Muscle Fibers in the Motor Unit Act Maximally
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microanatomy of Muscles
Microanatomy of Muscles Anatomy & Physiology Class Three Main Muscle Types Objectives: By the end of this presentation you will have the information to: 1. Describe the 3 main types of muscles. 2. Detail the functions of the muscle system. 3. Correctly label the parts of a myocyte (muscle cell) 4. Identify the levels of organization in a skeletal muscle from organ to myosin. 5. Explain how a muscle contracts utilizing the correct terminology of the sliding filament theory. 6. Contrast and compare cardiac and smooth muscle with skeletal muscle. Major Functions: Muscle System 1. Moving the skeletal system and posture. 2. Passing food through the digestive system & constriction of other internal organs. 3. Production of body heat. 4. Pumping the blood throughout the body. 5. Communication - writing and verbal Specialized Cells (Myocytes) ~ Contractile Cells Can shorten along one or more planes because of specialized cell membrane (sarcolemma) and specialized cytoskeleton. Specialized Structures found in Myocytes Sarcolemma: The cell membrane of a muscle cell Transverse tubule: a tubular invagination of the sarcolemma of skeletal or cardiac muscle fibers that surrounds myofibrils; involved in transmitting the action potential from the sarcolemma to the interior of the myofibril. Sarcoplasmic Reticulum: The special type of smooth endoplasmic Myofibrils: reticulum found in smooth and a contractile fibril of skeletal muscle, composed striated muscle fibers whose function mainly of actin and myosin is to store and release calcium ions. Multiple Nuclei (skeletal) & many mitochondria Skeletal Muscle - Microscopic Anatomy A whole skeletal muscle (such as the biceps brachii) is considered an organ of the muscular system. Each organ consists of skeletal muscle tissue, connective tissue, nerve tissue, and blood or vascular tissue. -
Total Training Volume and Muscle Soreness Parameters Performing Agonist Or Antagonist Foam Rolling Between Sets
sports Article Total Training Volume and Muscle Soreness Parameters Performing Agonist or Antagonist Foam Rolling between Sets Haroldo Gualter Santana 1,2,3,4,*, Bruno Lara 3, Filipe Canuto Almeida da Silva 3, Pedro Medina Eiras 3, Gabriel Andrade Paz 1,2,3,4, Jeffrey M. Willardson 5 and Humberto Miranda 1,2,3 1 LADTEF—Performance, Training, and Physical Exercise Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; [email protected] (G.A.P.); [email protected] (H.M.) 2 School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil 3 Lato Sensu Postgraduate Program in Strength Training, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; [email protected] (B.L.); fi[email protected] (F.C.A.d.S.); [email protected] (P.M.E.) 4 Biodesp Institute, Rio de Janeiro 21020-170, Brazil 5 Health and Human Performance Department, Montana State University Billings, Billings, MT 59101, USA; [email protected] * Correspondence: [email protected] Abstract: Background: Foam rolling (FR) has become very popular in recent years; however, the prac- tice of FR between sets of resistance training (RT) for the lower limbs needs further examination. Purpose: Therefore, the purpose of the present study was to examine the effect of FR for the agonists (quadriceps) and antagonists (hamstrings) between multiple sets of the leg extension on repetition maximum performance (RM), fatigue resistance index (FRI), and muscle soreness (MS). Study de- sign: Quasi-experimental clinical trial. Methods: Twenty trained men participated in this study (30.35 ± 6.56 years, 1.77 ± 0.05 cm, 87.70 ± 7.6 kg) and attended seven sessions with 48 h between sessions, (one familiarization session; two 10-RM test and retest sessions; and four experimental sessions). -
Muscle Physiology Dr
