Tropical Cyclones of the North Atlantic Ocean

Total Page:16

File Type:pdf, Size:1020Kb

Tropical Cyclones of the North Atlantic Ocean U.S. DEPARTMENT OF COMMERCE JOHN T. CoNNOR, Secretary WEATHER ·BUREAU RoBERT M. W BITE, Chief TECHNICAL PAPER NO. 55 Tropical Cyclones of the North Atlantic Ocean Tracks and Frequencies of Hurricanes and Tropical Storms, 1871-1963 GEORGE W. CRY Laboratory of Climatology, U.S. Weather Bureau WASHINGTON, D.C. 1965 For sale by the Superintendent of Documents, U,S. Government Printing Office, Washington, D.C., 20402 - Price 70 cents PREFACE Scope.-This paper seeks to consolidate records of the occur­ purpose of this paper is to provide this information in a convenient rences and paths of tropical cyclones of storm and hurricane force form. in the North Atlantic region, and to provide information on the U.S. Weather Bureau Technical Paper No. 36 [9] provided the frequencies and seasonal distributions of these relatively rare, but starting point for the present study. The general outline of that important, disturbances. work has been maintained, but additional material has been utilized Tropical cyclones are significant features of the climate of much of to extend information on tropical cyclones backward to include the the eastern and southern United States as well as of most other years 1871 through 1885 and forward to include the years 1959 areas bordering the western edge of the Atlantic, the Caribbean, and through 1963. New material also provided the basis for slight Gulf of Mexico. The destructive features of a single fully-developed modifications of a number of the tropical cyclone paths shown in hurricane-extremely strong winds, torrential rainfall, and high [9]. New text, tables, figures, and charts have been prepared, and tides and waves-may pose a threat to life and property over an a short discussion of possible trends in tropical cyclone frequencies area of more than 30,000 square miles, and to more than 30 million has been included. The decadal (10-day, 10-yr.) maps of Technical people. Tremendous amounts of property damage have resulted Paper No. 36 have not been included in this paper. Consequently, from tropical cyclone activity-ranging upward to near $1 billion during the passage of a single hurricane. More than 12,000 persons Technical Paper No. 36 remains the only source of this type of data. have lost their lives in hurricanes in the United States since 1900, Acknowledgments.-The interest, encouragement, and advice of and almost 6,900 deaths were attributed to a hurricane in the Dr. H. E. Landsberg, Director of Climatology, H. C. S. Thorn, Caribbean as recently as 1963. W. H. Haggard, A. I. Cooperman, and W. C. Palmer are appreciated. All activities in the regions subject to periodic tropical cyclones­ Thanks are due C. F. Kambic for his assistance in the collection and business, commerce, industry, agriculture-can benefit from more assembly of data. The support of theNational Hurricane Research complete information concerning their occurrence. The primary Laboratory, Dr. R. C. Gentry, Director, is gratefully acknowledged. ii CONTENTS Page PREFACE_____________________________________________________ ii 1. TROPICAL CYCLONES_____________________________________ 1 2. CLASSIFICATION OF TROPICAL CYCLONES______________ 2 3. SOURCES AND QUALITY OF DATA_______________________ 3 4. NORTH ATLANTIC TROPICAL CYCLONE TRACKS_______ 5 5. NORTH ATLANTIC TROPICAL CYCLONE FEATURES____ 6 Formation ____ ~--------------------------------------------- 6 Hurricane intensity__ __ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ __ _ _ _ __ __ _ _ _ __ _ _ 12 Recurvatures and erratic movements______________ __ _ _ _ _ _ _ _ __ 18 6. FREQUENCIES OF NORTH ATLANTIC TROPICAL CY- CLONES__________________________________________________ 25 Monthly and annual frequencies______________________________ 25 Dailyfrequency_____________________________________________ 28 Tropical cyclones affecting the United States___________________ 29 Trends in North Atlantic tropical cyclone frequency_____________ 31 REFEREN0ES_ _ __ _ _ _ __ _ _ _ _ __ _ ___ __ _ _ _ _ __ ____ __ _ ___ __ _ _ __ __ _ _ _ 33 CHART SERIES A-Tracks of North Atlantic Tropical Cyclones, By Years, 1871-1963 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 36 CHART SERIES B-Tracks of North Atlantic Tropical Cyclones, By Months and Other Calendar Periods__________________________ 129 iii TROPICAL CYCLONES OF THE NORTH ATLANTIC OCEAN GEORGE W. CRY Laboratory of Climatology, U.S. Weather