Mangrove Ecosystems of Latin America and the Caribbean: a Summary

Total Page:16

File Type:pdf, Size:1020Kb

Mangrove Ecosystems of Latin America and the Caribbean: a Summary Project PD114!90 (F) Mangrove Ecosystems of Latin America and the Caribbean: a Summary 1 2 3 4 s 6 7 8 Lacerda, L.D. ; Conde, J.E. ; Alarcon, c. ; Alvarez-León, R. ; Bacon, P.R. ; D'Croz, L. ; Kjerfve, B. ; Polaina, J. & M. Vannucci9 1-Departamento de Geoquímica, Universidade Federal Fluminense, Niteroi, 24020-007, RJ, Brazil. 2- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, AP 21827, Caracas 1020A, Venezuela. 3- Centro de Investigaciones en Ecología y Zonas Áridas (CIEZA), Universidad Nadonal Experimental Francisco de Miranda, AP 7506, Coro, Falcón, Venezuela. 4- Promotora de Fomento Cultural de Costa Atlántica (PRODECOSTA), AA­ 1820, Cartagena, (Bol.) Colombia. 5- Department of Zoology, University of West Indies, 51. Augustine, Port of Spain, Trinidad & Tobago. 6- Departamento de Biología Acuática, Universidad de Panamá and Smithsonian Tropical Research Institute, Box 2074, Balboa, República de Panamá. 7- Marine Science Program, University of South Carolina, 29208, Columbia, SC, USA. 8- Centro Agronómico Tropical de Investigadon y Enseñanza, Tur­ rialba, Costa Rica. 9- Intemational Sodety for Mangrove Ecosystems (ISME), Okinawa, Japan. 1. Mangroves and Man in Pre-Columbian of soil by slash-and-burn farmers (Veloz Maggiolo & and Colonial America Pantel, 1976, cited in Sanoja, 1992). In various countries of the American continent, The nomadic human groups frequently formed there is strong archeological evidence of mangrove semi-permanent settlements along the coast, close to utilization by Pre-Columbian and even Pre-historical lagoons and bays, where an abundant and easy to human groups. Pre-Columbian inhabitants tradition­ collect protein-rich diet was provided by molluscs ally used mangroves for many purposes, including (Reichel-Dolmatoff, 1965). In these areas, they left wood and energy production. The use of mangroves large amounts of shells and organic and "cultural" varied from site to site, depending on the particular debris, called "conchales" or "concheros" ip Spanish characteristics of the population who started man­ speaking countries and "sambaquis" in Brazil. These grove utilization during the transition period from remains provide important information on the char­ nomad to fixed habits, between 9,000 to 3,000 years acteristics of these populations including food habits BP; however, several common features are evident and utilization of natural resources (Perdomo-Rojas, (Alvarez-León, 1993). 1978; Prahl el al., 1990). In tropical coastal areas, the expansion of man­ Castaño-Uribe (1989) suggests that in Colombia grove forests probably triggered, 6,000 years ago, the process of colonization by the human population important social changes among itinerant human was a continuous chronological sequence, with great groups, especially inducing an initial settling process implications for the cultural development of the en­ of gatherer, fisher, and hunter communities. In Vene­ tire continen1. An example of this was the finding in zuela 6,000 or 5,000 years ago, human populations mangroves and adjacent areas along the Atlantic possibly coming from the inner lands of Venezuela, coast of Colombia, of the most ancient ceramics of occupied the mouths of the rivers that descend from the American continent (c.a. 2,400 years BP) a discov­ the Paria Sierra, and other coastal areas, many of ery of pivotal cultural importance (Reichel­ them covered by mangroves (Sanoja, 1992),.in a pro­ Dolmatoff, 1985). Along the extensive mangrove cess similar to the one hypothesized by Widmer fringes of the Pacific and the Caribbean coasts of (1988) for the South coast of Florida, USA. Man­ northem South America, the development of human groves, as a resource, including wood, resins, fibers groups resulted in distinct patterns of cultural and dyes, andalso proteins of animal origin, pro­ adaptation which can still be recognized