The Role of Intensity and Duration in Endurance Training

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Intensity and Duration in Endurance Training See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/233855836 Intervals, Thresholds, and Long Slow Distance: the Role of Intensity and Duration in Endurance Training Article · January 2009 CITATIONS READS 117 3,278 2 authors: Stephen Seiler Espen Tønnessen Universitetet i Agder The Norwegian Olympic Sport Center 160 PUBLICATIONS 2,861 CITATIONS 62 PUBLICATIONS 1,033 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Connecting physiological and perceptual responses during HIIT View project Training intensity, volume and recovery distribution among elite endurance athletes View project All content following this page was uploaded by Espen Tønnessen on 21 May 2014. The user has requested enhancement of the downloaded file. SPORTSCIENCE · sportsci.org Perspectives / Training Intervals, Thresholds, and Long Slow Distance: the Role of Intensity and Duration in Endurance Training Stephen Seiler1 and Espen Tønnessen2 Sportscience 13, 32-53, 2009 (sportsci.org/2009/ss.htm) 1 University of Agder, Faculty of Health and Sport, Kristiansand 4604, Norway. Email. 2 Norwegian Olympic and Paralympic Committee National Training Center, Oslo, Norway. Email. Reviewers: Iñigo Mujika, Araba Sport Clinic, Vitoria, Spain; Stephen Ingham, English Institute of Sport, Loughborough Uni- versity, Leicestershire, LE11 3TU, UK. Endurance training involves manipulation of intensity, duration, and frequency of training sessions. The relative impact of short, high-intensity training versus longer, slower distance training has been studied and debated for decades among athletes, coaches, and scientists. Currently, the popularity pendulum has swung towards high-intensity interval training. Many fitness experts, as well as some scientists, now argue that brief, high-intensity interval work is the only form of training necessary for performance optimization. Research on the impact of interval and continuous training with untrained to moderately trained subjects does not support the current interval craze, but the evidence does suggest that short intense training bouts and longer continuous exercise ses- sions should both be a part of effective endurance training. Elite endurance athletes perform 80 % or more of their training at intensities clearly below their lactate threshold and use high-intensity training surprisingly sparingly. Studies involving intensification of training in already well-trained athletes have shown equivocal results at best. The available evidence suggests that combining large volumes of low-intensity training with careful use of high-intensity interval training throughout the annual training cycle is the best-practice model for de- velopment of endurance performance. KEYWORDS: lactate threshold, maxi- mal oxygen uptake, VO2max, periodization. Reprint pdf · Reprint doc · Reviewer's Commentary Interval Training: a Long History .......................................................................33 Exercise Intensity Zones...................................................................................35 Training Plans and Cellular Signaling...............................................................36 Training Intensities of Elite Endurance Athletes ...............................................38 Units for Training Intensity ................................................................................41 The 80-20 Rule for Intensity..............................................................................42 Training Volume of Elite Athletes......................................................................43 Intensified-Training Studies ..............................................................................44 Intensity for Recreational Athletes ....................................................................46 Case Studies of Training Manipulation .............................................................47 Case 1–From Soccer Pro to Elite Cyclist ...................................................47 Case 2–From Modern Pentathlete to Runner ............................................48 Valid Comparisons of Training Interventions ....................................................49 Conclusions.......................................................................................................49 References........................................................................................................50 The evening before the start of the 2009 defended his dissertation. The other had played European College of Sport Science Congress in the adversarial role of “førsteopponent.” Tøn- Oslo, the two of us were sitting at a doctoral nessen’s research on the talent development dissertation defense dinner that is part of the process included extensive empirical analyses time honored tradition of the “doctoral dispu- of the training characteristics of selected world tas” in Scandinavia. One of us was the relieved champion female endurance athletes. His career disputant (Tønnessen) who had successfully case-study series systematized training diary Sportscience 13, 32-53, 2009 Seiler & Tønnessen: Intensity and Duration in Endurance Training Page 33 logs of over 15,000 training sessions from three broader question of training intensity distribu- World and/or Olympic champions in three tion in competitive endurance athletes. sports: distance running, cross-country skiing, Interval Training: a Long History and orienteering. Common for all three cham- International running