Effects of Errors and Gaps in Spatial Data Sets on Assessment of Conservation Progress
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Corals Supplemental Information Report
Supplemental Information Report on Status Review Report And Draft Management Report For 82 Coral Candidate Species November 2012 Southeast and Pacific Islands Regional Offices National Marine Fisheries Service National Oceanic and Atmospheric Administration Department of Commerce Table of Contents INTRODUCTION ............................................................................................................................................. 1 Background ............................................................................................................................................... 1 Methods .................................................................................................................................................... 1 Purpose ..................................................................................................................................................... 2 MISCELLANEOUS COMMENTS RECEIVED ...................................................................................................... 3 SRR EXECUTIVE SUMMARY ........................................................................................................................... 4 1. Introduction ........................................................................................................................................... 4 2. General Background on Corals and Coral Reefs .................................................................................... 4 2.1 Taxonomy & Distribution ............................................................................................................. -
FINAL DRAFT Technical Summary IPCC SR Ocean and Cryosphere
FINAL DRAFT Technical Summary IPCC SR Ocean and Cryosphere Technical Summary Editorial Team): Hans-Otto Pörtner (Germany), Debra Roberts (South Africa), Valerie Masson-Delmotte (France), Panmao Zhai (China), Elvira Poloczanska (UK/Australia), Katja Mintenbeck (Germany), Melinda Tignor (USA), Jan Petzold (Germany), Nora Weyer (Germany), Andrew Okem (Nigeria), Marlies Craig (South Africa), Maike Nicolai (Germany), Andrés Alegría (Honduras), Stefanie Langsdorf (Germany), Bard Rama (Kosovo), Anka Freund (Germany) Authors: Amro Abd-Elgawad (Egypt), Nerilie Abram (Australia), Carolina Adler (Switzerland/Australia), Andrés Alegría (Honduras), Javier Arístegui (Spain), Nathaniel L. Bindoff (Australia), Laurens Bouwer (Netherlands), Bolívar Cáceres (Ecuador), Rongshuo Cai (China), Sandra Cassotta (Denmark), Lijing Cheng (China), So-Min Cheong (Republic of Korea), William W. L. Cheung (Canada), Maria Paz Chidichimo (Argentina), Miguel Cifuentes-Jara (Costa Rica), Matthew Collins (UK), Susan Crate (USA), Rob Deconto (USA), Chris Derksen (Canada), Alexey Ekaykin (Russian Federation), Hiroyuki Enomoto (Japan), Thomas Frölicher (Switzerland), Matthias Garschagen (Germany), Jean-Pierre Gattuso (France), Tuhin Ghosh (India), Bruce Glavovic (New Zealand), Nicolas Gruber (Switzerland), Stephan Gruber (Canada/Germany), Valeria A. Guinder (Argentina), Robert Hallberg (USA), Sherilee Harper (Canada), John Hay (Cook Islands), Nathalie Hilmi (France), Jochen Hinkel (Germany), Yukiko Hirabayashi (Japan), Regine Hock (USA), Elisabeth Holland (Fiji), Anne Hollowed -
Teleconnections of the Tropical Atlantic to the Tropical Indian and Pacific Oceans: a Review of Recent findings
Meteorologische Zeitschrift, Vol. 18, No. 4, 445-454 (August 2009) Article c by Gebr¨uder Borntraeger 2009 Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: A review of recent findings 1∗ 2 2 3 CHUNZAI WANG ,FRED KUCHARSKI ,RONDROTIANA BARIMALALA and ANNALISA BRACCO 1NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida U.S.A. 2The Abdus Salam International Centre for Theoretical Physics, Earth System Physics Section Trieste, Italy 3School of Earth and Atmospheric Sciences Georgia Institute of Technology, Atlanta, Georgia, U.S.A. (Manuscript received November 12, 2008; in revised form February 16, 2009; accepted March 18, 2009) Abstract Recent studies found that tropical Atlantic variability may affect the climate in both the tropical Pacific and Indian Ocean basins, possibly modulating