today. Their vided a spectrum of resources for diverse types of technology was continuously being changed and op­ extraction and encouraged sorne incipient forms of timized for the exploitation of these resource-rich, cultivation of native edible plants. Extraction of man­ non-seasonal wetlands, to provide the necessary in­ grove oysters by the indigenous populations of the frastructure for the establishment of large human coastal areas could have induced a kind of semino­ groups, whose economy was based on the collection mad exploitation, which can be compared to the use of molluscs and on fisheries. The experience 1 - Latin America and Caribbean diversifíed and expanded through the continent disappeared almost totally on some of the islands of (Castaño-Uribe, 1989). the archipelago (Antczak & Antczak, 1987). Almost fíve centuries later, mangrove products still occupy a In Panamá there is evidence of human settle­ very important rank in the Venezuelan indian econo­ ments in mangrove areas about 5,000 years BP; these my. In the Delta Amacuro State, indian populations people made tools out of mangrove wood (D'Croz, use mangrove wood in the construction of poles and 1993). The importance of fishing of euryhaline spe­ pilings for houses and jetties (Flores, 1977). cies from mangrove-bordered estuaries and channels for pre-Columbian human settlements located in the Archeological evidences suggest that mangroves central coast of Panamá at that time has also been were used intensively by the Arawak indians in noted (Cook & Ranere, 1992). Utilizing fences, har­ Puerto Rico (Carrera, 1975). Many of the "concheros" poons, fishhooks and other primitive tools, many of are found in the coastal zone of this island (Carrera, them made of mangrove wood, people from these 1975). Among the molluscs consumed by the indians settlements caught est.uarine and coastal species be­ are two mangrove species commonly found on the longing to the Carangidae, Batrachoididae, Ariidae, red mangrove: Crassostrea rhizophorae and Isognomon and Clupeidae. alatus (Carrera, 1975). In Brazil the pre-Columbian record extends from In Latin America, mangroves were the subject of 3,500 to 2,000 years BP, when deposits of shells and curiosity since the discovery. Spanish colonizers fish bones from mangrove species were accumulated were much attracted by mangroves, as can be in­ in mounds by nomad populations of fisherman and ferred from the words of the historian Gonzalo Fer­ collectors (Beltráo, 1976). nandez de Oviedo y Valdés, who wrote that the mangrove is " ... a tree of the best that in these places In Peru, the Tumpis Culture, which settled in the exists, and it is common in these islands ... rare and Tumbes region, had an important role in Pre­ admirable trees to sight, because of its forms it is not Columbian America. They formed a large coastal known another being similar". This author is alleged­ population dedicated to agriculture, físhing and ly the fírst to mention, at the beginning of the XVI commerce, and are considered the best navigators of century, American mangroves (Rodríguez, 1984; the Peruvian coast. They developed to a high degree Schaeffer-Novelli & Cintrón, 1990. ). He added an in_o the art of carving several mangrove bivalves, includ­ ventory of mangrove uses. In 1595, Sir Walter Ra­ ing Spondius sp., Ostraea sp., and Anadara grandis. To leigh, in relation to sorne trees surrounding the the Spondius shell, known to the Andean people as channels at the mouth of the Orinoco Delta, men­ "Mullu", they attributed magical powers and after tions that these trees are capable of living in salty carving zoomorph or phytomorph fígures they were water. Tejera (1977) has catalogued other historical offered during certain religious rituals (Echevartía & references on mangroves in the Americanist Sarabia, 1993). literature. The migration of human populations to the During the colonization, the indian opposition coastal areas is also testified, in Venezuela, by the lead to the virtual extinction of native populations