Bureau, Washington, D.C. I. TROPICAL CYCLONES Any closed atmospheric circulation in the Northern Hemisphere mon feature of tropical cyclones of all intensities. Tides produced in which the winds move counterclockwise around a center of pres­ by an intense hurricane in coastal areas may reach levels of 10 to sure lower than the surrounding area is called a cyclone. A tropical 25 feet above normal. cyclone is a circulation developing over tropical oceanic regions The distributions of winds, pressure, and temperature tend to be where temperature and moisture conditions are almost uniform over circularly symmetric in tropical cyclones because of the development large areas. of these storms in regions of nearly constant air mass properties. The terms "cyclone" or "tropical cyclone" signify nothing as to the Another unique feature is the central "eye." The pattern of winds intensity of associated winds or weather. Cyclones of the middle does not converge to a single point, but becomes tangent to the eye latitudes, deriving energy primarily from the contrasts of tem­ boundary at a radius of some 5 to 10 miles or more from the exact perature and moisture in the air masses present within the circula­ st9rm center. In the eye there is little wind or rain; the sky may tion, may range from weak, barely discernible whirls to massive, intense vortices of immense power often covering an area well over become clear in some cases; temperatures at the surface are usually 1,000 miles in diameter. Tropical cyclones, with energy derived a few degrees higher, and the moisture content of the air lower, than primarily from the latent heat of condensation of water vapor, in the encircling region of strong winds. are generally smaller in areal extent, ranging from 60 to 600 miles in The exact processes and mechanisms for tropical cyclone formation diameter at maturity, and only rarely exceed 1,000 miles in diameter. are not yet completely known. Detailed physical and dynamical The speed of the maximmn winds near the center of the storm has been descriptions of the formation, structure, and movement are beyond estimated at more than 200 m.p.h. (175 kt.) in well-developed the scope of this work. Recent discussions of present hypotheses hurricanes. Torrential rainfall over a considerable area is a com- are given by Riehl [34] and Yanai [59]. 1 2. CLASSIFICATIONS OF TROPICAL CYCLONES Various methods for identification of the different stages of geographical locations of the various stages of the life cycle-where tropical cyclones have evolved over the years in the several regions the cyclone was weak, well-developed, decaying, or being modified of the world subject to these storms. All atmospheric circulations by the intrusion of air from source regions outside the Tropics­ have a "life cycle" of development, intensification, maturity, and were given. decay or modification. Technical criteria have been formulated to Such a summary of tracks without some estimation of intensity identify these various stages. along each path, when any data are available from which inferences The strength of the maximum winds is also used extensively to of intensity can be drawn, is lacking in an important aspect of the classify tropical cyclones. Although universal agreement in terms overall description of the storms, because a hurricane normally has not been attained, most classifications are similar, with only does not retain winds of hurricane force throughout its existence. moderate differences in threshold values for various intensities. Intensity estimates have been made in this paper. The criteria for The strongest stage, with sustained surface wind speeds of 74 m.p.h. the different stages and the periods used are given in table 1. A (64 kt.) or more, is called hurricane in the North Atlantic region, combination of life cycle and intensity criteria, these stages conform including the Caribbean Sea and the Gulf of Mexico, in the eastern to the thresholds and terminology in current use in the North Atlantic North Pacific, and in the western South Pacific. Cyclones of com­ region. parable intensity are called typhoons in the western North Pacific, The development and dissipation of tropical cyclones are dependent and simply cyclones in the Bay of Bengal, the Arabian Sea, and the on location and the interaction of the storms with the surrounding southern Indian Ocean. Local names for tropical cyclones of hurri­ environment. For example, tropical cyclones remaining at low cane force include baguio in the Philippine Islands. latitudes may progress in intensity from tropical depression to Tropical cyclones with sustained winds in the range 39 to 73 tropical storm, to hurricane, then back to tropical storm as they begin m.p.h. (34 to 63 kt.) are called tropical storms in the North Atlantic to lose intensity, and then to tropical depression (dissipation). Those region; circulations with maximum sustained winds up to 38 m.p.h. cyclones moving northward out of the Tropics may follow these same (33 kt.) are tropical depressions. These categories are also used in the North Pacific tropical cyclone regions. TABLE 1.