State of the Climate in Latin America and the Caribbean 2020 WEATHER CLIMATE WATER CLIMATE WEATHER

Total Page:16

File Type:pdf, Size:1020Kb

State of the Climate in Latin America and the Caribbean 2020 WEATHER CLIMATE WATER CLIMATE WEATHER State of the Climate in Latin America and the Caribbean 2020 WEATHER CLIMATE WATER CLIMATE WEATHER WMO-No. 1272 WMO-No. 1272 © World Meteorological Organization, 2021 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 81 17 CH-1211 Geneva 2, Switzerland Email: [email protected] ISBN 978-92-63-11272-9 Cover illustration: Mangroves in Los Haitises National Park (Dominican Republic): Anton Bielousov; Wildfires Brazil: Christian Braga; Hurricane Iota: NOAA; Perito Moreno Glacier in Argentina: AdobeStock (264550963) NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised. The findings, interpretations and conclusions expressed in WMO publications with named authors are those of the authors alone and do not necessarily reflect those of WMO or its Members. B Contents Key Messages. 2 Foreword . 3 Overview . 4 Global Climate Context in 2020 . 5 Temperature . 5 Greenhouse gas concentrations . 5 Latin America and the Caribbean . 6 Temperature . 6 Precipitation . 8 Glaciers . .10 Ocean . 11 Key climate drivers . .14 Extreme events . .15 Tropical cyclones . .15 Drought . 15 Heatwaves and wildfires . 18 Cold waves. .20 Heavy precipitation and associated flooding . .20 Climate-related Impacts and Risks . .21 Impacts on sectors . .21 Impacts on agriculture and water resources . .21 Impacts on forest and ecosystem services . .22 Impacts on socioeconomic development, infrastructure and displacement . .23 Impacts on low-lying zones and small islands . .25 Ocean acidification and impacts on coral reefs. .25 Risks associated with extreme events . .26 Enhancing climate resilience and adaptation policies . .29 Ecosystem-based adaptation . .29 Improving multi-hazard risk-information systems and climate services . 29 Further reading . .31 List of contributors. .32 1 Key Messages The year 2020 was one of the three warmest Hurricanes Eta and Iota reached category years on record for Mexico/Central America 4 intensity and made landfall in the same and the Caribbean, and the second warmest region in quick succession; they followed year for South America. Temperatures were identical paths across Nicaragua and 1.0 °C, 0.8 °C and 0.6 °C above the 1981–2010 Honduras, affecting the same areas and average, respectively. exacerbating related impacts. In the Chilean and Argentine Andes, glaciers Marine life, coastal ecosystems and the have been retreating during the last decades. human communities that depend on them, Ice mass loss has accelerated since 2010, particularly in Small Island Developing in line with an increase in seasonal and annual States, are facing increasing threats from temperatures and a significant reduction ocean acidification, sea-level rise, warming in annual precipitation in the region. oceans, and more intense and frequent tropical storms. The intense drought in southern Amazonia and the Pantanal was the worst in the past Adaptation measures, particularly 60 years, and 2020 surpassed 2019 to become multi-hazard early warning systems, are the most active fire year in the southern underdeveloped in the Latin America and the Amazon. Caribbean region. Support from governments and the science and technology community Widespread drought across the Latin is critical to strengthening their development, America and the Caribbean region has had as well as to improving data collection and significant impact on inland shipping routes, storage and firmly integrating disaster risk crop yields and food production, leading to information into development planning. worsening food insecurity in many areas. Strong financial support is fundamental Precipitation deficits are particularly adverse to achieving this outcome. in the Caribbean region, which presents high vulnerability to drought and has several of its territories on the global list of the most water-stressed countries, with less than 1 000 m3 freshwater resources per capita. 2 Foreword The State of the Climate (SoC) in Latin America report, which primarily affected the region and the Caribbean (LAC) report for 2020 is the in 2020, with impacts to most vulnerable first report of its kind to be released, under the communities, among which are the Small auspices of the WMO Regional Association of Islands Development Countries. South America and the Regional Association of North America Central America and the Based on the existing research and studies Caribbean. It focuses on a set of up-to-date provided by various institutions in the re- key climate indicators, climate trends, and gion, the report made also an emphasis on extreme weather and climate events which enhancing climate resilience through iden- were recorded in 2020. The report aims at tified pathways, such as ecosystem-based providing science-based knowledge that can responses and enhancing climate services contribute to informing decision making in and multi-hazard early warning among other climate change mitigation and adaptation. areas of improvement. Increasing temperatures, glaciers retreat, I take this opportunity to congratulate all sea level rise, ocean acidification, coral reefs individuals and institutions who contributed bleaching, land and