presence of archaeological preceramic places of shel­ along the coasts of the entire continent. By the time lfish pickers and fishers in the Tucacas area, Falcón of the European conquest, mangroves represented State, where nowadays there is a large extension of such a nuisance to troops and horses that Cristobal mangroves (Cruxent and Rouse, 1958). In the south­ de Molina, for example, described the mangroves in ero Pacific coast of Costa Rica huge "concheros", tes­ 1552 in Peru as the "most difficult land of these king­ tify to the early settlements of indigenous doms". However, this did not hamper the discovery communities. The indians of Puerto Rico (probably of the quality of mangrove timber for construction, the Arawaks) occasionally ingested the red man­ and the exploitation was immediately started, most­ grove seedlings; this is a custom actually observed ly for poles and boat construction, and later for tan­ among the fishermen, who sustain that it helps them nin. From the 16th century on mangrove timber was to quench their thirst during their prolonged físhing exported from Colombia to Peru and reached an joumeys (Carrera, 1975). In the Los Roques Archi­ amount of 6,000 poles a year in the 17th century. In pelago, 100 km north of the Venezuelan coast, in­ 1677 for instance, thousands of mangrove poles were dians used mangroves intensively. As a consequence exported to Cuba from the Pacific coast Colombia of this exploitation, some of these mangroves (Prahl et al., 1990) Commerce of bark was also very 2 Project PD114/90 (F) intense. Ecuador for example exported to neighbor­ coast of Venezuela, using it as firewood for the fur­ ing countries nearIy 600 tons of bark per year from naces of steamships; as a residual product, tannins 1879 to 1906 (Bodero, 1993). were extracted from the crust (Amend, 1992). During the colonial period the commerce of Resources derived from mangroves have been mangrove products was so important that the colo­ utilized from pre-colombian times to the presento nial authorities produced specific legislation to pro­ Presently, sorne forest products from mangroves are tect and manage the use of this resource. In 1760, the widely utilized in rural constructions, also as sticks King of Portugal and Brazil, D.
Recommended publications
  • Rebentos Aquatic Vegetation
    Review Article / Artigo de Revisão Copertino et al.: Seagrasses and SubmergedReBentos Aquatic Vegetation Seagrass and Submerged Aquatic Vegetation (VAS) Habitats off the Coast of Brazil: state of knowledge, conservation and main threats Margareth S. Copertino1*, Joel C. Creed2, Marianna O. Lanari1,3, Karine Magalhães4, Kcrishna Barros5, Paulo C. Lana6, Laura Sordo6,7, Paulo A. Horta8 1 Laboratório Ecologia Vegetal Costeira, Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG (Av. Itália, Carreiros. CEP 96203-900, Rio Grande, RS, Brasil) 2 Departamento de Ecologia, Universidade do Estado do Rio de Janeiro (Rua São Francisco Xavier, 524. CEP: 20550-900, Maracanã, RJ, Brasil) 3 Programa de Pós-Gradução em Oceanografia Biológica, Universidade Federal do Rio Grande - FURG 4 Departamento de Biologia, Universidade Federal Rural de Pernambuco (UFRPE) (Rua Dom Manoel de Medeiros, s/n, Dois Irmãos. CEP: 52171-900 - Recife, PE, Brasil) 5 Instituto de Ciências do Mar, Universidade Federal do Ceará (Av. Abolição, 3207. CEP 60165-081, Fortaleza, CE, Brasil) 6 Centro de Estudos do Mar, Universidade Federal do Paraná (Av. Beira-Mar, s/n. CEP 83255-979, Pontal do Sul, PA, Brasil) 7 Centro de Ciências do Mar, Universidade do Algarve (Campus Gambelas, Faro. CEP: 8005-139, Portugal) 8 Departamento de Botânica, Universidade Federal de Santa Catarina (Rua Eng. Agronômico Andrei Cristian Ferreira, s/n - Trindade. CEP: 88040-900 Florianópolis, SC, Brasil) *Corresponding author: [email protected] / [email protected] Financial Support: This study was supported by the Brazilian Network for Coastal Benthic Studies - ReBentos (Programa SISBIOTA), Rede CLIMA and INCT for Climate Changes; sponsored by CNPq and FAPESP.
