To Make a Triathlete

Total Page:16

File Type:pdf, Size:1020Kb

To Make a Triathlete To Make A Triathlete (Triathlon Conditioning) By: Farshad Najafipour, MD, PhD. & Farzad Najafipour, Physiotherapist. Table of Contents PREFACE ........................................................................................................ 9 AEROBIC ENDURANCE TRAINING ................................................................. 11 LONG SLOW DISTANCE TRAINING .................................................................... 12 PACE/TEMPO TRAINING .................................................................................... 12 INTERVAL TRAINING ......................................................................................... 13 REPETITION TRAINING ...................................................................................... 14 FARTLEK TRAINING ........................................................................................... 14 LACTATE THRESHOLD TRAINING .................................................................. 15 LACTATE THRESHOLD TRAINING SESSIONS ...................................................... 16 THE LACTATE THRESHOLD ........................................................................... 18 LACTATE THRESHOLD AS A PERCENTAGE OF VO 2 MAX ................................. 19 LACTATE THRESHOLD AND TRAINING .............................................................. 21 VO2 MAX, AEROBIC POWER& MAXIMAL OXYGEN UPTAKE .......................... 23 VO2 MAX IN ATHLETES AND NON ATHLETES .................................................. 24 TRAINING & VO2 MAX ..................................................................................... 26 VO2 MAX AS A PREDICTOR OF PERFORMANCE ................................................ 27 FACTORS AFFECTING VO2 MAX ....................................................................... 27 DETERMINING VO2 MAX .................................................................................. 28 VO2 MAX AT ALTITUDE ................................................................................... 29 EFFECTS OF AGING ON VO2 MAX ..................................................................... 29 HOW TO DETERMINE LACTATE / ANAEROBIC THRESHOLD ........................... 31 LABORATORY TESTING OF ANAEROBIC THRESHOLD ....................................... 31 PORTABLE LACTATE ANALYZER....................................................................... 34 CONCONI TEST .................................................................................................. 34 10KM RUN, 30KM CYCLE, 30 MIN TIME TRIAL ................................................ 35 HEART RATE PERCENTAGE ............................................................................... 35 THE LACTATE THRESHOLD DEBATE ................................................................. 35 LACTIC ACID, BLOOD LACTATE & THE “LACTIC ACID MYTH” ......................... 37 4 To Make A Triathlete LACTIC ACID AND OXYGEN .............................................................................. 37 LACTATE IS NOT A WASTE PRODUCT ............................................................... 38 LACTATE ACCUMULATION ................................................................................ 40 LACTIC ACIDOSIS .............................................................................................. 40 ACIDOSIS AND FATIGUE .................................................................................... 41 LACTATE ACCUMULATION AND EXERCISE ....................................................... 42 TO SUMMERIZE... ............................................................................................... 42 ENERGY SYSTEMS IN SPORT & EXERCISE ...................................................... 44 ATP – THE BODY‟S ENERGY CURRENCY .......................................................... 44 ENERGY SOURCES TO REPLENISH ATP ............................................................. 45 THE THREE ENERGY SYSTEMS .......................................................................... 47 THE ATP-PCR SYSTEM ..................................................................................... 47 THE GLYCOLYTIC SYSTEM ................................................................................ 48 THE OXIDATIVE SYSTEM ................................................................................... 49 ENERGY SYSTEMS & TRAINING ........................................................................ 51 ENERGY SYSTEMS USED IN SPORTS .................................................................. 51 A NEW MODEL FOR ENERGY SYSTEMS? ........................................................... 52 DELAYED ONSET MUSCLE SORENESS (DOMS) .............................................. 54 CAUSES OF DELAYED ONSET MUSCLE SORENESS ............................................ 54 REDUCING THE EFFECTS OF DELAYED ONSET MUSCLE SORENESS .................. 56 MUSCLE ANATOMY & STRUCTURE............................................................... 57 THE SLIDING FILAMENT THEORY OF MUSCLE ACTION .................................. 61 THE SARCOPLASMIC RETICULUM ..................................................................... 62 EXCITATION-CONTRACTION COUPLING ............................................................ 62 HEART RATE TRAINING: FINDING THE RIGHT ZONE FOR YOU ....................... 64 THE LIMITATIONS OF HEART RATE TRAINING .................................................. 64 HEART RATE TRAINING ZONES ......................................................................... 