marine heatwaves, in- to this report and thank sister United Nations tense tropical cyclones, floods, droughts, agencies for joining efforts and delivering and wildfires have been highlighted in this this highly informative report. (P. Taalas) Secretary-General 3 Overview State of the Climate in Latin America and reference period. National and international the Caribbean 2020 represents the first institutions provided additional information multi- agency effort involving National and data. In some cases, auxiliary informa- Meteorological and Hydrological Services tion was obtained from local and national (NMHSs), WMO Regional Climate Centres news from newspapers, websites and social (RCCs), research institutions, and international networks. and regional organizations. A multidiscipli- nary group of 40 experts developed and High-impact events affecting the region in reviewed this report through an interactive 2020 were associated with loss of or damage process coordinated by the WMO Offices to vital infrastructures of communities and for Regional Association III and Regional populations. Notable impacts included water Association IV. and energy-related shortages, displacement, and compromised population safety, health This report provides a snapshot of climate and livelihoods. Towards the end of 2020, trends, variability, observed high-impact intense rainfall events brought landslides, weather and climate events, and associated floods and flash floods to rural and urban areas risks and impacts in key sensitive sectors for in Central and South America. A weak North the period January–December 2020. It is the American monsoon and colder-than-normal result of a collaboration among countries, pre- sea-surface temperatures along the eastern senting information from various independent Pacific associated with La Niña resulted in sources to assess weather, hydrology and drought in Mexico. The devastation that climate conditions in the region. It includes resulted from Hurricanes Eta and Iota in transboundary analyses, including of the Guatemala, Honduras, Nicaragua and Costa drought in the South American Pantanal and Rica, and the intense drought and unusual of the intense hurricane season in Central fire season in the Pantanal region of Brazil, America and the Caribbean and associated the Plurinational State of Bolivia, Paraguay impacts. In addition, the report identifies and Argentina, demonstrate the critical need areas for improvement in the management for operational and scientific collaboration, of hydrometeorological risks and data, and and for continuous data exchange, in order knowledge gaps. to better characterize those phenomena and their impacts. These impacts were exacer- The findings presented in this report are based bated by the COVID-19 outbreak. From the on a standard methodology for assessing various analyses provided in this report, it is the physical aspects of the climate system, evident that urgent efforts should be pursued drawing on data from 1 700 meteorological to enhance resilience through appropriate stations in Mexico, Central America and the prevention and risk-management measures. Caribbean, and from gridded data for South These include strengthening multi-hazard America. The data were compiled through early warning systems (MHEWSs), through a joint effort by WMO RCCs. Anomalies and enhanced synergy among various stakehold- percentages were derived for air temperature ers at the national and international levels, and rainfall data relative
Recommended publications
  • Teleconnections of the Tropical Atlantic to the Tropical Indian and Pacific Oceans: a Review of Recent findings
    Meteorologische Zeitschrift, Vol. 18, No. 4, 445-454 (August 2009) Article c by Gebr¨uder Borntraeger 2009 Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: A review of recent findings 1∗ 2 2 3 CHUNZAI WANG ,FRED KUCHARSKI ,RONDROTIANA BARIMALALA and ANNALISA BRACCO 1NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida U.S.A. 2The Abdus Salam International Centre for Theoretical Physics, Earth System Physics Section Trieste, Italy 3School of Earth and Atmospheric Sciences Georgia Institute of Technology, Atlanta, Georgia, U.S.A. (Manuscript received November 12, 2008; in revised form February 16, 2009; accepted March 18, 2009) Abstract Recent studies found that tropical Atlantic variability may affect the climate in both the tropical Pacific and Indian Ocean basins, possibly modulating the Indian summer monsoon and Pacific ENSO events. A warm tropical Atlantic Ocean forces a Gill-Matsuno-type quadrupole response with a low-level anticyclone located over India that weakens the Indian monsoon circulation, and vice versa for a cold tropical Atlantic Ocean. The tropical Atlantic Ocean can also induce changes in the Indian Ocean sea surface temperatures (SSTs), especially along the coast of Africa and in the western side of the Indian basin. Additionally, it can influence the tropical Pacific Ocean via an atmospheric teleconnection that is associated with the Atlantic Walker circulation. Although the Pacific El Ni˜no does not contemporaneously correlate with the Atlantic Ni˜no, anomalous warming or cooling of the two equatorial oceans can form an inter-basin SST gradient that induces surface zonal wind anomalies over equatorial South America and other regions in both ocean basins.