    [Show full text]
  • The Sea-Grasses of Brazil Ligulate, Linear, Leaf-Tip
    Acta Bot. Need. October 512-516 21(5), 1972, p. The sea-grasses of Brazil C. den Hartog Rijksherbarium, Leiden There is still hardly anything known aboutthe occurrence of sea-grasses in South America. The number of records is extremely small. Therefore, one wonders whether these plants are extremely rare or absent along long stretches of coast, whether it is that have been overlooked or just they by botanists. It seems that the latterapplies to the coast of Brazil, from where up to nowonly two collections had been recorded (Setchell 1934; den Hartog 1970). Thanks to the active, gratefully acknowledged co-operation of Dr. Liliane Forneris (Universidade de Sao Paulo) I received a number of sea-grasses from several places along the Brazilian coast. I am also indebted to Dr. Emilia Santos (Museu Nacional, Rio de Janeiro) and Dr. Graziela M. Barroso (Jardim Botanico, Rio de Janeiro) for and sending me a specimen a photograph, respectively, of Halophila decipiens. Further, I am grateful to Dr. V. J. H. de Jilovice de Sternberg (Com- panhia ‘Algimar’, Rio de Janeiro) for his co-operation in obtaining material. At present there are 5 species now known from Brazil. KEY TO THE SEA-GRASSES OF BRAZIL 1. Leaves with 3 Tannin cells ligulate, linear, nerves. present. 2. Leaf-tip bicuspidate; leaves Va-l mm wide 1. Halodule wrightii obtuse with 2. Leaf-tip or emarginate, very faintly developed lateral teeth, or without such teeth; leaves wider than 1 mm. 3. Leaf-tip emarginate 2. Halodule emarginata 3. Leaf-tip obtuse 3. Halodule lilianeae 1.
    [Show full text]
  • Competition from Below for Light and Nutrients Shifts Productivity Among Tropical Species
    Competition from below for light and nutrients shifts productivity among tropical species John J. Ewela,1 and Mari´a Julia Mazzarinob aDepartment of Biology, University of Florida, Gainesville, FL 32611; and bConsejo Nacional de Investigaciones Científicas y Te´cnicas de Argentina, Universidad Nacional del Comahue, 8400 Bariloche, Argentina Edited by Christopher B. Field, Carnegie Institution of Washington, Stanford, CA, and approved October 3, 2008 (received for review July 24, 2008) Chance events such as seed dispersal determine the potential canopy: Hyeronima alchorneoides, Cedrela odorata, and Cordia composition of plant communities, but the eventual assemblage is alliodora; 1 alien palm, Euterpe oleracea, which has a native determined in large part by subsequent interactions among spe- congener; and 1 native, giant perennial herb, Heliconia imbricata cies. Postcolonization sorting also affects the ultimate composition (all species are referred to hereafter by genus). The intent was of communities assembled by people for restoration, horticulture, to encompass some of the variability within the broad category or conservation. Thus, knowledge of the mechanisms controlling of canopy-tree life form while holding the identity of the interspecific interactions in plant communities is important for monocots (palm and herb) constant. Among other differences, explaining patterns observed in nature and predicting success or Hyeronima (like the 2 monocots) is never leafless whereas the failure of utilitarian combinations. Relationships among species, other 2 tree species are deciduous after attaining age 5–7 yr, especially those from studies of biological diversity and ecosystem Cedrela in the dry season and Cordia in the wet season. Tree functioning, are largely based on studies of short-lived, temperate- seedlings were planted at high density (2,887 plants per hectare) zone plants.