65 THE KARVONEN FORMULA (HEART RATE RESERVE) ....................................... 66 THE CONCONI TEST FOR MEASURING LACTATE THRESHOLD .......................... 67 HEART RATE TRAINING TO INCREASE LACTATE THRESHOLD .......................... 69 THE BRUCE TREADMILL TEST ....................................................................... 70 ENDURANCE TESTS ...................................................................................... 72 BALKE 15 MINUTE RUN .................................................................................... 72 COOPER 12 MINUTE RUN .................................................................................. 73 MULTISTAGE SHUTTLE RUN ............................................................................. 73 To Make A Triathlete 5 ROCKPORT TEST ................................................................................................ 73 ACCLIMATIZATION TO ALTITUDE ................................................................. 74 HIGH ALTITUDE ENVIRONMENT ....................................................................... 74 ACUTE RESPONSE TO ALTITUDE ....................................................................... 75 ACCLIMATIZATION TO ALTITUDE ..................................................................... 77 PREPARING FOR COMPETITION AT ALTITUDE ................................................... 80 ALTITUDE TRAINING .................................................................................... 81 LIVE HIGH - TRAIN LOW ................................................................................... 82 HEART RATE RESERVE... HOW TO DETERMINE YOUR HEART RATE TRAINING ZONE ........................................................................................................... 83 INTERVAL TRAINING FOR SPORT SPECIFIC ENDURANCE ............................... 85 INTERVAL TRAINING IS SUITABLE FOR MANY SPORTS ..................................... 86 INTERVAL TRAINING SESSIONS ......................................................................... 87 THE CARDIOVASCULAR SYSTEM AND EXERCISE ........................................... 89 IMMEDIATE RESPONSE OF THE CARDIOVASCULAR SYSTEM TO EXERCISE ....... 90 ADAPTATIONS IN THE CARDIOVASCULAR SYSTEM ........................................... 93 HYPERTROPHY IN HUMAN MUSCLE ............................................................. 96 HYPERPLASIA IN HUMAN MUSCLE ............................................................... 98 HOW TO DESIGN A RESISTANCE TRAINING PROGRAM FOR YOUR SPORT... 100 STEP 1 - EVALUATION AND ASSESSMENT ....................................................... 100 STEP 2 - EXERCISE SELECTION ........................................................................ 101 STEP 3 - FREQUENCY ....................................................................................... 103 STEP 4 - EXERCISE ORDER ............................................................................... 104 STEP 5 - LOADING & REPETITIONS .................................................................. 106 STEP 6 - VOLUME ............................................................................................. 107 STEP 7 - PROGRESSION .................................................................................... 108 STRENGTH TESTS ....................................................................................... 110 MAXIMAL STRENGTH ASSESSMENT (1-RM) ................................................... 110 STRENGTH ENDURANCE ASSESSMENT ............................................................ 115 MUSCULAR ENDURANCE TRAINING ........................................................... 116 THE DIFFERENT TYPES OF MUSCULAR ENDURANCE ...................................... 116 WEIGHT TRAINING PROGRAMS FOR BUILDING MAXIMUM STRENGTH ...... 121 6 To Make A Triathlete MAXIMAL STRENGTH TRAINING OVER BODYBUILDING ................................ 121 DESIGNING MAXIMAL STRENGTH WEIGHT TRAINING PROGRAMS ................ 122 SAMPLE MAXIMAL
Recommended publications
  • Exercise Intensity During Olympic-Distance Triathlon in Well-Trained Age-Group Athletes: an Observational Study
    sports Article Exercise Intensity during Olympic-Distance Triathlon in Well-Trained Age-Group Athletes: An Observational Study Atsushi Aoyagi 1 , Keisuke Ishikura 2 and Yoshiharu Nabekura 3,* 1 Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; [email protected] 2 Faculty of Management, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan; [email protected] 3 Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan * Correspondence: [email protected] Abstract: The aim of this study was to examine the exercise intensity during the swimming, cy- cling, and running legs of nondraft legal, Olympic-distance triathlons in well-trained, age-group triathletes. Seventeen male triathletes completed incremental swimming, cycling, and running tests to exhaustion. Heart rate (HR) and workload corresponding to aerobic and anaerobic thresholds, maximal workloads, and maximal HR (HRmax) in each exercise mode were analyzed. HR and workload were monitored throughout the race. The intensity distributions in three HR zones for each discipline and five workload zones in cycling and running were quantified. The subjects were then assigned to a fast or slow group based on the total race time (range, 2 h 07 min–2 h 41 min). The mean percentages of HRmax in the swimming, cycling, and running legs were 89.8% ± 3.7%, 91.1% ± 4.4%, and 90.7% ± 5.1%, respectively, for all participants. The mean percentage of HRmax and intensity distributions during the swimming and cycling legs were similar between groups.