Muscle Physiology Dr. Ebneshahidi Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Skeletal Muscle Figure 9.2 (a) Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Functions of the muscular system . 1. Locomotion . 2. Vasoconstriction and vasodilatation- constriction and dilation of blood vessel Walls are the results of smooth muscle contraction. 3. Peristalsis – wavelike motion along the digestive tract is produced by the Smooth muscle. 4. Cardiac motion . 5. Posture maintenance- contraction of skeletal muscles maintains body posture and muscle tone. 6. Heat generation – about 75% of ATP energy used in muscle contraction is released as heat. Copyright. © 2004 Pearson Education, Inc., publishing as Benjamin Cummings . Striation: only present in skeletal and cardiac muscles. Absent in smooth muscle. Nucleus: smooth and cardiac muscles are uninculcated (one nucleus per cell), skeletal muscle is multinucleated (several nuclei per cell ). Transverse tubule ( T tubule ): well developed in skeletal and cardiac muscles to transport calcium. Absent in smooth muscle. Intercalated disk: specialized intercellular junction that only occurs in cardiac muscle. Control: skeletal muscle is always under voluntary control‚ with some exceptions ( the tongue and pili arrector muscles in the dermis). smooth and cardiac muscles are under involuntary control. Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Innervation: motor unit . a) a motor nerve and a myofibril from a neuromuscular junction where gap (called synapse) occurs between the two structures. at the end of motor nerve‚ neurotransmitter (i.e. acetylcholine) is stored in synaptic vesicles which will release the neurotransmitter using exocytosis upon the stimulation of a nerve impulse. Across the synapse the surface the of myofibril contains receptors that can bind with the neurotransmitter. -
CHRONIC PAIN Definition Pain • “An Unpleasant Sensory and Emotional
CHRONIC PAIN Definition Pain “an unpleasant sensory and emotional response to a stimulus associated with actual or potential tissue damage or described in terms of such damage.” IASP Serves an adaptive function, a warning system designed to protect the organism from harm. Pain has never been shown to be a simple function of the amount of physical injury; it is extensively influenced by anxiety, depression, expectation, and other psychological and physiological variables. Acute pain a biologic symptom of an apparent nociceptive stimulus, such as tissue damage that is due to disease or trauma that persists only as long as the tissue pathology itself persists. is generally self-limiting, and as the nociceptive stimulus lessens, the pain decreases. usually lasts a few days to a few weeks (4 to 6 days). If it is not effectively treated, it may progress to a chronic form. nociceptive Chronic Pain disease process in which the pain is a persistent symptom of an autonomous disorder with neurologic,psychological, and physiologic components. pain lasting longer than anticipated (greater than 3 months) within the context of the usual course of an acute disease or injury. The pain may be associated with continued pathology or may persist after recovery from a disease or injury. Principally neuropathic, nociceptive Pain behaviors PAIN Suffering N Psychosocial Tissue factors Nociceptive factors (endogenous Pathways (exogenous/ stress) environmental stress) Term Definition Allodynia Pain caused by a stimulus that does not normally provoke pain -
Impact of Occupational Footwear and Workload on Lower Extremity Muscular Exertion
Original Research Impact of Occupational Footwear and Workload on Lower Extremity Muscular Exertion ALANA J. TURNER*1, JONATHAN C. SWAIN*1, KATHERINE L. McWHIRTER*1, ADAM C. KNIGHT‡1, DANIEL W. CARRUTH‡2 and HARISH CHANDER‡1 1Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, Starkville, MS, USA; 2Human Performance Laboratory, Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS, USA *Denotes undergraduate student author, ‡Denotes professional author ABSTRACT International Journal of Exercise Science 11(1): 331-341, 2018. Footwear worn and workload performed can influence muscular exertion, which is critical in occupational environments. The purpose of the study was to assess the impact of two occupational footwear, steel-toed (SWB) and tactical (TWB) work boots, on muscular exertion when exposed to a physical workload. Eighteen healthy male participants (age: 21.27 ± 1.7 years; height: 177.67 ± 6.0 cm; mass: 87.95 ± 13.8 kg) were tested for maximal voluntary isometric