coach Peter Thompson pions was that over their long, successful ca- wrote in Athletics Weekly that clear references reers, about 85 % of their training sessions were to “repetition training” were seen already by the performed as continuous efforts at low to mod- early 1900s (Thompson, 2005). Nobel Prize erate intensity (blood lactate ≤2 mM). Among winning physiologist AV Hill incorporated the 40 guests sat coaches, scientists, and former intermittent exercise into his studies of exercis- athletes who had been directly or indirectly ing humans already in the 1920s (Hill et al., involved in winning more endurance sport 1924a; Hill et al., 1924b). About this time, Olympic gold medals and world championships Swede Gosta Holmer introduced Fartlek to than we could count. One guest, Dag Kaas, had distance running (fart= speed and lek= play in coached 12 individual world champions in four Swedish). The specific term interval training is different sports. In his toast to the candidate he attributed to German coach Waldemer Ger- remarked, ”My experience as a coach tells me schler. Influenced by work physiologist Hans that to become world champion in endurance Reindell in the late 1930s, he was convinced disciplines, you have to train SMART, AND you that alternating periods of hard work and recov- have to train a LOT. One without the other is ery was an effective adaptive stimulus for the insufficient.” heart. They apparently adopted the term be- So what is smart endurance training? The cause they both believed that it was the recov- question is timely: research and popular interest ery interval that was vital to the training effect. in interval training for fitness, rehabilitation, Since then, the terms intermittent exercise, and performance has skyrocketed in recent repetition training, and interval training have years on the back of new research studies and all been used to describe a broad range of train- even more marketing by various players in the ing prescriptions involving alternating work and health and fitness industry. Some recent inves- rest periods (Daniels and Scardina, 1984). In tigations on untrained or moderately trained the 1960s, Swedish physiologists, led by Per subjects have suggested that 2-8 wk of 2-3 Åstrand, performed groundbreaking research times weekly intense interval training can in- demonstrating how manipulation of work dura- duce rapid and substantial metabolic and car- tion and rest duration could dramatically impact diovascular performance improvements physiological responses to intermittent exercise (Daussin et al., 2007; Helgerud et al., 2007; (Åstrand et al., 1960; Åstrand I, 1960; Christen- Talanian et al., 2007). Some popular media sen, 1960; Christensen et al., 1960). As Daniels articles have interpreted these findings to mean and Scardina (1984) concluded 25 years ago, that long, steady distance sessions are a waste their work laid the foundation for all interval of time. Whether well founded or not, this in- training research to follow. In their classic terpretation raises reasonable questions about chapter Physical Training in Textbook of Work the importance and quantity of high- (and low-) Physiology, Åstrand and Rodahl (1986) wrote, intensity training in the overall training process “it is an important but unsolved question which of the endurance athlete. Our goal with this type of training is most effective: to maintain a article is to discuss this issue in a way that inte- level representing 90 % of the maximal oxygen grates research and practice. uptake for 40 min, or to tax 100 % of the oxy- In view of the recent hype and the explosion gen uptake capacity for about 16 min.” (The in the number of studies investigating interval same chapter from the 4th edition, published in training in various health, rehabilitation, and 2003, can be read here.) This quote serves as performance settings, one could be forgiven for an appropriate background for defining high assuming that this training
Recommended publications
  • Exercise Intensity During Olympic-Distance Triathlon in Well-Trained Age-Group Athletes: an Observational Study
    sports Article Exercise Intensity during Olympic-Distance Triathlon in Well-Trained Age-Group Athletes: An Observational Study Atsushi Aoyagi 1 , Keisuke Ishikura 2 and Yoshiharu Nabekura 3,* 1 Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; [email protected] 2 Faculty of Management, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan; [email protected] 3 Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan * Correspondence: [email protected] Abstract: The aim of this study was to examine the exercise intensity during the swimming, cy- cling, and running legs of nondraft legal, Olympic-distance triathlons in well-trained, age-group triathletes. Seventeen male triathletes completed incremental swimming, cycling, and running tests to exhaustion. Heart rate (HR) and workload corresponding to aerobic and anaerobic thresholds, maximal workloads, and maximal HR (HRmax) in each exercise mode were analyzed. HR and workload were monitored throughout the race. The intensity distributions in three HR zones for each discipline and five workload zones in cycling and running were quantified. The subjects were then assigned to a fast or slow group based on the total race time (range, 2 h 07 min–2 h 41 min). The mean percentages of HRmax in the swimming, cycling, and running legs were 89.8% ± 3.7%, 91.1% ± 4.4%, and 90.7% ± 5.1%, respectively, for all participants. The mean percentage of HRmax and intensity distributions during the swimming and cycling legs were similar between groups.