    [Show full text]
  • An Overview of Cuban Seagrasses
    Bull Mar Sci. 94(2):269–282. 2018 research paper https://doi.org/10.5343/bms.2017.1014 An overview of Cuban seagrasses Centro de Investigaciones Beatriz Martínez-Daranas * Marinas, Universidad de La Habana, Calle 16 No. 114, Ana M Suárez Miramar, Playa, Havana, 11300, Cuba. * Corresponding author email: <[email protected]>. ABSTRACT.—Here, we present an overview of the current knowledge of Cuban seagrasses, including distribution, status, threats, and efforts for their conservation. It has been estimated that seagrasses cover about 50% of the Cuban shelf, with six species reported and Thalassia testudinum K.D. Koenig being the most dominant. Seagrasses have been studied primarily in three areas in Cuba (northwest, north-central, and southwest). Thalassia testudinum and other seagrasses exhibit spatial and temporal variations in abundance, and updating of their status and distribution is needed. The main threat to Cuban seagrass ecosystems is low seawater transparency due to causes such as eutrophication and erosion. High salinities limit their distribution in the Sabana-Camagüey Archipelago, partly the result of freshwater dams and roads. Seagrass meadows play important ecological k roles and provide many ecosystem services in Cuba, with efforts underway to preserve this ecosystem. Research and Marine Ecology and Conservation in Cuba management projects are directed toward integrated coastal zone management, including a ban on trawl fisheries and the Guest Editors: extension of marine protected areas to contain more seagrass Joe Roman, Patricia González-Díaz meadows. In addition to updating species distributions, it is Date Submitted: 17 February, 2017. urgent that managers and researchers in Cuba examine the Date Accepted: 22 November, 2017.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Peach Palm (Bactris Gasipaes)
    Dear Author, Here are the proofs of your article. • You can submit your corrections online, via e-mail or by fax. • For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers. • You can also insert your corrections in the proof PDF and email the annotated PDF. • For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page. • Remember to note the journal title, article number, and your name when sending your response via e-mail or fax. • Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown. • Check the questions that may have arisen during copy editing and insert your answers/ corrections. • Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript. • The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct. • Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal’s style. Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
    [Show full text]
  • Safety Assessment of Palm Tree (Açaí and Juçara)-Derived Ingredients As Used in Cosmetics
    Safety Assessment of Palm Tree (açaí and juçara)-derived Ingredients as Used in Cosmetics Status: Draft Final Report for Panel Review Release Date: November 15, 2019 Panel Date: December 9-10, 2019 The 2019 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Lisa A. Peterson, Ph.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Wilbur Johnson, Jr., M.S., Senior Scientific Analyst. © Cosmetic Ingredient Review 1620 L STREET, NW, SUITE 1200 ◊ WASHINGTON, DC 20036-4702 ◊ PH 202.331.0651 ◊ FAX 202.331.0088 ◊ [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Wilbur Johnson, Jr. Senior Scientific Analyst Date: November 15, 2019 Subject: Draft Final Report on Palm Tree (açaí and juçara) -Derived Ingredients Enclosed is the draft Final Report (palmtr122019rep) on 8 palm tree (açaí and juçara)-derived ingredients. This ingredient family comprises cosmetic ingredients that are derived from two palm tree species, Euterpe edulis and Euterpe oleracea. A Tentative Report with the following conclusions was issued at the September 16-17, 2019 Panel meeting: Euterpe Oleracea Fruit Extract, Euterpe Oleracea Juice, and Euterpe Oleracea Pulp Powder are safe in cosmetics in the present practices of use and concentration described in the safety assessment when formulated to be non-sensitizing.