the Indian summer monsoon and Pacific ENSO events. A warm tropical Atlantic Ocean forces a Gill-Matsuno-type quadrupole response with a low-level anticyclone located over India that weakens the Indian monsoon circulation, and vice versa for a cold tropical Atlantic Ocean. The tropical Atlantic Ocean can also induce changes in the Indian Ocean sea surface temperatures (SSTs), especially along the coast of Africa and in the western side of the Indian basin. Additionally, it can influence the tropical Pacific Ocean via an atmospheric teleconnection that is associated with the Atlantic Walker circulation. Although the Pacific El Ni˜no does not contemporaneously correlate with the Atlantic Ni˜no, anomalous warming or cooling of the two equatorial oceans can form an inter-basin SST gradient that induces surface zonal wind anomalies over equatorial South America and other regions in both ocean basins. -
Archipiélago De Revillagigedo
LATIN AMERICA / CARIBBEAN ARCHIPIÉLAGO DE REVILLAGIGEDO MEXICO Manta birostris in San Benedicto - © IUCN German Soler Mexico - Archipiélago de Revillagigedo WORLD HERITAGE NOMINATION – IUCN TECHNICAL EVALUATION ARCHIPIÉLAGO DE REVILLAGIGEDO (MEXICO) – ID 1510 IUCN RECOMMENDATION TO WORLD HERITAGE COMMITTEE: To inscribe the property under natural criteria. Key paragraphs of Operational Guidelines: Paragraph 77: Nominated property meets World Heritage criteria (vii), (ix) and (x). Paragraph 78: Nominated property meets integrity and protection and management requirements. 1. DOCUMENTATION (2014). Evaluación de la capacidad de carga para buceo en la Reserva de la Biosfera Archipiélago de a) Date nomination received by IUCN: 16 March Revillagigedo. Informe Final para la Direción de la 2015 Reserva de la Biosiera, CONANP. La Paz, B.C.S. 83 pp. Martínez-Gomez, J. E., & Jacobsen, J.K. (2004). b) Additional information officially requested from The conservation status of Townsend's shearwater and provided by the State Party: A progress report Puffinus auricularis auricularis. Biological Conservation was sent to the State Party on 16 December 2015 116(1): 35-47. Spalding, M.D., Fox, H.E., Allen, G.R., following the IUCN World Heritage Panel meeting. The Davidson, N., Ferdaña, Z.A., Finlayson, M., Halpern, letter reported on progress with the evaluation process B.S., Jorge, M.A., Lombana, A., Lourie, S.A., Martin, and sought further information in a number of areas K.D., McManus, E., Molnar, J., Recchia, C.A. & including the State Party’s willingness to extend the Robertson, J. (2007). Marine ecoregions of the world: marine no-take zone up to 12 nautical miles (nm) a bioregionalization of coastal and shelf areas. -
Impacts of Climate Change on Fisheries and Aquaculture Impa on Fi
ISSN 2070-7010 AO F APER TURE L P ISSN 2070-7010 627 TECHNICAL FISHERIES AND AQUACU AO F APER TURE L P 627 TECHNICAL FISHERIES AND AQUACU Synthesis of current knowledge, adaptation and mitigation options Impacts of climate change on fisheries and aquaculture Synthesis of current knowledge, adaptation and mitigation options on fisheries and aquaculture Impacts of climate change 627 Impacts of climate change on fisheries and aquaculture – Synthesis of current knowledge, adaptation and mitigation options FAO 627 Impacts of climate change on fisheries and aquaculture – Synthesis of current knowledge, adaptation and mitigation options FAO ISSN 2070-7010 I9705EN/1/06.18 306079 789251 ISSN 2070-7010 I9705EN/1/06.18 306079 9 ISBN 978-92-5-130607-9 789251 9 ISBN 978-92-5-130607-9 strategies and tools for mitigation. also includes chapters on disasters and extreme events (Chapter 23) and aquaculture sector, in the context of poverty alleviation. aquaculture sector, strategies and tools for mitigation. also includes chapters on disasters and extreme events (Chapter 23) and aquaculture sector, in the context of poverty alleviation. aquaculture sector, their fisheries (Chapters 18, 19 and 26), as well as aquaculture (Chapters 20 to 22). Technical Paper Technical the fisheries and aquaculture sector’s contributions to greenhouse gas emissions, as well as the fisheries and aquaculture sector’s The It covers marine capture fisheries and their environments (Chapters 4 to 17), inland waters and This FAO Technical Paper is aimed primarily at policymakers, fisheries managers and practitioners Technical This FAO and has been prepared particularly with a view to assisting countries in the development of their Nationally Determined Contributions (NDCs) to the Paris Climate Agreement, the next versions of (Chapter 26). -