    [Show full text]
  • Power Athletes and Distance Training Physiological and Biomechanical Rationale for Change
    Sports Med 2007; 37 (1): 47-57 REVIEW ARTICLE 0112-1642/07/0001-0047/$44.95/0 2007 Adis Data Information BV. All rights reserved. Power Athletes and Distance Training Physiological and Biomechanical Rationale for Change Marcus C.C.W. Elliott,1 Phillip P. Wagner1 and Loren Chiu2 1 Peak Performance Project, Santa Barbara, California, USA 2 Department of Biokinesiology, University of Southern California, Santa Barbara, California, USA Contents Abstract .....................................................................................47 1. Current Practices of Distance Training .......................................................48 2. Performance Decrements from Distance Training ............................................49 2.1 Neuromuscular Considerations .........................................................50 2.2 Endocrine Considerations ..............................................................51 2.3 Overtraining ..........................................................................51 3. The Benefits of Aerobic Training for Anaerobic Athletes .......................................52 3.1 Improved Recovery ...................................................................52 3.2 Enhanced Glucose Uptake ............................................................53 3.3 Improved Body Composition ...........................................................53 3.4 Active Recovery Day ..................................................................54 3.5 Preparation of Supporting Structures ....................................................54
    [Show full text]
  • Total Training Volume and Muscle Soreness Parameters Performing Agonist Or Antagonist Foam Rolling Between Sets
    sports Article Total Training Volume and Muscle Soreness Parameters Performing Agonist or Antagonist Foam Rolling between Sets Haroldo Gualter Santana 1,2,3,4,*, Bruno Lara 3, Filipe Canuto Almeida da Silva 3, Pedro Medina Eiras 3, Gabriel Andrade Paz 1,2,3,4, Jeffrey M. Willardson 5 and Humberto Miranda 1,2,3 1 LADTEF—Performance, Training, and Physical Exercise Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; [email protected] (G.A.P.); [email protected] (H.M.) 2 School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil 3 Lato Sensu Postgraduate Program in Strength Training, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; [email protected] (B.L.); fi[email protected] (F.C.A.d.S.); [email protected] (P.M.E.) 4 Biodesp Institute, Rio de Janeiro 21020-170, Brazil 5 Health and Human Performance Department, Montana State University Billings, Billings, MT 59101, USA; [email protected] * Correspondence: [email protected] Abstract: Background: Foam rolling (FR) has become very popular in recent years; however, the prac- tice of FR between sets of resistance training (RT) for the lower limbs needs further examination. Purpose: Therefore, the purpose of the present study was to examine the effect of FR for the agonists (quadriceps) and antagonists (hamstrings) between multiple sets of the leg extension on repetition maximum performance (RM), fatigue resistance index (FRI), and muscle soreness (MS). Study de- sign: Quasi-experimental clinical trial. Methods: Twenty trained men participated in this study (30.35 ± 6.56 years, 1.77 ± 0.05 cm, 87.70 ± 7.6 kg) and attended seven sessions with 48 h between sessions, (one familiarization session; two 10-RM test and retest sessions; and four experimental sessions).
    [Show full text]
  • Altitude Training Relevance and Limits
    SPORTS SCIENCE IMPROVING ENDURANCE PERFORMANCE WITH ‘LIVE HIGH - TRAIN LOW’ ALTITUDE TRAINING RELEVANCE AND LIMITS – Written by Paul Robach, France and Carsten Lundby, Switzerland Historically, altitude training has been aerobic performance in humans. This failure sport federations to build a substantial defined as the practice adopted by athletes prompted athletes and coaches to implement number of hypoxic facilities worldwide. who train for several weeks in an oxygen- altitude training camps with the objective After several decades and the involvement deprived environment (altitude training to acclimatise to competition at altitude. It of a large number of elite athletes who camp) in order to improve their endurance soon became apparent, however, that alti- sometimes set new world records after performance. By extension, altitude training tude training also could improve endurance returning from altitude, the key question refers to the use of natural or simulated performance upon return to sea level. The arises: does it really work? Unfortunately, altitude conditions during the course of rationale was that on the one hand, total red to date the majority of well-controlled the training process, at rest and/or during blood cell volume is a key factor for endurance scientific studies fail to demonstrate a exercise. Whatever the altitude training performance, as highlighted by experiments systematic positive effect of altitude training strategy, athletes exposed to altitude are incorporating blood manipulations. The on endurance performance in athletes. facing low-oxygen pressure (hypoxia), larger number of red blood cells an athlete Nonetheless, a common observation resulting in a lower blood and tissue has, the faster he will probably be able to is that some athletes do benefit from this oxygenation (hypoxemia).