    [Show full text]
  • Antioxidant System Is Insufficient to Prevent Cell Damages in Euterpe Oleracea Exposed to Water Deficit
    Emirates Journal of Food and Agriculture. 2017. 29(3): 206-211 doi: 10.9755/ejfa.2016-09-1217 http://www.ejfa.me/ REGULAR ARTICLE Antioxidant system is insufficient to prevent cell damages in Euterpe oleracea exposed to water deficit Maria Antonia Machado Barbosa1, Allan Klynger da Silva Lobato1*, Thaís Soares Pereira1, Gélia Dinah Monteiro Viana1, José Ricardo Santos Barbosa1, Kelly Nayara Nascimento Coelho1 1Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia. Paragominas, Pará, Brazil ABSTRACT This study aimed to determine whether antioxidant enzymes are efficient to control the oxidative stress and consequent cell damages on leaves and roots in Euterpe oleracea plants exposed to water deficiency. This study was assembled under an experimental design completely randomized with two water conditions (water deficit and control) combined by four evaluation dates (0, 6, 12, and 18 days). Progressive water deficit promoted significant increases in electrolyte leakage and glutathione in both tissue types, and hydrogen peroxide and malondialdehyde were increased in the leaf. Antioxidant enzyme activities showed similar behaviours, with initial increases and subsequent decreases. Our results revealed that the cell damage observed in leaves and roots was induced by multiple effects related to overproduction of oxidant compounds, such as hydrogen peroxide, and by insufficient CAT, APX, and GPX activities in E. oleracea plants exposed to progressive water deficit. Keywords: Antioxidant enzymes; Euterpe oleracea; Oxidative damage; Hydrogen peroxide; Water deficiency INTRODUCTION species Phoenix dactylifera and Elaeis guineensis as models (Suresh et al., 2012; Gribaa et al., 2013), being described Water deficiency is a problem frequently found in field significant cell damages after water deficit (Baslam conditions, representing a limiting factor in areas with et al., 2014).
    [Show full text]
  • ISME/Center/LABOMAR Report on the Central and South America Regional Workshop on the Sustainable Management of Mangrove Forest Ecosystems
    Report on the Americas Regional Workshop on the Sustainable Management of Mangrove Forest Ecosystems ISME/cenTER/LABOMAR Report on the Central and South America Regional Workshop on the Sustainable Management of Mangrove Forest Ecosystems Universidade Federal do Ceará, Instituto de Ciência do Mar (LABOMAR) Fortaleza, Ceará, Brazil, March 17-20th 2003 Edited by Macintosh, D. J. and Ashton, E. C. Funded by The World Bank Report on the Americas Regional Workshop on the Sustainable Management of Mangrove Forest Ecosystems Disclaimer The findings, interpretations, and conclusions expressed in this work are those of the co- editors and contributors and do not necessarily reflect the views of the Board of Executive Directors of the World Bank or the governments they represent, or of the International Society for Mangrove Ecosystems (ISME) and University of Aarhus. The World Bank, ISME and University of Aarhus do not guarantee the accuracy of the data included in this work. The boundaries, designations, colors, denominations, and other information shown on any map in this work do not imply on the part of the World Bank Group, (ISME) or University of Aarhus, any judgment or expression of any opinion on the legal status of any territory or the endorsement or acceptance of boundaries. Copyright © 2003 The International Bank for Reconstruction and Development / The World Bank, 1818 H Street, NW, Washington, DC 20433; Telephone 202-473-1000; Internet www.worldbank.org; E-mail [email protected]; The International Society for Mangrove Ecosystems, c/o Faculty of Agriculture., University of the Ryukyus, Nishihara, Okinawa, 903-0129 Japan; and University of Aarhus, Centre for Tropical Ecosystems Research, Ny Munkegade, Building 540, 8000 Aarhus C, Denmark.