contraction (MVIC) using electromyography (EMG) and pressure pain threshold (PPT) using an algometer for four lower extremity muscles prior to (pre-test) and two times after a physical treadmill workload (post-test 1 & post-test 2). Additionally, heart rate (HR), ratings of perceived exertion (RPE) at the end of the workload, and recovery were recorded along with the time spent on treadmill (TT). Results from the study revealed that PPT was significantly lowered in ankle dorsiflexors immediately following the workload and EMG mean and peak muscle activity were significantly lowered in post-test 2 session in knee extensors. No significant differences were found between footwear types in all measures. -
Runners Doctrinepart1.Pdf
This book is dedicated to one of my wisest high school runners, Matt Fulvio. As a sophomore, he said to his rambling coach, “Why don’t you just write this all down?” Well Matt, it took me four years to do it, and by the time I finished, you were no longer running. Note to the reader This book is not longer in print. Thus, the reason it is free on my website. However, this means that the version of the book you see here is pre- professional editing. There will likely be a number of editing mistakes. But with 400 pages of single-spaced text, you can see why I have not bothered to spend the time required to polish it. Eric Anderson, August 2008 About the Author Doctor Anderson has coached high school, collegiate, and elite distance runners since 1986. He has five degrees, including a Ph.D. from the University of California Irvine. Dr. Anderson has published a number of books relating do distance running, including: Training Games: Coaching Runners Creatively and Trailblazing: The True Story of America’s First Openly Gay Track Coach . Introduction Because running is a multi-faceted sport infused with both science and art, writing about it in a comprehensive fashion is difficult: entire books have been written on individual aspects of the large spectrum of factors that influence the distance runner. So what inspired me to tackle them all in one work? I desired to combat what I call postcard theory: that most students (of any discipline) desire to read a source of information that is short and precise; just enough to know what to do. -
Titin Force Is Enhanced in Actively Stretched Skeletal Muscle
© 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 3629-3636 doi:10.1242/jeb.105361 RESEARCH ARTICLE Titin force is enhanced in actively stretched skeletal muscle Krysta Powers1, Gudrun Schappacher-Tilp2, Azim Jinha1, Tim Leonard1, Kiisa Nishikawa3 and Walter Herzog1,* ABSTRACT Aubert, 1952; Edman et al., 1978; Edman et al., 1982; Morgan, 1994; The sliding filament theory of muscle contraction is widely accepted Herzog et al., 2006; Leonard and Herzog, 2010). This property, as the means by which muscles generate force during activation. termed residual force enhancement, provides a direct challenge to the Within the constraints of this theory, isometric, steady-state force sliding filament-based cross-bridge theory. produced during muscle activation is proportional to the amount of Residual force enhancement has been observed in vivo and down filament overlap. Previous studies from our laboratory demonstrated to the sarcomere level (Abbott and Aubert, 1952; Edman et al., enhanced titin-based force in myofibrils that were actively stretched 1982; Herzog and Leonard, 2002; Leonard et al., 2010; Rassier, to lengths which exceeded filament overlap. This observation cannot 2012). There are three main filaments at the sarcomere level that be explained by the sliding filament theory. The aim of the present contribute to force production in muscle: the thick (myosin), the thin study was to further investigate the enhanced state of titin during (actin), and the titin filaments. The thick filament is composed active stretch. Specifically, we confirm that this enhanced state of primarily of the protein myosin, and the thin filament is composed force is observed in a mouse model and quantify the contribution of of actin and regulatory proteins. -
A Sauna & Muscle Recovery