-Terms used to describe intensity stages of tropical cyclones Riehl [33], Dunn [11], Dunn and Miller [13], and U.S. Weather Criteria and period used Bureau [52] discuss the life cycle and classifications of tropical Stage of development cyclones. Tropical depression (develop- The weak stage of a tropical cyclone with a definite closed surface circu­ ment).
Recommended publications
  • Subtropical Storms in the South Atlantic Basin and Their Correlation with Australian East-Coast Cyclones
    2B.5 SUBTROPICAL STORMS IN THE SOUTH ATLANTIC BASIN AND THEIR CORRELATION WITH AUSTRALIAN EAST-COAST CYCLONES Aviva J. Braun* The Pennsylvania State University, University Park, Pennsylvania 1. INTRODUCTION With the exception of warmer SST in the Tasman Sea region (0°−60°S, 25°E−170°W), the climate associated with South Atlantic ST In March 2004, a subtropical storm formed off is very similar to that associated with the coast of Brazil leading to the formation of Australian east-coast cyclones (ECC). A Hurricane Catarina. This was the first coastal mountain range lies along the east documented hurricane to ever occur in the coast of each continent: the Great Dividing South Atlantic basin. It is also the storm that Range in Australia (Fig. 1) and the Serra da has made us reconsider why tropical storms Mantiqueira in the Brazilian Highlands (Fig. 2). (TS) have never been observed in this basin The East Australia Current transports warm, although they regularly form in every other tropical water poleward in the Tasman Sea tropical ocean basin. In fact, every other basin predominantly through transient warm eddies in the world regularly sees tropical storms (Holland et al. 1987), providing a zonal except the South Atlantic. So why is the South temperature gradient important to creating a Atlantic so different? The latitudes in which TS baroclinic environment essential for ST would normally form is subject to 850-200 hPa formation. climatological shears that are far too strong for pure tropical storms (Pezza and Simmonds 2. METHODOLOGY 2006). However, subtropical storms (ST), as defined by Guishard (2006), can form in such a.
    [Show full text]
  • The Influences of the North Atlantic Subtropical High and the African Easterly Jet on Hurricane Tracks During Strong and Weak Seasons
    Meteorology Senior Theses Undergraduate Theses and Capstone Projects 2018 The nflueI nces of the North Atlantic Subtropical High and the African Easterly Jet on Hurricane Tracks During Strong and Weak Seasons Hannah Messier Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/mteor_stheses Part of the Meteorology Commons Recommended Citation Messier, Hannah, "The nflueI nces of the North Atlantic Subtropical High and the African Easterly Jet on Hurricane Tracks During Strong and Weak Seasons" (2018). Meteorology Senior Theses. 40. https://lib.dr.iastate.edu/mteor_stheses/40 This Dissertation/Thesis is brought to you for free and open access by the Undergraduate Theses and Capstone Projects at Iowa State University Digital Repository. It has been accepted for inclusion in Meteorology Senior Theses by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The Influences of the North Atlantic Subtropical High and the African Easterly Jet on Hurricane Tracks During Strong and Weak Seasons Hannah Messier Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa Alex Gonzalez — Mentor Department of Geological and Atmospheric Sciences, Iowa State University, Ames Iowa Joshua J. Alland — Mentor Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York ABSTRACT The summertime behavior of the North Atlantic Subtropical High (NASH), African Easterly Jet (AEJ), and the Saharan Air Layer (SAL) can provide clues about key physical aspects of a particular hurricane season. More accurate tropical weather forecasts are imperative to those living in coastal areas around the United States to prevent loss of life and property.