Marine Biodiversity of an Eastern Tropical Pacific Oceanic Island, Isla Del Coco, Costa Rica
Marine biodiversity of an Eastern Tropical Pacific oceanic island, Isla del Coco, Costa Rica Jorge Cortés1, 2 1. Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Ciudad de la Investigación, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica; [email protected] 2. Escuela de Biología, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica Received 05-I-2012. Corrected 01-VIII-2012. Accepted 24-IX-2012. Abstract: Isla del Coco (also known as Cocos Island) is an oceanic island in the Eastern Tropical Pacific; it is part of the largest national park of Costa Rica and a UNESCO World Heritage Site. The island has been visited since the 16th Century due to its abundance of freshwater and wood. Marine biodiversity studies of the island started in the late 19th Century, with an intense period of research in the 1930’s, and again from the mid 1990’s to the present. The information is scattered and, in some cases, in old publications that are difficult to access. Here I have compiled published records of the marine organisms of the island. At least 1688 species are recorded, with the gastropods (383 species), bony fishes (354 spp.) and crustaceans (at least 263 spp.) being the most species-rich groups; 45 species are endemic to Isla del Coco National Park (2.7% of the total). The number of species per kilometer of coastline and by square kilometer of seabed shallower than 200m deep are the highest recorded in the Eastern Tropical Pacific. Although the marine biodiversity of Isla del Coco is relatively well known, there are regions that need more exploration, for example, the south side, the pelagic environments, and deeper waters. -
The Ecoveg Approach in the Americas: U.S., Canadian and International Vegetation Classifications
Phytocoenologia Vol. 48 (2018), Issue 2, 215–237 Special Issue Classification Approaches Published online December 2017 Review and Synthesis Open Access Article The EcoVeg approach in the Americas: U.S., Canadian and International Vegetation Classifications Don Faber-Langendoen*, Ken Baldwin, Robert K. Peet, Del Meidinger, Este Muldavin, Todd Keeler-Wolf & Carmen Josse Abstract The purpose of the EcoVeg classification approach is to describe the diversity of terrestrial ecosystems across the globe and inform decisions about conservation and resource management. The approach provides the sci- entific basis for the U.S. National Vegetation Classification, Canadian National Vegetation Classification and NatureServe’s International Vegetation Classification, and has encouraged international and national collabora- tions elsewhere in the Americas. The approach is global, but most advanced in the western hemisphere, espe- cially the U.S. and Canada. EcoVeg provides a consistent thematic framework to support extensive vegetation mapping across the U.S. and Latin America. The approach provides an 8-level hierarchy for natural types, with three upper (formation) levels, three mid (physiognomic-biogeographic-floristic) levels and 2 lower (floristic) levels, and a separate 8-level hierarchy for cultural types. Types are maintained through a review board to en- sure consistent definition. All protocols use the best available scientific information, including plot data and secondary sources. Preferred plot sizes typically range from 0.01 to 0.1 ha (to 1.0 ha in tropical vegetation). Plot data include full species lists by strata with cover values, and supporting environmental and site data. The clas- sification approach meets the need for a dynamic, 8- level catalog of types for all existing vegetation. -
Interim Guidelines for Identification and Selection of Coastal Biosphere Reserves