A SAUNA & MUSCLE RECOVERY 1COMMENTS PRINT Oct 3, 2010 | By Darren Young Photo Credit in der sauna image by LVDESIGN from Fotolia.com The sauna is a 2,000-year-old invention that remains popular to this day. The Finnish sauna has long been known for its therapeutic health benefits. Whether you use it to relax muscles that have been through a grueling workout or to relax your mind after an afternoon of crunching your department's budget numbers, the sauna can help you in your recovery. This heated, wood-lined room provides health benefits that nearly anyone, including the athlete, can use to his advantage. Identification The Finnish sauna consists of a log or wood paneled room, which contains a centrally located rock or rock-filled heating source. A room temperature of 70 to 100 degrees Celsius is maintained, and the humidity is kept quite low, at 10 to 20 percent. The protocol for sauna use involves spending a period of time in the heat, typically five to 15 minutes, which is followed immediately by cooling off with cold water. This procedure is repeated two to three times, for a total of 30 minutes. Sponsored Links 2-4 Person Sauna From$649 $649 Mp3 Input, 2 Speakers-Year War Lowest Price On The Planet-5 Left www.SaferWholesale.com Effects on the Cardiovascular System The blood flow to the skin is increased and vasodilatation results from exposure to the heat cycle. A 2010 edition of the "Journal of Human Kinetics" reports that when you routinely take sauna baths, it leads to a decrease in systolic and diastolic blood pressure, and temporarily raises the heart rate during the heat exposure. -
Biomechanics of Skeletal Muscle
BiomechanicsBiomechanics ofof SkeletalSkeletal MuscleMuscle www.fisiokinesiterapia.biz ContentsContents I.I. CompositionComposition && structurestructure ofof skeletalskeletal musclemuscle II.II. MechanicsMechanics ofof MuscleMuscle ContractionContraction III.III. ForceForce productionproduction inin musclemuscle IV.IV. MuscleMuscle remodelingremodeling V.V. SummarySummary 2 MuscleMuscle types:types: –– cardiaccardiac muscle:muscle: composescomposes thethe heartheart –– smoothsmooth muscle:muscle: lineslines hollowhollow internalinternal organsorgans –– skeletalskeletal (striated(striated oror voluntary)voluntary) muscle:muscle: attachedattached toto skeletonskeleton viavia tendontendon && movementmovement SkeletalSkeletal musclemuscle 4040--45%45% ofof bodybody weightweight –– >> 430430 musclesmuscles –– ~~ 8080 pairspairs produceproduce vigorousvigorous movementmovement DynamicDynamic && staticstatic workwork –– Dynamic:Dynamic: locomotionlocomotion && positioningpositioning ofof segmentssegments –– Static:Static: maintainsmaintains bodybody postureposture 3 I.I. CompositionComposition && structurestructure ofof skeletalskeletal musclemuscle Structure & organization • Muscle fiber: long cylindrical multi-nuclei cell 10-100 μm φ fiber →endomysium → fascicles → perimysium → epimysium (fascia) • Collagen fibers in perimysium & epimysium are continuous with those in tendons • {thin filament (actin 5nm φ) + thick filament (myosin 15 nm φ )} → myofibrils (contractile elements, 1μm φ) →muscle fiber 4 5 6 BandsBands ofof myofibrilsmyofibrils -
Skeletal Muscle Tissue and Muscle Organization
Chapter 9 The Muscular System Skeletal Muscle Tissue and Muscle Organization Lecture Presentation by Steven Bassett Southeast Community College © 2015 Pearson Education, Inc. Introduction • Humans rely on muscles for: • Many of our physiological processes • Virtually all our dynamic interactions with the environment • Skeletal muscles consist of: • Elongated cells called fibers (muscle fibers) • These fibers contract along their longitudinal axis © 2015 Pearson Education, Inc. Introduction • There are three types of muscle tissue • Skeletal muscle • Pulls on skeletal bones • Voluntary contraction • Cardiac muscle • Pushes blood through arteries and veins • Rhythmic contractions • Smooth muscle • Pushes fluids and solids along the digestive tract, for example • Involuntary contraction © 2015 Pearson Education, Inc. Introduction • Muscle tissues share four basic properties • Excitability • The ability to respond to stimuli • Contractility • The ability to shorten and exert a pull or tension • Extensibility • The ability to continue to contract over a range of resting lengths • Elasticity • The ability to rebound toward its original length © 2015 Pearson Education, Inc. Functions of Skeletal Muscles • Skeletal muscles perform the following functions: • Produce skeletal movement • Pull on tendons to move the bones • Maintain posture and body position • Stabilize the joints to aid in posture • Support soft tissue • Support the weight of the visceral organs © 2015 Pearson Education, Inc. Functions of Skeletal Muscles • Skeletal muscles perform -