    [Show full text]
  • Impacts of Climate Change on Fisheries and Aquaculture Impa on Fi
    ISSN 2070-7010 AO F APER TURE L P ISSN 2070-7010 627 TECHNICAL FISHERIES AND AQUACU AO F APER TURE L P 627 TECHNICAL FISHERIES AND AQUACU Synthesis of current knowledge, adaptation and mitigation options Impacts of climate change on fisheries and aquaculture Synthesis of current knowledge, adaptation and mitigation options on fisheries and aquaculture Impacts of climate change 627 Impacts of climate change on fisheries and aquaculture – Synthesis of current knowledge, adaptation and mitigation options FAO 627 Impacts of climate change on fisheries and aquaculture – Synthesis of current knowledge, adaptation and mitigation options FAO ISSN 2070-7010 I9705EN/1/06.18 306079 789251 ISSN 2070-7010 I9705EN/1/06.18 306079 9 ISBN 978-92-5-130607-9 789251 9 ISBN 978-92-5-130607-9 strategies and tools for mitigation. also includes chapters on disasters and extreme events (Chapter 23) and aquaculture sector, in the context of poverty alleviation. aquaculture sector, strategies and tools for mitigation. also includes chapters on disasters and extreme events (Chapter 23) and aquaculture sector, in the context of poverty alleviation. aquaculture sector, their fisheries (Chapters 18, 19 and 26), as well as aquaculture (Chapters 20 to 22). Technical Paper Technical the fisheries and aquaculture sector’s contributions to greenhouse gas emissions, as well as the fisheries and aquaculture sector’s The It covers marine capture fisheries and their environments (Chapters 4 to 17), inland waters and This FAO Technical Paper is aimed primarily at policymakers, fisheries managers and practitioners Technical This FAO and has been prepared particularly with a view to assisting countries in the development of their Nationally Determined Contributions (NDCs) to the Paris Climate Agreement, the next versions of (Chapter 26).
    [Show full text]
  • Mangrove Ecosystems of Latin America and the Caribbean: a Summary
    Project PD114!90 (F) Mangrove Ecosystems of Latin America and the Caribbean: a Summary 1 2 3 4 s 6 7 8 Lacerda, L.D. ; Conde, J.E. ; Alarcon, c. ; Alvarez-León, R. ; Bacon, P.R. ; D'Croz, L. ; Kjerfve, B. ; Polaina, J. & M. Vannucci9 1-Departamento de Geoquímica, Universidade Federal Fluminense, Niteroi, 24020-007, RJ, Brazil. 2- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, AP 21827, Caracas 1020A, Venezuela. 3- Centro de Investigaciones en Ecología y Zonas Áridas (CIEZA), Universidad Nadonal Experimental Francisco de Miranda, AP 7506, Coro, Falcón, Venezuela. 4- Promotora de Fomento Cultural de Costa Atlántica (PRODECOSTA), AA­ 1820, Cartagena, (Bol.) Colombia. 5- Department of Zoology, University of West Indies, 51. Augustine, Port of Spain, Trinidad & Tobago. 6- Departamento de Biología Acuática, Universidad de Panamá and Smithsonian Tropical Research Institute, Box 2074, Balboa, República de Panamá. 7- Marine Science Program, University of South Carolina, 29208, Columbia, SC, USA. 8- Centro Agronómico Tropical de Investigadon y Enseñanza, Tur­ rialba, Costa Rica. 9- Intemational Sodety for Mangrove Ecosystems (ISME), Okinawa, Japan. 1. Mangroves and Man in Pre-Columbian of soil by slash-and-burn farmers (Veloz Maggiolo & and Colonial America Pantel, 1976, cited in Sanoja, 1992). In various countries of the American continent, The nomadic human groups frequently formed there is strong archeological evidence of mangrove semi-permanent settlements along the coast, close to utilization by Pre-Columbian and even Pre-historical lagoons and bays, where an abundant and easy to human groups. Pre-Columbian inhabitants tradition­ collect protein-rich diet was provided by molluscs ally used mangroves for many purposes, including (Reichel-Dolmatoff, 1965).