    [Show full text]
  • Effects of Aerobic Interval Training Versus Continuous Moderate
    Annals of Agricultural and Environmental Medicine 2014, Vol 21, No 4, 844–849 www.aaem.pl ORIGINAL ARTICLE Effects of aerobic interval training versus continuous moderate exercise programme on aerobic and anaerobic capacity, somatic features and blood lipid profile in collegate females Krzystof Mazurek1, Krzysztof Krawczyk2, Piotr Zmijewski3, Henryk Norkowski1, Anna Czajkowska1 1 Józef Piłsudski University of Physical Education, Warsaw, Poland 2 Maria Curie Skłodowska University, Lublin, Poland 3 Insitute of Sport, Warsaw, Poland Mazurek K, Krawczyk K, Zmijewski P, Norkowski H, Czajkowska A. Effects of aerobic interval training versus continuous moderate exercise programme on aerobic and anaerobic capacity, somatic features and blood lipid profile in collegate females. Ann Agric Environ Med 2014; 21(4): 844–849. doi: 10.5604/12321966.1129949 Abstract Introduction. Regular physical activity has many positive health benefits, including reducing the risk of cardiovascular diseases, metabolic diseases and some cancers, as well as improving the quality of life. Objectives. The aim of the study was to examine the effects of 8-week aerobic interval cycle exercise training (AIT) compared to continuous cycle exercises of moderate intensity (CME) on the aerobic and anaerobic capacity, somatic features and lipid profile. Material and methods. The research was conducted in 88 volunteers aged 19.5±0.6 years, who were randomized to three groups of organized physical activity (OPA), who exercised 3 times per week in 47 min sessions: (I) AIT (n=24) comprising 2 series of 6x10 s sprinting with maximal pedalling cadence and active rest pedalling with intensity 65%–75% HRmax, (II) CME (n=22) corresponding to 65%-75% HRmax, (III) regular collegiate physical education classes of programmed exercises (CON; n=42).
    [Show full text]
  • The Effects of Continuous and Interval Training Toward V̇o2max
    Advances in Health Science Research (AHSR), volume 7 2nd International Conference on Sports Sciences and Health 2018 (ICSSH 2018) The Effects of Continuous and Interval Training Toward V̇ O2max Increase for Male Moch.Yunus Endang Sri Wahjuni. Supriatna Faculty of Sports Science Faculty of Sports Science Faculty of Sports Science Universitas Negeri Malang Universitas Negeri Surabaya Universitas Negeri Malang Malang, Indonesia Surabaya, Indonesia Malang Indonesia E-mail:[email protected] E-mail: [email protected] E-mail : [email protected] Abstract—The research aimed at investigating the with good speed at moderate intensity or high intensity difference of continuous and interval training toward during certain time. Training intensity should able to maximum ⩒O2 increase.The research used randomized stimulate the stimulation threshold of aerobic so occurs group pretest and posttest design. Population of the research physiologically adaptation. were students of Sport Training Education Faculty of Sport Sciences Malang State . Sampling technique by using According to [11] if viewed from the physiological purposive random samplingwith sampling of 40 persons, side, maximum VO2 is determined by several factors divided into two groups with ordinal pairing, that is such as:(1) heart, lung, and blood vessel should function continuous and interval training groups. The trainings done well so the oxygen inhaled and enter into lung, then up to three times with moderate intensity up to sub maximum and the blood (2) process of oxygen transportation to the for 8 weeks. The research type was quasi experimental research with quantitative approach. Data collection done inactive tissues to active muscles will need more oxygen by using Multistage Fitness Test to measure maximum VO2 (3) tissues, especially muscle should have normal capacity during pretest and posttest.