    [Show full text]
  • Lecture 15 Hurricane Structure
    MET 200 Lecture 15 Hurricanes Last Lecture: Atmospheric Optics Structure and Climatology The amazing variety of optical phenomena observed in the atmosphere can be explained by four physical mechanisms. • What is the structure or anatomy of a hurricane? • How to build a hurricane? - hurricane energy • Hurricane climatology - when and where Hurricane Katrina • Scattering • Reflection • Refraction • Diffraction 1 2 Colorado Flood Damage Hurricanes: Useful Websites http://www.wunderground.com/hurricane/ http://www.nrlmry.navy.mil/tc_pages/tc_home.html http://tropic.ssec.wisc.edu http://www.nhc.noaa.gov Hurricane Alberto Hurricanes are much broader than they are tall. 3 4 Hurricane Raymond Hurricane Raymond 5 6 Hurricane Raymond Hurricane Raymond 7 8 Hurricane Raymond: wind shear Typhoon Francisco 9 10 Typhoon Francisco Typhoon Francisco 11 12 Typhoon Francisco Typhoon Francisco 13 14 Typhoon Lekima Typhoon Lekima 15 16 Typhoon Lekima Hurricane Priscilla 17 18 Hurricane Priscilla Hurricanes are Tropical Cyclones Hurricanes are a member of a family of cyclones called Tropical Cyclones. West of the dateline these storms are called Typhoons. In India and Australia they are called simply Cyclones. 19 20 Hurricane Isaac: August 2012 Characteristics of Tropical Cyclones • Low pressure systems that don’t have fronts • Cyclonic winds (counter clockwise in Northern Hemisphere) • Anticyclonic outflow (clockwise in NH) at upper levels • Warm at their center or core • Wind speeds decrease with height • Symmetric structure about clear "eye" • Latent heat from condensation in clouds primary energy source • Form over warm tropical and subtropical oceans NASA VIIRS Day-Night Band 21 22 • Differences between hurricanes and midlatitude storms: Differences between hurricanes and midlatitude storms: – energy source (latent heat vs temperature gradients) - Winter storms have cold and warm fronts (asymmetric).
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2005
    MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record.
    [Show full text]
  • Hurricane & Tornado Risks in June
    June 4, 2021 Hurricane & Tornado Risks in June · Several changes in the weather typically occur in June across the Lower 48. Tropical Development · Atlantic hurricane season officially starts June 1, although it has started early the last seven years, including this year. · On average in the Atlantic Basic, one named storm forms every one to two years in June and a hurricane develops about once every five years. · Early in the season, tropical systems tend to form close to the U.S. and often affect the Southeastern U.S., the western Caribbean and parts of Central America. Rainfall, rather than wind, is usually the biggest concern with June tropical cyclones. Tornado Risks · June is typically an active month for tornadoes. · Tornadoes can happen just about anywhere in the Lower 48 in June, given the widespread warmth and humidity. · Low pressure systems can create the ingredients for severe weather in the Plains and Midwest, in particular. The area at greatest risk of tornadoes in June stretches from central Oklahoma into southwestern Minnesota. · Brief, usually weaker tornadoes often occur near the Gulf Coast during the summer. These are usually caused by sea-breeze thunderstorms and sea breeze collisions closer to the coast. Scattered thunderstorms can also create brief tornadoes across much of the South. · Tropical systems can also bring tornadoes, although they are usually weak and short-lived. · Peak hail activity also occurs in June, according to some studies. The Central and Southern Plains see an increase in hail during the early summer due to the combination of the jet stream, moisture from the Gulf of Mexico and daytime heating.