    [Show full text]
  • Caribbean and Pacific Coastal Marine System
    C. Birkeland Caribbean and Pacific Coastal marine system: similarities and differences A goal that scientists set for themselves is to find general Magnitude of rate of nutrient input principles with broad relevance and applicability. This devotion to generality can lead to serious error. For A primary factor in bringing about differences in the example, the harvesting techniques that are very successful functional organization of coral-reef communities in on the temperate Great Plains may not be applicable to the different geographic regions is the magnitude of the rate of Amazonian rain forest. In the rain forest, where the nutrient input and the degree to which the input nutrients are bound into the biomass and are sparse in the is concentrated into pulses. John Ryther of Woods Hole soil, pruning may be a more workable pattern of resource Oceanographic Institute calculated that over half the world utilization than reaping. Reaping works well on the prairie, fishery catch comes from upwelling regions, although the but is likely to do extensive, practically irreparable, regions of upwelling occupy only about one-tenth of 1% damage to the tropical rain forest system. of the ocean surface. Coral-reef ecosystems are even more productive than are regions of upwelling in terms of rates Differences of gross primary productivity per unit area. Relatively pristine coral reefs maintain a large standing-stock Functional differences exist within types of tropical biomass of fish. Yet coral reefs are particularly vulnerable coastal ecosystems among different regions of the world to overexploitation while the regions of upwelling are that are analogous to the tropical rainforest/ temperate heavily exploited year after year.
    [Show full text]
  • Towards Characterising Microplastic Abundance, Typology and Retention in Mangrove-Dominated Estuaries
    water Article Towards Characterising Microplastic Abundance, Typology and Retention in Mangrove-Dominated Estuaries Joelene Govender 1,* , Trishan Naidoo 2 , Anusha Rajkaran 2 , Senzo Cebekhulu 1, Astika Bhugeloo 1 and Sershen 2,3 1 School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa; [email protected] (S.C.); [email protected] (A.B.) 2 Department for Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; [email protected] (T.N.); [email protected] (A.R.); [email protected] (S.) 3 Institute of Natural Resources, P.O. Box 100396, Scottsville 3209, South Africa * Correspondence: [email protected]; Tel.: +27-32-945-1379 Received: 5 September 2020; Accepted: 1 October 2020; Published: 9 October 2020 Abstract: Plastic and, particularly, microplastic (MP) pollution is a growing research theme, dedicated largely to marine systems. Occurring at the land–sea interface, estuarine habitats such as mangroves are at risk of plastic pollution. This study compared MP pollution (level, morphotype, polymer composition, size and colour) across four South African estuaries, in relation to the built and natural environment. Mouth status, surrounding human population densities and land-use practices influenced the level and type of MP pollution. Systems that were most at risk were predominantly open estuaries surrounded by high population densities and diverse land use types. Microplastic levels and the diversity of types detected increased with increasing levels of anthropogenic disturbance. Overall, microfibres dominated in estuarine water (69%) and mangrove sediment (51%). Polyethylene (43%) and polypropylene (23%) were the dominant polymers overall.