    [Show full text]
  • Fatigue and Underperformance in Athletes: the Overtraining Syndrome
    Br J Sports Med 1998;32:107–110 107 Fatigue and underperformance in athletes: the overtraining syndrome Richard Budgett Introduction Intensive interval training, in which one to When athletes fail to recover from training they six minutes of hard exercise is repeated several become progressively fatigued and suVer from times with a short rest, is most likely to precipi- prolonged underperformance. They may also tate the overtraining syndrome. There may also suVer from frequent minor infections (particu- be a history of a sudden increase in training, larly respiratory infections). In the absence of prolonged heavy monotonous training, and any other medical cause, this is often called the very commonly some other physical or psycho- overtraining syndrome, burnout, staleness, or logical stress. Nevertheless, however hard the chronic fatigue in athletes.1–3 The condition is training, most athletes will recover fully after secondary to the stress of training but the exact two weeks of adequate rest. The cyclical nature cause and pathophysiology is not known. Many of most training programmes (periodisation) factors may lead to failure to recover from allows this recovery and full benefit from hard training or competition. exercise.9 Figure 1 summarises the responses to training. Definition Eventually fatigue becomes so severe that “The overtraining syndrome is a condition of recovery does not occur despite two weeks of fatigue and underperformance, often associ- relative rest. At this stage a diagnosis of the ated with frequent infections and depression overtraining syndrome can be made. which occurs following hard training and com- petition. The symptoms do not resolve despite SYMPTOMS two weeks of adequate rest, and there is no The main complaint is of underperformance.
    [Show full text]
  • Evaluating a Training Program
    VEA Bringing Learning to Life Program Support Notes Junior Secondary - TAFE 29 mins Evaluating a Training Program Program Support Notes by Meredith Carre , B.HK, Grad. Dip. Ed (secondary) Cert IV Training and Assessment Produced by VEA Pty Ltd Commissioning Editor Sven Shepherd B.Ed. Executive Producer Simon Garner B.Ed. © VEA Inc. Pty Ltd 2009 Suitable for: Physical Education To order or inquire please contact VEA: VEA Inc. E-mail 37 W. 26 th Street [email protected] Suite 201 Website New York, NY 10010 www.veavideo.com Ph: 866 727 0840 Fax: 866 727 39 Evaluating a Training Program For Teachers: Introduction What makes a successful training program? Athletes of all levels require training programs that take into account the specific needs of their sport as well as their own individual strengths and weaknesses. This program identifies the key components of an effective training program and investigates the methods used to evaluate, modify and improve training programs. From the analysis of fitness components and the application of training methods and principles, to the goal setting and motivation required for success, this program provides a framework for both the planning and evaluation of effective training programs. Program Timeline 00:00:00 Copyright VEA Splash 00:00:00 Introduction 00:01:53 Meeting the Physical Demands of the Sport 00:08:58 Selection of Appropriate Training Methods 00:14:49 Application of training Principles 00:18:15 Goal Setting and Motivation 00:23:59 Staying on Track and Evaluating Success 00:27:12 Conclusion 00:27:56 Credits 00:28:32 End Program Website References http://exercise.about.com/od/cardioworkouts/g/anaerobic.htm http://www.netfit.co.uk/wkmen.htm http://www.topendsports.com/fitness/methods.htm www.ag.ndsu.edu/ext-emp/ evaluation /documents/eighmy.ppt Other Relevant Programs available from VEA Achieve a Healthy Lifestyle Exercise for Life Training for Fitness Series Please visit our website for more relevant programs www.veavideo.com VEA – Bringing learning to life - 2 - © VEA Inc.