    [Show full text]
  • A Preliminary Investigation of Derecho-Producing Mcss In
    P 3.1 TROPICAL CYCLONE TORNADO RECORDS FOR THE MODERNIZED NWS ERA Roger Edwards1 Storm Prediction Center, Norman, OK 1. INTRODUCTION and BACKGROUND since 1954 was attributable to the weakest (F0) bin of damage rating (Fig. 1). This is the very class of Tornadoes from tropical cyclones (hereafter TCs) tornado that is most common in TC records, and most pose a specialized forecast challenge at time scales difficult to detect in the damage above that from the ranging from days for outlooks to minutes for concurrent or subsequent passage of similarly warnings (Spratt et al. 1997, Edwards 1998, destructive, ambient TC winds. As such, it is possible Schneider and Sharp 2007, Edwards 2008). The (but not quantifiable) that many TC tornadoes have fundamental conceptual and physical tenets of gone unrecorded even in the modern NWS era, due midlatitude supercell prediction, in an ingredients- to their generally ephemeral nature, logistical based framework (e.g., Doswell 1987, Johns and difficulties of visual confirmation, presence of swaths Doswell 1992), fully apply to TC supercells; however, of sparsely populated near-coastal areas (i.e., systematic differences in the relative magnitudes of marshes, swamps and dense forests), and the moisture, instability, lift and shear in TCs (e.g., presence of damage inducers of potentially equal or McCaul 1991) contribute strongly to that challenge. greater impact within the TC envelope. Further, there is a growing realization that some TC tornadoes are not necessarily supercellular in origin (Edwards et al. 2010, this volume). Several major TC tornado climatologies have been published since the 1960s (e.g., Pearson and Sadowski 1965, Hill et al.
    [Show full text]
  • Storms Are Thunderstorms That Produce Tornadoes, Large Hail Or Are Accompanied by High Winds
    From February 17 to 19, a severe storm blasted the Lebanese coast with 100- kilometer (60-mile) winds and dropped as much as 2 meters (7 feet) of snow on parts of the country, news sources said. Temperatures dropped to near freezing along the coast, while snowplows struggled to clear the main roadway between Beirut and Damascus. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image on February 20, 2012. Snow covers much of Lebanon, and extends across the border with Syria. Another expanse of snow occurs just north of the Syria-Jordan border. Snow in Lebanon is not uncommon, and the country is home to ski resorts. Still, this fierce storm may have been part of a larger pattern of cold weather in Europe and North Africa. References The Daily Star. (2012, February 18). Lebanon hit by extreme weather conditions. Accessed February 21, 2012. Naharnet. (2012, February 19). Storm subsides after coating Lebanon in snow. Accessed February 21, 2012. NASA image courtesy LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott. Instrument: Terra - MODIS Flooding is the most common of all natural hazards. Each year, more deaths are caused by flooding than any other thunderstorm related hazard. We think this is because people tend to underestimate the force and power of water. Six inches of fast-moving water can knock you off your feet. Water 24 inches deep can carry away most automobiles. Nearly half of all flash flood deaths occur in automobiles as they are swept downstream.