FILE COPY INTERIM GUIDELINES FOR IDENTIFICATION AND SELECTION OF COASTAL BIOSPHERE RESERVES U.S. Man and the Biosphere Program a.S. MAB Report No. 6 INTERIM GUIDELINES FOR IDENTIFICATION AND SELECTION OF COASTAL BIOSPHERE RESERVES A Report to the Directorate on Biosphere Reserves. United States Man and the Biosphere Program (MAB-8) Prepared by an Expert Panel on Coastal Biosphere Reserves G. Carleton Ray, Chairman John R. Clark Nancy M. Foster Paul J. Godfrey Bruce P. Hayden Stephen P. Leatherman. William E. Odum J. Henry Sather William P. Gregg, Jr., MAB Coordinator National Park Service 1981 (These guidelines have been approved by the U.S. MAB Directorate on Biosphere Reserves for use on an interim basis in identification and selection of coastal biosphere reserves. They are now being tested and will be revised as necessary and approved in final form by the Directorate following field testing.) TABLE OF CONTENTS INTRODUCTION . 1 DEFINITION OF THE COASTAL ZONE . 2 CLASSIFICATION OF THE U.S. COASTAL ZONE ................... 3 Regions . 3 Ecosystems . 6 ECOLOGICAL PROCESSES . 13 IDENTIFICATION AND SELECTION OF BIOSPHERE RESERVES ........ 16 Application of UNESCO Selection Criteria............. 16 Responsibilities of the Ad Hoc Selection Panel....... 18 APPENDICES I. List of Biosphere Reserves in the United States . .... 23 II. Expert Panel on Coastal Biosphere Reserves.......... 24 III. Types of Nominations . 25 IV. Biosphere Reserve Nomination Form................... 26 LIST OF TABLES Table 1 Presence of Ecosystem Types in Coastal Zone Regions ..................................... 7 Table 2 Principal Activities Leading to Designation of World Biosphere Reserves ....................... 20 Table 3 Sample Tabulations of Rating Factors for Use in Evaluation of Biosphere Reserve Sites in a Coastal Zone Region ........................... -
Pacific Ocean Synthesis
Pacific Ocean Synthesis Scientific Literature Review of Coastal and Ocean Threats, Impacts, and Solutions May 2009 This literature review was completed as of October 2008. The authors comprehensively reviewed the literature, but may have missed important reports and papers. If you know of a report or paper we have not included in this literature review documenting Pacific Ocean threats, impacts, or solutions please send the reference to [email protected]. Center for Ocean Solutions. 2009. Pacific Ocean Synthesis: Scientific Literature Review of Coastal and Ocean Threats, Impacts, and Solutions. The Woods Center for the Environment, Stanford University. California. © 2009 by the Board of Trustees of the Leland Stanford Junior University The Center for Ocean Solutions is a collaboration between Stanford University (including the Hopkins Marine S Station) (www.stanford.edu), the Monterey Bay Aquarium, and the Monterey Bay Aquarium Research Institute (MBARI) (www.mbayaq.org). The Center for Ocean Solutions is administered by the Woods Institute for the Environment at Stanford University. Primary authors: Margaret Caldwell, Tegan Churcher Hoffmann, Stephen Palumbi, Jessica Teisch, Chelsea Tu. Contributors are listed in Appendix A. EAN SOLUTION OC Cover Photo: Schooling Tuna (Danilo Cedrone, Courtesy of United Nations Food and Agriculture Organization) Photo on the right: School of fish in Palau (David Burdick) CENTER FOR B Abstract The objective of this Pacific Ocean synthesis is to comprehensively and systematically survey the published scientific literature, government publications and other peer-reviewed reports to identify Pacific Ocean and regional threats as well as the environmental and socioeconomic impacts of those threats. In addition, the report highlights select regional and Pacific Ocean solutions presented by the literature. -
Mangrove Ecosystems of Latin America and the Caribbean: a Summary
Project PD114!90 (F) Mangrove Ecosystems of Latin America and the Caribbean: a Summary 1 2 3 4 s 6 7 8 Lacerda, L.D. ; Conde, J.E. ; Alarcon, c. ; Alvarez-León, R. ; Bacon, P.R. ; D'Croz, L. ; Kjerfve, B. ; Polaina, J. & M. Vannucci9 1-Departamento de Geoquímica, Universidade Federal Fluminense, Niteroi, 24020-007, RJ, Brazil. 2- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, AP 21827, Caracas 1020A, Venezuela. 3- Centro de Investigaciones en Ecología y Zonas Áridas (CIEZA), Universidad Nadonal Experimental Francisco de Miranda, AP 7506, Coro, Falcón, Venezuela. 4- Promotora de Fomento Cultural de Costa Atlántica (PRODECOSTA), AA 1820, Cartagena, (Bol.) Colombia. 5- Department of Zoology, University of West Indies, 51. Augustine, Port of Spain, Trinidad & Tobago. 6- Departamento de Biología Acuática, Universidad de Panamá and Smithsonian Tropical Research Institute, Box 2074, Balboa, República de Panamá. 