    [Show full text]
  • Paris SH February Resources
    TTYYPPEESS && SSTTYYLLEESS OOFF TTRRAAIINNIINNGG Love working out? Don't we all! But did you know that the way we work out can achieve different results? And by that, I don't just mean bicep curls will help grow your biceps and squats will help grow your booty, I mean different sequences, rep ranges and styles of training can be used to achieve different goals. Let's think of it like this, do you think a 100m sprinter has the same training programme in the gym as a bodybuilder? Nope! Now maybe you're thinking, wait, sprinters still train in the gym? Yes, they do! The 100m Olympic champions you see on TV will have a training programme for the gym as well, just it would look different to say a powerlifter or bodybuilder. The lists below outline the different styles and types of training concepts: www.strongher.co.uk @strongher_women Types of training: 1.Weight Training a. Strength (Weightlifting) b. Power (Powerlifting) c. Hypertrophy [Muscle building] (Bodybuilding) d. Endurance (usually used with runners, cyclists, swimmers etc.) e. Functional f. Strength & Conditioning (Cross-fit, athletes) 2. Cardiovascular training 3. Plyometrics (Useful when training for power) 4. Calisthenics (Bodyweight movements i.e. push-ups, pull-ups etc.) 5. Balance 6. Agility 7. Flexibility www.strongher.co.uk @strongher_women Styles of training: 1. Interval training a.k.a HIIT - high-intensity exercise, broken up with planned periods of rest or low-intensity movements i.e. 3 mins of work, 1 min of recovery and repeat 2. Continuous training - (Predominantly used for endurance and cardiovascular training) Exercise that is performed at a continuous intensity throughout the session with no rest, i.e.
    [Show full text]
  • Power Athletes and Distance Training Physiological and Biomechanical Rationale for Change
    Sports Med 2007; 37 (1): 47-57 REVIEW ARTICLE 0112-1642/07/0001-0047/$44.95/0 2007 Adis Data Information BV. All rights reserved. Power Athletes and Distance Training Physiological and Biomechanical Rationale for Change Marcus C.C.W. Elliott,1 Phillip P. Wagner1 and Loren Chiu2 1 Peak Performance Project, Santa Barbara, California, USA 2 Department of Biokinesiology, University of Southern California, Santa Barbara, California, USA Contents Abstract .....................................................................................47 1. Current Practices of Distance Training .......................................................48 2. Performance Decrements from Distance Training ............................................49 2.1 Neuromuscular Considerations .........................................................50 2.2 Endocrine Considerations ..............................................................51 2.3 Overtraining ..........................................................................51 3. The Benefits of Aerobic Training for Anaerobic Athletes .......................................52 3.1 Improved Recovery ...................................................................52 3.2 Enhanced Glucose Uptake ............................................................53 3.3 Improved Body Composition ...........................................................53 3.4 Active Recovery Day ..................................................................54 3.5 Preparation of Supporting Structures ....................................................54
    [Show full text]
  • Naval Special Warfare Physical Training Guide
    Naval Special Warfare Physical Training Guide DISCLAIMER: Preparation for this training can be equally strenuous. You should consult a physician before you begin any strenuous exer- cise program, such as the one described here, or any diet modification, especially if you have or suspect that you may have heart disease, high blood pressure, diabetes, or any other adverse medical conditions. If you feel faint or dizzy at any time while performing any portion of this training program, stop immediately and seek medical evaluation. The United States Government and any service member or civilian employed by the United States Government disclaims any liability, personal or professional, resulting from the misapplication of any training procedure, technique, or guidance described in this guide. he Naval Special Warfare This guide provides infor- sit-ups as they are necessary TPhysical Training Guide mation about the type of train- for success at BUD/S. Cross- is designed to assist anyone ing required to properly pre- training such as cycling, who wants to improve his fit- pare for the rigors of BUD/S, rowing and hiking is useful to ness in order to take and pass and it offers a tailorable 26- rehabilitate an injury, to add the Physical Screening Test week training plan that should variety or to supplement your (PST) and succeed at Basic help a person with average basic training. Underwater Demolition/SEAL fitness prepare for training Work to improve your (BUD/S). and avoid injury. weakest areas. If you are a Most of your cardio- solid runner but a weak swim- vascular exercise should mer, don’t spend all your time General Training Guidelines focus on running and running just because you are Your workouts should be swimming, and your good at it.