    [Show full text]
  • Tropical Cyclones of the North Atlantic Ocean
    U.S. DEPARTMENT OF COMMERCE JOHN T. CoNNOR, Secretary WEATHER ·BUREAU RoBERT M. W BITE, Chief TECHNICAL PAPER NO. 55 Tropical Cyclones of the North Atlantic Ocean Tracks and Frequencies of Hurricanes and Tropical Storms, 1871-1963 GEORGE W. CRY Laboratory of Climatology, U.S. Weather Bureau WASHINGTON, D.C. 1965 For sale by the Superintendent of Documents, U,S. Government Printing Office, Washington, D.C., 20402 - Price 70 cents PREFACE Scope.-This paper seeks to consolidate records of the occur­ purpose of this paper is to provide this information in a convenient rences and paths of tropical cyclones of storm and hurricane force form. in the North Atlantic region, and to provide information on the U.S. Weather Bureau Technical Paper No. 36 [9] provided the frequencies and seasonal distributions of these relatively rare, but starting point for the present study. The general outline of that important, disturbances. work has been maintained, but additional material has been utilized Tropical cyclones are significant features of the climate of much of to extend information on tropical cyclones backward to include the the eastern and southern United States as well as of most other years 1871 through 1885 and forward to include the years 1959 areas bordering the western edge of the Atlantic, the Caribbean, and through 1963. New material also provided the basis for slight Gulf of Mexico. The destructive features of a single fully-developed modifications of a number of the tropical cyclone paths shown in hurricane-extremely strong winds, torrential rainfall, and high [9]. New text, tables, figures, and charts have been prepared, and tides and waves-may pose a threat to life and property over an a short discussion of possible trends in tropical cyclone frequencies area of more than 30,000 square miles, and to more than 30 million has been included.
    [Show full text]
  • Extended-Range Forecast of Atlantic Hurricane Activity for 2020
    EXTENDED RANGE FORECAST OF ATLANTIC SEASONAL HURRICANE ACTIVITY AND LANDFALL STRIKE PROBABILITY FOR 2020 We have maintained our above-average seasonal hurricane forecast for the 2020 Atlantic season. Current cool neutral ENSO conditions may transition to weak La Niña conditions by later this summer. Sea surface temperatures averaged across most of the tropical Atlantic and subtropical Atlantic are somewhat above normal. We anticipate an above-normal probability for major hurricanes making landfall along the continental United States coastline and in the Caribbean. As is the case with all hurricane seasons, coastal residents are reminded that it only takes one hurricane making landfall to make it an active season for them. They should prepare the same for every season, regardless of how much activity is predicted. (as of 7 July 2020) By Philip J. Klotzbach1, Michael M. Bell2, and Jhordanne Jones3 4 In Memory of William M. Gray This discussion as well as past forecasts and verifications are available online at http://tropical.colostate.edu Anne Manning, Colorado State University media representative, is coordinating media inquiries into this forecast. She can be reached at 970-491-7099 or [email protected]. Department of Atmospheric Science Colorado State University Fort Collins, CO 80523 Project Sponsors: 1 Research Scientist 2 Associate Professor 3 Graduate Research Assistant 4 Professor Emeritus 1 ATLANTIC BASIN SEASONAL HURRICANE FORECAST FOR 2020 Forecast Parameter and 1981-2010 Issue Date Issue Date Issue Date Observed Thru
    [Show full text]
  • Coastal Wetlands
    Southwest Florida Shelf Coastal Marine Ecosystem—Habitat: Coastal Wetlands Habitat: Coastal Wetlands '͘>LJŶŶtŝŶŐĂƌĚ h͘^͘'ĞŽůŽŐŝĐĂů^ƵƌǀĞLJ :ĞƌŽŵĞ:͘>ŽƌĞŶnj ƵĚƵďŽŶŽĨ&ůŽƌŝĚĂ In a nutshell: t Coastal wetlands form a critical ecotone at the boundary between freshwater and marine environments that help maintain water quality for the marine ecosystem and serve as a nursery and food source for many marine species. t People value coastal wetlands because they stabilize the coastline and provide protection from storm surge and flooding, improve water quality by filtering nutrients, provide critical habitat for protected species, and provide aesthetic, recreational, and tourism value. t In the barrier islands area, the coastal wetlands are threatened by development as mangroves and shorelines are replaced with an urban landscape. Throughout the southwest coastal region, anthropogenic changes in freshwater delivery are disturbing the salinity gradients necessary to maintain plant communities of the transition zone. t The primary threats to the coastal wetlands are their vulnerability to impacts from sea-level rise and altered freshwater flow and changes in intensity and frequency of coastal storms. Within the context of the SWFS ICEM, we have defined have divided the southwest Florida coastal wetlands into the coastal wetlands as the saltwater zone landward of the four provinces (Figure 1) based on their dominant coastal coastal margin, which includes the marshes, flats, and features: Barrier Islands, Ten Thousand Islands, Everglades/ mangroves and the intermittent creeks, channels, and Shark River Slough, and Cape Sable/White Water Bay. rivulets that flow through these areas (Figure 1). The entire These provinces are, for the most part, very similar and are region is characterized by gently-sloping topography with not specifically differentiated in the ICEM (Figure 2).