    [Show full text]
  • Teleconnections of the Tropical Atlantic to the Tropical Indian and Pacific Oceans: a Review of Recent findings
    Meteorologische Zeitschrift, Vol. 18, No. 4, 445-454 (August 2009) Article c by Gebr¨uder Borntraeger 2009 Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: A review of recent findings 1∗ 2 2 3 CHUNZAI WANG ,FRED KUCHARSKI ,RONDROTIANA BARIMALALA and ANNALISA BRACCO 1NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida U.S.A. 2The Abdus Salam International Centre for Theoretical Physics, Earth System Physics Section Trieste, Italy 3School of Earth and Atmospheric Sciences Georgia Institute of Technology, Atlanta, Georgia, U.S.A. (Manuscript received November 12, 2008; in revised form February 16, 2009; accepted March 18, 2009) Abstract Recent studies found that tropical Atlantic variability may affect the climate in both the tropical Pacific and Indian Ocean basins, possibly modulating the Indian summer monsoon and Pacific ENSO events. A warm tropical Atlantic Ocean forces a Gill-Matsuno-type quadrupole response with a low-level anticyclone located over India that weakens the Indian monsoon circulation, and vice versa for a cold tropical Atlantic Ocean. The tropical Atlantic Ocean can also induce changes in the Indian Ocean sea surface temperatures (SSTs), especially along the coast of Africa and in the western side of the Indian basin. Additionally, it can influence the tropical Pacific Ocean via an atmospheric teleconnection that is associated with the Atlantic Walker circulation. Although the Pacific El Ni˜no does not contemporaneously correlate with the Atlantic Ni˜no, anomalous warming or cooling of the two equatorial oceans can form an inter-basin SST gradient that induces surface zonal wind anomalies over equatorial South America and other regions in both ocean basins.
    [Show full text]
  • Hurricanes: a Century of Scientific Progress
    Hurricanes: A Century of Scientific Progress Kerry Emanuel Program in Atmospheres, Oceans, and Climate Massachusetts Institute of Technology 1. Introduction In the early 20th century, at the same time that the theories of relativity and quantum mechanics were being developed, there was essentially no basic understanding of the physics of hurricanes. The energy cycle that sustains such storms was not known, nor were the factors that controlled their movement. What was known about the structure and behavior of hurricanes was inferred largely from visual observations of clouds and damage patterns, and it was widely believed that the storm circulation extended upward only a few kilometers. By the end of the century, the structure and behavior of hurricanes had been thoroughly quantified, thanks to rapid technological progress that brought about such wonders as aircraft, radar and satellites, and the basic physics of the storms themselves as well as their intricate substructure had come to be well understood. This new understanding, coupled with the invention and rapid development of the computer, made it possible to forecast the motion of hurricanes with such accuracy that, given modern communications and transportation, loss of life from hurricanes has been virtually eliminated in the developed world. This chapter chronicles the extraordinary progress in the scientific understanding of hurricanes through the 20th century. We begin with a brief review of progress through World War II, which marked an important turning point in the science of meteorology, and continue with an account of the rapid progress made in the first two decades after the war. Section 4 discusses the very influential CISK theory that was developed in the 1960s.
    [Show full text]
  • ESCI 107 – the Atmosphere Lesson 16 – Tropical Cyclones Reading
    ESCI 107 – The Atmosphere Lesson 16 – Tropical Cyclones Reading: Meteorology Today, Chapter 15 TROPICAL CYCLONES l A tropical cyclone is a large, low-pressure system that forms over the tropical oceans. l Tropical cyclones are classified by sustained wind speed as o Tropical disturbance – wind less than 25 knots o Tropical Depression (TD) – wind 25 to 34 knots o Tropical storm (TS) – wind 35 to 64 knots o Hurricane (or Typhoon) – wind 65 knots or greater l Sustained winds means winds averaged over a 1-minute period (in U.S.). o It is the sustained wind that is used to classify tropical cyclones, not the gusts. l A typhoon and a hurricane are the exact same thing. They just have different names in different parts of the world. Global numbers ¡ About 80 tropical cyclones per year world-wide reach tropical storm strength ¡ About 50 – 55 each year world-wide reach hurricane/typhoon strength Safir-Simpson Intensity Scale (used in U.S.) Category Max Sustained Wind knots mph 1 64 - 82 74 - 95 2 83 - 95 96 - 110 3 96 - 113 111 - 130 4 114 - 134 131 - 155 5 135 + 156 + ¡ A major hurricane is a Category III or higher. FORMATION l The energy that drives hurricanes is the latent heat of condensation from the thunderstorms that comprise the hurricane. l Therefore, hurricanes can only form over very warm water, where there is plenty of evaporation to feed moisture to the thunderstorms. o Water temperatures must be at least 26.5°C (about 80°F). o The upper ‘mixed layer’ of the ocean must also be relatively deep (at least 45 meters) so that the waves do not mix away the warm water at the surface.