The Acute Effects of Flotation Restricted
THE ACUTE EFFECTS OF FLOTATION RESTRICTED ENVIRONMENTAL STIMULATION TECHNIQUE ON RECOVERY FROM MAXIMAL ECCENTRIC EXERCISE PAUL M. MORGAN,AMANDA J. SALACINSKI, AND MATTHEW A. STULTS-KOLEHMAINEN Department of Kinesiology and Physical Education, Northern Illinois University, DeKalb, Illinois 07/25/2018 on BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD33gDmupaxCIysA/NcnDS8yusdAPJCMvL8fp/9fSP5jhUVFT+i+Di9ow== by https://journals.lww.com/nsca-jscr from Downloaded ABSTRACT athletes to help reduce blood lactate levels after eccentric Downloaded Morgan, PM, Salacinski, AJ, and Stults-Kolehmainen, MA. The exercise. acute effects of flotation restricted environmental stimulation KEY WORDS from Epsom salt, lactate, knee extension, muscle https://journals.lww.com/nsca-jscr technique on recovery from maximal eccentric exercise. strength J Strength Cond Res 27(12): 3467–3474, 2013—Flotation restricted environmental stimulation technique (REST) involves INTRODUCTION compromising senses of sound, sight, and touch by creating o maximize overall performance, an athlete must a quiet dark environment. The individual lies supine in a tank focus on both training and recovery. However, this by BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD33gDmupaxCIysA/NcnDS8yusdAPJCMvL8fp/9fSP5jhUVFT+i+Di9ow== of Epsom salt and water heated to roughly skin temperature period of rest after a training session is frequently (34–358 C). This study was performed to determine if a 1-hour T overlooked, and over time, this may lead to over- flotation REST session would aid in the recovery process after training and underperformance. During immediate recovery maximal eccentric knee extensions and flexions. Twenty-four from intense bouts of exercise, the body often experiences untrained male students (23.29 6 2.1 years, 184.17 6 6.85 acute muscle soreness because of acidic conditions of the cm, 85.16 6 11.54 kg) participated in a randomized, repeated blood, or lowering of the blood’s pH, that stems from an measures crossover study. -
2019 Syllabus Core
PHYS ED 1, 2, 3 CORE CONDITIONING TONI MAR PHYS ED 1, 2, 3 - CORE CONDITIONING (0.05 units) Instructor: Toni Mar http://pe.berkeley.edu/instructors_toni_mar.html https://www.yogatrail.com/teacher/toni-mar-1384324 http://www.ratemyprofessors.com/ShowRatings.jsp?tid=312615 https://berkeley.uloop.com/professors/view.php/56459/Toni-Mar Contact: e: [email protected] p: 1.510.642.2375 Office: 225 Hearst Memorial Gymnasium Office Hours: Tuesday 9:15-10:00 with advance reservation or congruent availability Required Material: Syllabus contents, videos, links and Discussions via bCourse I. Course Description: Periodized training (progressive organized cycling of various aspects of training during various time periods) to develop core strength, core stability and ancillary attributes including static and dynamic balance, proprioception, somatosensory factors, static and dynamic stretching/flexibility, and postural alignment utilizing a variety of training methods and modalities in calisthenics (compound bodyweight exercises for strength, flexibility and balance); resistance training (use of medicine balls, dumbbells, weighted bars, kettlebells resistance bands); and balance training (use of balance pads, yoga blocks). Strong emphasis on the fundamentals of exercise and sport science (the multi-disciplinary study of human movement and performance encompassing biomechanics, neuromuscular physiology, exercise physiology, pathology, sport psychology, sport medicine, and sport nutrition) to provide a thorough understanding of the underlying principles