    [Show full text]
  • Naval Special Warfare Physical Training Guide
    Naval Special Warfare Physical Training Guide DISCLAIMER: Preparation for this training can be equally strenuous. You should consult a physician before you begin any strenuous exer- cise program, such as the one described here, or any diet modification, especially if you have or suspect that you may have heart disease, high blood pressure, diabetes, or any other adverse medical conditions. If you feel faint or dizzy at any time while performing any portion of this training program, stop immediately and seek medical evaluation. The United States Government and any service member or civilian employed by the United States Government disclaims any liability, personal or professional, resulting from the misapplication of any training procedure, technique, or guidance described in this guide. he Naval Special Warfare This guide provides infor- sit-ups as they are necessary TPhysical Training Guide mation about the type of train- for success at BUD/S. Cross- is designed to assist anyone ing required to properly pre- training such as cycling, who wants to improve his fit- pare for the rigors of BUD/S, rowing and hiking is useful to ness in order to take and pass and it offers a tailorable 26- rehabilitate an injury, to add the Physical Screening Test week training plan that should variety or to supplement your (PST) and succeed at Basic help a person with average basic training. Underwater Demolition/SEAL fitness prepare for training Work to improve your (BUD/S). and avoid injury. weakest areas. If you are a Most of your cardio- solid runner but a weak swim- vascular exercise should mer, don’t spend all your time General Training Guidelines focus on running and running just because you are Your workouts should be swimming, and your good at it.
    [Show full text]
  • Physical Activity at Moderate and High Altitudes. Cardiovascular and Respiratory Morbidit
    Arq Bras Cardiol CamposUpdate & Costa volume 73, (nº 1), 1999 Physical activity at high altitudes Physical Activity at Moderate and High Altitudes. Cardiovascular and Respiratory Morbidit Augusta L. Campos, Ricardo Vivacqua C. Costa Rio de Janeiro, RJ - Brazil In recent decades, sports activities related to nature observed an increase of 5 to 10mmHg in the SBP and a re- have become increasingly popular. As more and more duction of 5mmHg in diastolic BP in 6 individuals during people look for ski resorts in mountainous regions or beco- exercise on a bicycle at a simulated altitude of 4,200m, when me involved with activities such as walking and/or moun- compared with that found at sea level. Malconian et al 11 tain climbing at moderate and high altitudes, diseases found a 10% reduction in the mean BP at maximal effort, in a related to this environmental stress become problems that simulated altitude of 8,848m, corresponding to the summit doctors have to face with an increasing frequency; they of Mount Everest, compared with the values found at sea need, therefore, to know these entities better. In addition, level. D’Este et al 12 performed a submaximal test on 10 nor- many athletic competitions are performed at altitudes above motensive individuals after acute exposure to 2,500m and 2,000 m, such as the Olympic Games of 1968 and the World did not find significant differences in the pressure response Cup Soccer Games of 1970, which took place in Mexico City, compared with the results of the test at sea level. Palatini et Mexico, at 2,240 m.