    [Show full text]
  • The Effects of Sprint Interval Training on Physical Performance: a Systematic Review and Meta-Analysis
    Title: The Effects of Sprint Interval Training on Physical Performance: A Systematic Review and Meta-Analysis Andy, J. Hall1. Rodrigo, R. Aspe1. Thomas P. Craig1. Mykolas Kavaliauskas2. John Babraj3. Paul, A. Swinton1 1 School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom 2 School of Applied Sciences, Edinburgh Napier University, United Kingdom 3 Division of Sport and Exercise Science, Abertay University, United Kingdom Correspondence: Dr Paul, A. Swinton School of Health Sciences, Robert Gordon University, Garthdee Road, Aberdeen, United Kingdom. E-mail: [email protected] Phone: +44 1224 263361 This version of the manuscript is currently pre-print Hall, A., Aspe, R., Craig, T., Kavaliauskas, M., Babraj, J., & Swinton, P. (2020). The Effects of Sprint Interval Training on Physical Performance: A Systematic Review and Meta- Analysis. Retrieved from osf.io/preprints/sportrxiv/nphw2 DOI: 10.31236/osf.io/nphw2 All authors are aware of, and give permission to the submission of the article to SportRxiv in pre-print format Twitter Handles: @Andy_Hall9 @Rodrigo_Aspe @thocra83 @Mykolas_K 1 Abstract Background: Sprint interval training (SIT) performed on a cycle ergometer is a common mode of training and has become increasingly studied as an exercise intervention to improve a range of physical performance outcomes. Objectives: The primary objective was to synthesise findings from published research and through meta-analysis quantify the effect of SIT and potential moderators on physical performance outcomes with healthy adults. The secondary objective was to assess the methodological quality of included studies and the existence of small study effects. Methods: The review included studies from 2000 to 2020 based on the following criteria: 1) healthy participants 18 to 45 years; 2) minimum 2-week SIT intervention comprising “all out” sprints up to a maximum of 30 seconds on a cycle ergometer; 3) cohort or control group design; 4) pre-post intervention outcomes that could be categorised as aerobic (e.g.
    [Show full text]
  • Overtraining: Theories, Diagnosis and Markers
    ARTIGO DE REVISÃO Sobretreinamento: teorias, diagnóstico e marcadores Giovani dos Santos Cunha1, Jerri Luiz Ribeiro1 e Alvaro Reischak de Oliveira1 RESUMO Palavras-chave: Sobretreinamento. Pré-sobretreinamento. Marcadores hormonais. O objetivo do treinamento esportivo é o aumento e a melhora Keywords: Overtraining. Pre-overtraining. Hormonal markers. do desempenho físico. Quando a intensidade, a duração e a carga Palabras-clave: Sobreentrenamiento. Pré-sobreentrenamiento. Marcadores hormo- de trabalho diário dos exercícios são apropriadas, adaptações fi- nales. siológicas positivas ocorrem. Entretanto, existe uma linha muito tênue entre um ótimo desempenho e uma diminuição do mesmo em função do sobretreinamento. O sobretreinamento pode incluir lesão e fraqueza muscular, ativação das citosinas, mudanças hor- carga de trabajo diaria de los ejercicios son apropiadas, ocurren monais e hematológicas, alterações no humor, depressão psico- adaptaciones fisiológicas positivas. Sin embargo, existe una línea lógica e problemas nutricionais que podem causar diminuição do muy tenue entre un desempeño óptimo y una disminución del apetite e diarréia. Muitos estudos sobre o sobretreinamento fo- mismo, en función del sobreentrenamiento. El sobreentrenami- ram realizados num esforço de identificar suas causas, seus sin- ento puede incluir lesión y debilidad muscular, activación de las tomas, hipóteses e marcadores que pudessem identificá-lo, mas citosinas, cambios hormonales y hematológicas, alteraciones en este diagnóstico é muito difícil, pois os sintomas
    [Show full text]