    [Show full text]
  • Hurricanes and Tropical Storms Location and Extent of All • Severe Thunderstorms Natural Hazards That Can Affect the Jurisdiction
    HAZARD I DENTIFICATION The United States and its communities are vulnerable to a wide array of natural hazards that threaten life and property. These hazards include, in no particular order: • Drought 44 CFR Requirement • Extreme Temperatures Part 201.6(c)(2)(i): The risk • Flood assessment shall include a description of the type, • Hurricanes and Tropical Storms location and extent of all • Severe Thunderstorms natural hazards that can affect the jurisdiction. The plan • Tornadoes shall include information on • Wildfire previous occurrences of hazard events and on the • Winter Storms probability of future hazard • Erosion events. • Earthquakes • Sinkholes • Landslides • Dam/Levee Failure Some of these hazards are interrelated (i.e., hurricanes can cause flooding and tornadoes), and some consist of hazardous elements that are not listed separately (i.e., severe thunderstorms can cause lightning; hurricanes can cause coastal erosion). It should also be noted that some hazards, such as severe winter storms, may impact a large area yet cause little damage, while other hazards, such as a tornado, may impact a small area yet cause extensive damage. This section of the Plan provides a general description for each of the hazards listed above along with their hazardous elements, written from a national perspective. Section 4: Page 2 H AZARD I DENTIFICATION N ORTHERN V IRGINIA R EGIONAL H AZARD M ITIGATION P LAN Drought Drought is a natural climatic condition caused by an extended period of limited rainfall beyond that which occurs naturally in a broad geographic area. High temperatures, high winds, and low humidity can worsen drought conditions, and can make areas more susceptible to wildfire.
    [Show full text]
  • Impacts of Climate Change on Fisheries and Aquaculture Impa on Fi
    ISSN 2070-7010 AO F APER TURE L P ISSN 2070-7010 627 TECHNICAL FISHERIES AND AQUACU AO F APER TURE L P 627 TECHNICAL FISHERIES AND AQUACU Synthesis of current knowledge, adaptation and mitigation options Impacts of climate change on fisheries and aquaculture Synthesis of current knowledge, adaptation and mitigation options on fisheries and aquaculture Impacts of climate change 627 Impacts of climate change on fisheries and aquaculture – Synthesis of current knowledge, adaptation and mitigation options FAO 627 Impacts of climate change on fisheries and aquaculture – Synthesis of current knowledge, adaptation and mitigation options FAO ISSN 2070-7010 I9705EN/1/06.18 306079 789251 ISSN 2070-7010 I9705EN/1/06.18 306079 9 ISBN 978-92-5-130607-9 789251 9 ISBN 978-92-5-130607-9 strategies and tools for mitigation. also includes chapters on disasters and extreme events (Chapter 23) and aquaculture sector, in the context of poverty alleviation. aquaculture sector, strategies and tools for mitigation. also includes chapters on disasters and extreme events (Chapter 23) and aquaculture sector, in the context of poverty alleviation. aquaculture sector, their fisheries (Chapters 18, 19 and 26), as well as aquaculture (Chapters 20 to 22). Technical Paper Technical the fisheries and aquaculture sector’s contributions to greenhouse gas emissions, as well as the fisheries and aquaculture sector’s The It covers marine capture fisheries and their environments (Chapters 4 to 17), inland waters and This FAO Technical Paper is aimed primarily at policymakers, fisheries managers and practitioners Technical This FAO and has been prepared particularly with a view to assisting countries in the development of their Nationally Determined Contributions (NDCs) to the Paris Climate Agreement, the next versions of (Chapter 26).
    [Show full text]