (Howard University, Washington DC) Alain Blieck (chercheur CNRS retraité, Haubourdin) Henning Blom (Uppsala University) Jean Broutin (Sorbonne Université, Paris, retraité) Gaël Clément (Muséum national d’Histoire naturelle, Paris) Ted Daeschler (Academy of Natural Sciences, Philadelphie) Bruno David (Muséum national d’Histoire naturelle, Paris) Gregory D. Edgecombe (The Natural History Museum, Londres) Ursula Göhlich (Natural History Museum Vienna) Jin Meng (American Museum of Natural History, New York) Brigitte Meyer-Berthaud (CIRAD, Montpellier) Zhu Min (Chinese Academy of Sciences, Pékin) Isabelle Rouget (Muséum national d’Histoire naturelle, Paris) Sevket Sen (Muséum national d’Histoire naturelle, Paris, retraité) Stanislav Štamberg (Museum of Eastern Bohemia, Hradec Králové) Paul Taylor (The Natural History Museum, Londres, retraité) COUVERTURE / COVER : Made from the Figures of the article. Geodiversitas est indexé dans / Geodiversitas is indexed in: – Science
    [Show full text]
  • Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes
    Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes by Ryan Matthew Bebej A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2011 Doctoral Committee: Professor Philip D. Gingerich, Co-Chair Professor Philip Myers, Co-Chair Professor Daniel C. Fisher Professor Paul W. Webb © Ryan Matthew Bebej 2011 To my wonderful wife Melissa, for her infinite love and support ii Acknowledgments First, I would like to thank each of my committee members. I will be forever grateful to my primary mentor, Philip D. Gingerich, for providing me the opportunity of a lifetime, studying the very organisms that sparked my interest in evolution and paleontology in the first place. His encouragement, patience, instruction, and advice have been instrumental in my development as a scholar, and his dedication to his craft has instilled in me the importance of doing careful and solid research. I am extremely grateful to Philip Myers, who graciously consented to be my co-advisor and co-chair early in my career and guided me through some of the most stressful aspects of life as a Ph.D. student (e.g., preliminary examinations). I also thank Paul W. Webb, for his novel thoughts about living in and moving through water, and Daniel C. Fisher, for his insights into functional morphology, 3D modeling, and mammalian paleobiology. My research was almost entirely predicated on cetacean fossils collected through a collaboration of the University of Michigan and the Geological Survey of Pakistan before my arrival in Ann Arbor.
    [Show full text]