    [Show full text]
  • Evolutionary History of Lineages and Biotas UNCORRECTED PAGE PROOFS • © 2010 Sinauer Associates, Inc
    UNCORRECTED PAGE PROOFS • © 2010 Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured, or disseminated in any form without UNIT FOUR express written permission from the publisher. Evolutionary History of Lineages and Biotas UNCORRECTED PAGE PROOFS • © 2010 Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured, or disseminated in any form without express written permission from the publisher. Previous Page: The Hawaiian Islands. Courtesy of Jeff Schmaltz, MODIS Rapid Response Team, NASA/GSFC. 10 Th e Ge o g r a p h y o f Diversification In Unit 3, we learned that the evolutionary fates and distributions of The Fundamental Geographic species have been dynamic throughout the history of life on Earth. Patterns 362 New species have continuously evolved from ancestral species, Endemism and Cosmopolitanism 365 and occasionally, large numbers of species have been eliminated in The origins of endemics 368 an episode of mass extinction followed by the evolution of entirely Provincialism 370 new sorts of species. Species distributions often have changed, either through jump dispersal of founding individuals or populations across Terrestrial regions and provinces 370 a barrier, or through more gradual range expansion over continuous Marine regions and provinces 384 expanses of suitable habitats. Some of the most profound changes in Classifying islands 388 distributions have come when entire groups of species have crossed Quantifying similarity among biotas 392 from one biogeographic region to another following the erosion of Disjunction 396 a barrier. Additionally, we learned that the geology of the Earth it- Patterns 396 self changes continuously through time and that at various times and Processes 398 particularly over the past several million years, climatic cycles have Maintenance of Distinct Biotas 399 produced an exceedingly dynamic ecological arena.
    [Show full text]
  • Mangroves and Mollusks Along Brazil's Mangal Coast
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Portal de Revistas Eletrônicas da UniEVANGÉLICA (Centro Universitário de Anápolis) Between Land and Sea: Mangroves and Mollusks along Brazil’s Mangal Coast Judith A. Carney 1 ABSTRACT Westerners have long viewed mangroves as forbidding, pestilential landscapes. While modern medicine transformed their deadly reputation, the perception lingered of an environment that was little more than a tropical wasteland. The 1992 Earth Summit in Rio de Janeiro profoundly changed this view by drawing attention to the ecosystem as a habitat crucial to the life cycles of many species and endangered fauna yet increasingly at risk from deforestation. Conservation initiatives in the years since the Rio Summit, however, seldom recognize mangroves as a habitat that has also long supported human life. This is evident in the shell middens found along mangrove coasts and in the historical record of shellfish harvested for dietary protein. With a focus on Brazil, this article examines the shellfish that sustained Amerindians, enslaved Africans, and their descendants along the mangal coast since pre- Columbian times. The discussion contends that Brazil‟s mangrove forests cannot be separated from the history of the tropical peoples who have successively lived in and managed this ecosystem from ancient times to the present. Finally, the article concludes that a research focus on shellfish suggests broader linkages to South Atlantic history. Keywords: Mangroves; Human Habitat; Edible Shellfish; Coastal Brazil; African Diaspora; South Atlantic History. 1 Department of Geography, University of California Los Angeles; [email protected] Fronteiras: Journal of Social, Technological and Environmental Science • http://revistas.unievangelica.edu.br/index.php/fronteiras/ v.5, n.3, jul.-dez.