7- Marine Science Program, University of South Carolina, 29208, Columbia, SC, USA. 8- Centro Agronómico Tropical de Investigadon y Enseñanza, Tur rialba, Costa Rica. 9- Intemational Sodety for Mangrove Ecosystems (ISME), Okinawa, Japan. 1. Mangroves and Man in Pre-Columbian of soil by slash-and-burn farmers (Veloz Maggiolo & and Colonial America Pantel, 1976, cited in Sanoja, 1992). In various countries of the American continent, The nomadic human groups frequently formed there is strong archeological evidence of mangrove semi-permanent settlements along the coast, close to utilization by Pre-Columbian and even Pre-historical lagoons and bays, where an abundant and easy to human groups. Pre-Columbian inhabitants tradition collect protein-rich diet was provided by molluscs ally used mangroves for many purposes, including (Reichel-Dolmatoff, 1965). -
Caribbean and Pacific Coastal Marine System
C. Birkeland Caribbean and Pacific Coastal marine system: similarities and differences A goal that scientists set for themselves is to find general Magnitude of rate of nutrient input principles with broad relevance and applicability. This devotion to generality can lead to serious error. For A primary factor in bringing about differences in the example, the harvesting techniques that are very successful functional organization of coral-reef communities in on the temperate Great Plains may not be applicable to the different geographic regions is the magnitude of the rate of Amazonian rain forest. In the rain forest, where the nutrient input and the degree to which the input nutrients are bound into the biomass and are sparse in the is concentrated into pulses. John Ryther of Woods Hole soil, pruning may be a more workable pattern of resource Oceanographic Institute calculated that over half the world utilization than reaping. Reaping works well on the prairie, fishery catch comes from upwelling regions, although the but is likely to do extensive, practically irreparable, regions of upwelling occupy only about one-tenth of 1% damage to the tropical rain forest system. of the ocean surface. Coral-reef ecosystems are even more productive than are regions of upwelling in terms of rates Differences of gross primary productivity per unit area. Relatively pristine coral reefs maintain a large standing-stock Functional differences exist within types of tropical biomass of fish. Yet coral reefs are particularly vulnerable coastal ecosystems among different regions of the world to overexploitation while the regions of upwelling are that are analogous to the tropical rainforest/ temperate heavily exploited year after year. -
Towards Characterising Microplastic Abundance, Typology and Retention in Mangrove-Dominated Estuaries
water Article Towards Characterising Microplastic Abundance, Typology and Retention in Mangrove-Dominated Estuaries Joelene Govender 1,* , Trishan Naidoo 2 , Anusha Rajkaran 2 , Senzo Cebekhulu 1, Astika Bhugeloo 1 and Sershen 2,3 1 School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa; [email protected] (S.C.); [email protected] (A.B.) 2 Department for Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; [email protected] (T.N.); [email protected] (A.R.); [email protected] (S.) 3 Institute of Natural Resources, P.O. Box 100396, Scottsville 3209, South Africa * Correspondence: [email protected]; Tel.: +27-32-945-1379 Received: 5 September 2020; Accepted: 1 October 2020; Published: 9 October 2020 Abstract: Plastic and, particularly, microplastic (MP) pollution is a growing research theme, dedicated largely to marine systems. Occurring at the land–sea interface, estuarine habitats such as mangroves are at risk of plastic pollution. This study compared MP pollution (level, morphotype, polymer composition, size and colour) across four South African estuaries, in relation to the built and natural environment. Mouth status, surrounding human population densities and land-use practices influenced the level and type of MP pollution. Systems that were most at risk were predominantly open estuaries surrounded by high population densities and diverse land use types. Microplastic levels and the diversity of types detected increased with increasing levels of anthropogenic disturbance. Overall, microfibres dominated in estuarine water (69%) and mangrove sediment (51%). Polyethylene (43%) and polypropylene (23%) were the dominant polymers overall.