  • Intensity: How to Plan & Gauge Effective Training
    Cycling Past 50, 60 and Beyond: Training by Intensity How to Plan & Gauge the Most Beneficial Training Efforts By John Hughes, 65 years old Paris-Brest-Paris ’79, ’87, ’91, ’95, ’99; Furnace Creek 508 ’89 (Course Record), ’93 (1st); Boston-Montreal-Boston ’92 (Course Record); Reno-Tucson record ’94 (849 miles in 54:17, still standing), Oregon North- Race Across AMerica ’96; Rocky Mountain 1200 ’04 South record ’95 (292 miles in 14:23, still standing); Table of Contents Introduction Why Ride Hard? Why Does Performance Decline With Age? Benefits of Training with Intensity Benefits of Types of Intensity Ways of Gauging Exertion Rate of Perceived Exertion Heart Rate Monitor Power Meter Training Zones Using RPE, Heart Rate and Power Preventing Injury Proper Preparation Importance of Recovery Managing Training Load Athletic Maturity and Choosing Workouts Intensity Workouts Tempo Workouts Sweet Spot Workouts Sub-Lactate Threshold Workouts Super-Lactate Threshold Workouts Maximum Effort Workouts Measuring Progress Go for It! Resources About the Author Other Publications by Coach John Hughes Follow Coach Hughes https://twitter.com/HughesCoaching and https://www.facebook.com/john.hughes.5283 © Copyright 2014 by John Hughes Page 1 Introduction The median age of RBR readers at the time of our last reader survey in 2012 was 48, so it’s safe to assume that our median age is approaching if not past the watershed 50th birthday. Experts estimate that by 2025 more than 25% of the population in the United States and Canada will be age 65 or older. (Taylor, 2008) As we age—I’m in my 60s and know from experience—cardiovascular capacity, endurance, strength and power all decline.
    [Show full text]
  • Overtraining, Immunosuppression, Exercise-Induced Muscle Damage and Anti-Inflammatory Drugs
    © 1997 Elsevier Science B. V. AH rights reserved. The Clinical Pharmacology of Span and Exercise 47 T. Reilly and M. Orme, editors Overtraining, Immunosuppression, Exercise-Induced Muscle Damage and Anti-Inflammatory Drugs M. Gleeson*, A.K. Blannin and N.P. Walsh *School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, England. Key words: Anti-inflammatory, immunity, infection, muscle damage, overtraining. 1. INTRODUCTION Athletes engaged in heavy training programmes, particularly those involved in endurance events, appear to be more susceptible than normal to infection [1-3]. For example, sore throats and flu-like symptoms are more common in athletes than in the general population, and once infected, colds may last for longer in athletes. There is some convincing evidence that this increased susceptibility to infection arises due to a depression of immune system function [4-6]. 2. IMMUNOSUPPRESSION IN ATHLETES The main component of the immune system comprises the white blood cells (leucocytes), whose numbers and functional capacities may be decreased by repeated bouts of intense prolonged exercise [4-6]. The reason why immune function can be deleteriously affected by exercise is still unclear, but is probably related to increased levels of stress hormones during exercise [7-8]. Some very recent research suggests that falls in the blood concentration of glutamine, an amino acid that is essential for the optimal functioning of leucocytes, may also be implicated in causing the immunosuppression associated with heavy training [9,10]. Muscle damage may be another factor [11,12]. An acute bout of physical activity is accompanied by responses that are remarkably similar in many respects to those induced by infection [1,4-6]: there is a substantial increase in the number of circulating leucocytes (mainly lymphocytes and neutrophils), the magnitude of which is related to both the intensity and duration of exercise.
    [Show full text]