    [Show full text]
  • Ecological Baselines of the Southeast Atlantic and Southeast Pacific Status of Marine Biodiversity and Anthropogenic Pressures in Areas Beyond National Jurisdiction
    Ecological Baselines of the Southeast Atlantic and Southeast Pacific Status of Marine Biodiversity and Anthropogenic Pressures in Areas Beyond National Jurisdiction Citation Boteler, B., Wanless, R., Dias, M., Packeiser, T., Awad, A., Yannicelli, B., Zapata Padilla, L.A., Aburto, J., Seeger, I., Hampton, S., Jackson, L., Wienrich, N., Ajagbe, A., Hazin, C., Castellanos Galindo, G.A., German Naranjo, L., Fredy Suárez, C., Prussmann, J., Valenzuela, S., Gomez Giraldo, L.S., Higgins, M.L., Contreras, C., Luna, G., Luna, N., Munizaga, M., Sellanes, J., Tapia, C., Thiel, M., ‘Ecological Baselines for the Southeast Atlantic and Southeast Pacific: Status of Marine Biodiversity and Anthropogenic Pressures in Areas Beyond National Jurisdiction’, STRONG High Seas Project, 2019. Authors Ross Wanless, Maria Dias, Ademola Ajagbe and Carolina Hazin – BirdLife International Adnan Awad, Shannon Hampton and Lynn Jackson – International Ocean Institute – South Africa (IOI-SA) Ben Boteler, Isabel Seeger and Nicole Wienrich – Institute for Advanced Sustainability Studies (IASS) Luis Alonso Zapata Padilla, Gustavo Adolfo Castellanos Galindo, Luis German Naranjo, César Fredy Suárez, Johanna Prussmann, Sandra Valenzuela, Luz Stella Gomez Giraldo and Mary Lou Higgins – WWF Colombia Tim Packeiser – WWF Germany Beatriz Yannicelli, Jaime Aburto, Catalina Contreras, Guillermo Luna, Nicolás Luna, Martín Munizaga, Javier Sellanes, Carlos Tapia and Martin Thiel – Universidad Católica del Norte (UCN) With contributions from Fernando Felix – Secretariat of the Comisión
    [Show full text]
  • Redalyc.INDO-PACIFIC and TROPICAL ATLANTIC EOF MODES: CONTRIBUTIONS to the ANALYSES of CLOUD COVER CONDITIONS in the LOS NEVADOS
    Revista EIA ISSN: 1794-1237 [email protected] Escuela de Ingeniería de Antioquia Colombia RUIZ CARRASCAL, DANIEL INDO-PACIFIC AND TROPICAL ATLANTIC EOF MODES: CONTRIBUTIONS TO THE ANALYSES OF CLOUD COVER CONDITIONS IN THE LOS NEVADOS NATURAL PARK Revista EIA, núm. 14, diciembre, 2010, pp. 39-52 Escuela de Ingeniería de Antioquia Envigado, Colombia Available in: http://www.redalyc.org/articulo.oa?id=149218986003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista EIA, ISSN 1794-1237 Número 14, p. 39-52. Diciembre 2010 Escuela de Ingeniería de Antioquia, Medellín (Colombia) INDO-PACIFIC AND TROPICAL ATLANTIC EOF MODES: CONTRIBUTIONS TO THE ANALYSES OF CLOUD COVER CONDITIONS IN THE LOS NEVADOS NATURAL PARK DANIEL R UIZ C ARRASCAL * ABSTRACT Colombian paramos are experiencing an increase in their climatic stress. One of the key factors behind is the change in cloud cover conditions, which are dependent on both regional and local processes. This work aims to explore the degree of association between the year-to-year variability of sea surface temperatures (SSTs) observed in the tropical Indo-Pacific and Atlantic oceans, and the year-to-year changes in regional cloud cover conditions prevailing over the Colombian Central Cordillera, but focusing on the satellite grid pixel where Ruiz-Tolima Vol- canic Massif, the Los Nevados Natural Park and their surroundings are located. Analyzed records include mean monthly SSTs observed in the El Niño 3.4 region of the equatorial Pacific, SST anomalies observed in the tropical Indo-Pacific and Atlantic basins, as well as all-type cloud cover and top pressure data observed over the northern Andes.
    [Show full text]