    [Show full text]
  • CHRONIC PAIN Definition Pain • “An Unpleasant Sensory and Emotional
    CHRONIC PAIN Definition Pain “an unpleasant sensory and emotional response to a stimulus associated with actual or potential tissue damage or described in terms of such damage.” IASP Serves an adaptive function, a warning system designed to protect the organism from harm. Pain has never been shown to be a simple function of the amount of physical injury; it is extensively influenced by anxiety, depression, expectation, and other psychological and physiological variables. Acute pain a biologic symptom of an apparent nociceptive stimulus, such as tissue damage that is due to disease or trauma that persists only as long as the tissue pathology itself persists. is generally self-limiting, and as the nociceptive stimulus lessens, the pain decreases. usually lasts a few days to a few weeks (4 to 6 days). If it is not effectively treated, it may progress to a chronic form. nociceptive Chronic Pain disease process in which the pain is a persistent symptom of an autonomous disorder with neurologic,psychological, and physiologic components. pain lasting longer than anticipated (greater than 3 months) within the context of the usual course of an acute disease or injury. The pain may be associated with continued pathology or may persist after recovery from a disease or injury. Principally neuropathic, nociceptive Pain behaviors PAIN Suffering N Psychosocial Tissue factors Nociceptive factors (endogenous Pathways (exogenous/ stress) environmental stress) Term Definition Allodynia Pain caused by a stimulus that does not normally provoke pain
    [Show full text]
  • Impact of Occupational Footwear and Workload on Lower Extremity Muscular Exertion
    Original Research Impact of Occupational Footwear and Workload on Lower Extremity Muscular Exertion ALANA J. TURNER*1, JONATHAN C. SWAIN*1, KATHERINE L. McWHIRTER*1, ADAM C. KNIGHT‡1, DANIEL W. CARRUTH‡2 and HARISH CHANDER‡1 1Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, Starkville, MS, USA; 2Human Performance Laboratory, Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS, USA *Denotes undergraduate student author, ‡Denotes professional author ABSTRACT International Journal of Exercise Science 11(1): 331-341, 2018. Footwear worn and workload performed can influence muscular exertion, which is critical in occupational environments. The purpose of the study was to assess the impact of two occupational footwear, steel-toed (SWB) and tactical (TWB) work boots, on muscular exertion when exposed to a physical workload. Eighteen healthy male participants (age: 21.27 ± 1.7 years; height: 177.67 ± 6.0 cm; mass: 87.95 ± 13.8 kg) were tested for maximal voluntary isometric contraction (MVIC) using electromyography (EMG) and pressure pain threshold (PPT) using an algometer for four lower extremity muscles prior to (pre-test) and two times after a physical treadmill workload (post-test 1 & post-test 2). Additionally, heart rate (HR), ratings of perceived exertion (RPE) at the end of the workload, and recovery were recorded along with the time spent on treadmill (TT). Results from the study revealed that PPT was significantly lowered in ankle dorsiflexors immediately following the workload and EMG mean and peak muscle activity were significantly lowered in post-test 2 session in knee extensors. No significant differences were found between footwear types in all measures.
    [Show full text]
  • Intensity: How to Plan & Gauge Effective Training
    Cycling Past 50, 60 and Beyond: Training by Intensity How to Plan & Gauge the Most Beneficial Training Efforts By John Hughes, 65 years old Paris-Brest-Paris ’79, ’87, ’91, ’95, ’99; Furnace Creek 508 ’89 (Course Record), ’93 (1st); Boston-Montreal-Boston ’92 (Course Record); Reno-Tucson record ’94 (849 miles in 54:17, still standing), Oregon North- Race Across AMerica ’96; Rocky Mountain 1200 ’04 South record ’95 (292 miles in 14:23, still standing); Table of Contents Introduction Why Ride Hard? Why Does Performance Decline With Age? Benefits of Training with Intensity Benefits of Types of Intensity Ways of Gauging Exertion Rate of Perceived Exertion Heart Rate Monitor Power Meter Training Zones Using RPE, Heart Rate and Power Preventing Injury Proper Preparation Importance of Recovery Managing Training Load Athletic Maturity and Choosing Workouts Intensity Workouts Tempo Workouts Sweet Spot Workouts Sub-Lactate Threshold Workouts Super-Lactate Threshold Workouts Maximum Effort Workouts Measuring Progress Go for It! Resources About the Author Other Publications by Coach John Hughes Follow Coach Hughes https://twitter.com/HughesCoaching and https://www.facebook.com/john.hughes.5283 © Copyright 2014 by John Hughes Page 1 Introduction The median age of RBR readers at the time of our last reader survey in 2012 was 48, so it’s safe to assume that our median age is approaching if not past the watershed 50th birthday. Experts estimate that by 2025 more than 25% of the population in the United States and Canada will be age 65 or older. (Taylor, 2008) As we age—I’m in my 60s and know from experience—cardiovascular capacity, endurance, strength and power all decline.
    [Show full text]
  • Runners Doctrinepart1.Pdf
    This book is dedicated to one of my wisest high school runners, Matt Fulvio. As a sophomore, he said to his rambling coach, “Why don’t you just write this all down?” Well Matt, it took me four years to do it, and by the time I finished, you were no longer running. Note to the reader This book is not longer in print. Thus, the reason it is free on my website. However, this means that the version of the book you see here is pre- professional editing. There will likely be a number of editing mistakes. But with 400 pages of single-spaced text, you can see why I have not bothered to spend the time required to polish it. Eric Anderson, August 2008 About the Author Doctor Anderson has coached high school, collegiate, and elite distance runners since 1986. He has five degrees, including a Ph.D. from the University of California Irvine. Dr. Anderson has published a number of books relating do distance running, including: Training Games: Coaching Runners Creatively and Trailblazing: The True Story of America’s First Openly Gay Track Coach . Introduction Because running is a multi-faceted sport infused with both science and art, writing about it in a comprehensive fashion is difficult: entire books have been written on individual aspects of the large spectrum of factors that influence the distance runner. So what inspired me to tackle them all in one work? I desired to combat what I call postcard theory: that most students (of any discipline) desire to read a source of information that is short and precise; just enough to know what to do.
    [Show full text]
  • A Sauna & Muscle Recovery
    A SAUNA & MUSCLE RECOVERY 1COMMENTS PRINT Oct 3, 2010 | By Darren Young Photo Credit in der sauna image by LVDESIGN from Fotolia.com The sauna is a 2,000-year-old invention that remains popular to this day. The Finnish sauna has long been known for its therapeutic health benefits. Whether you use it to relax muscles that have been through a grueling workout or to relax your mind after an afternoon of crunching your department's budget numbers, the sauna can help you in your recovery. This heated, wood-lined room provides health benefits that nearly anyone, including the athlete, can use to his advantage. Identification The Finnish sauna consists of a log or wood paneled room, which contains a centrally located rock or rock-filled heating source. A room temperature of 70 to 100 degrees Celsius is maintained, and the humidity is kept quite low, at 10 to 20 percent. The protocol for sauna use involves spending a period of time in the heat, typically five to 15 minutes, which is followed immediately by cooling off with cold water. This procedure is repeated two to three times, for a total of 30 minutes. Sponsored Links 2-4 Person Sauna From$649 $649 Mp3 Input, 2 Speakers-Year War Lowest Price On The Planet-5 Left www.SaferWholesale.com Effects on the Cardiovascular System The blood flow to the skin is increased and vasodilatation results from exposure to the heat cycle. A 2010 edition of the "Journal of Human Kinetics" reports that when you routinely take sauna baths, it leads to a decrease in systolic and diastolic blood pressure, and temporarily raises the heart rate during the heat exposure.
    [Show full text]
  • Inflammation, Peripheral Signals and Redox Homeostasis in Athletes Who Practice Different Sports
    antioxidants Review Inflammation, Peripheral Signals and Redox Homeostasis in Athletes Who Practice Different Sports Simone Luti 1 , Alessandra Modesti 1,* and Pietro A. Modesti 2 1 Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; simone.luti@unifi.it 2 Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; pamodesti@unifi.it * Correspondence: alessandra.modesti@unifi.it; Tel.: +39-055-2751237 Received: 17 September 2020; Accepted: 27 October 2020; Published: 30 October 2020 Abstract: The importance of training in regulating body mass and performance is well known. Physical training induces metabolic changes in the organism, leading to the activation of adaptive mechanisms aimed at establishing a new dynamic equilibrium. However, exercise can have both positive and negative effects on inflammatory and redox statuses. In recent years, attention has focused on the regulation of energy homeostasis and most studies have reported the involvement of peripheral signals in influencing energy and even inflammatory homeostasis due to overtraining syndrome. Among these, leptin, adiponectin, ghrelin, interleukin-6 (IL6), interleukin-1β (IL1β) and tumour necrosis factor a (TNFa) were reported to influence energy and even inflammatory homeostasis. However, most studies were performed on sedentary individuals undergoing an aerobic training program. Therefore, the purpose of this review was to focus on high-performance exercise studies performed in athletes to correlate peripheral mediators and key inflammation markers with physiological and pathological conditions in different sports such as basketball, soccer, swimming and cycling. Keywords: cytokines; redox homeostasis; sport performance 1. Introduction In elite athletes, there is large disparity among the training protocols; the effects on oxidative stress (OS) and inflammatory cytokines are still not well known.
    [Show full text]