    [Show full text]
  • The Global Distribution and Status of Seagrass Ecosystems
    The global distribution and status of seagrass ecosystems ^^ ^^^H Discussion paper prepared for tlie UNEP-WCWIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards WA.. WORLD CONSERVATION MONITORING CENTRE Digitized by tine Internet Archive in 2010 witii funding from UNEP-WCIVIC, Cambridge Iittp://www.archive.org/details/globaldistributi01spal The global distribution and status of seagrass ecosystems Discussion paper prepared for tlie UNEP-WCIVIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards With assistance from: Mark Taylor and Corinna Ravilious Table of Contents Introduction to the workshop 2 The global distribution and status of seagrass ecosystems 3 Introduction 3 Definitions 3 The diversity of seagrasses 3 Species distribution 4 Associated Species 6 Productivity and biomass 7 The distribution and area of seagrass habitat 8 The value of seagrasses 13 Threats to seagrasses 13 Management Interventions 14 Bibliography; 16 29 Annex 1 : Seagrass Species Lists by Country Annex 2 - Species distribution maps 34 Annex 3 - Seagrass distribution maps 68 74 Annex 4 -Full list of MPAs by country ; /4^ ] UNEP WCMC Introduction to the workshop The Global Seagrass Workshop of 9 November 2001 has been set up with the expressed aim to develop a global synthesis on the distribution and status of seagrasses world-wide. Approximately 20 seagrass experts from 14 counu-ies, representing all of the major seagrass regions of the world have been invited to share their knowledge and expertise.
    [Show full text]
  • 1 Phylogenetic Regionalization of Marine Plants Reveals Close Evolutionary Affinities Among Disjunct Temperate Assemblages Barna
    Phylogenetic regionalization of marine plants reveals close evolutionary affinities among disjunct temperate assemblages Barnabas H. Darua,b,*, Ben G. Holtc, Jean-Philippe Lessardd,e, Kowiyou Yessoufouf and T. Jonathan Daviesg,h aDepartment of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA bDepartment of Plant Science, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa cDepartment of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, United Kingdom dQuebec Centre for Biodiversity Science, Department of Biology, McGill University, Montreal, QC H3A 0G4, Canada eDepartment of Biology, Concordia University, Montreal, QC, H4B 1R6, Canada; fDepartment of Environmental Sciences, University of South Africa, Florida campus, Florida 1710, South Africa gDepartment of Biology, McGill University, Montreal, QC H3A 0G4, Canada hAfrican Centre for DNA Barcoding, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa *Corresponding author Email: [email protected] (B.H. Daru) Running head: Phylogenetic regionalization of seagrasses 1 Abstract While our knowledge of species distributions and diversity in the terrestrial biosphere has increased sharply over the last decades, we lack equivalent knowledge of the marine world. Here, we use the phylogenetic tree of seagrasses along with their global distributions and a metric of phylogenetic beta diversity to generate a phylogenetically-based delimitation of marine phytoregions (phyloregions). We then evaluate their evolutionary affinities and explore environmental correlates of phylogenetic turnover between them. We identified 11 phyloregions based on the clustering of phylogenetic beta diversity values. Most phyloregions can be classified as either temperate or tropical, and even geographically disjunct temperate regions can harbor closely related species assemblages.
    [Show full text]
  • Teleconnections of the Tropical Atlantic to the Tropical Indian and Pacific Oceans: a Review of Recent findings
    Meteorologische Zeitschrift, Vol. 18, No. 4, 445-454 (August 2009) Article c by Gebr¨uder Borntraeger 2009 Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: A review of recent findings 1∗ 2 2 3 CHUNZAI WANG ,FRED KUCHARSKI ,RONDROTIANA BARIMALALA and ANNALISA BRACCO 1NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida U.S.A. 2The Abdus Salam International Centre for Theoretical Physics, Earth System Physics Section Trieste, Italy 3School of Earth and Atmospheric Sciences Georgia Institute of Technology, Atlanta, Georgia, U.S.A. (Manuscript received November 12, 2008; in revised form February 16, 2009; accepted March 18, 2009) Abstract Recent studies found that tropical Atlantic variability may affect the climate in both the tropical Pacific and Indian Ocean basins, possibly modulating the Indian summer monsoon and Pacific ENSO events. A warm tropical Atlantic Ocean forces a Gill-Matsuno-type quadrupole response with a low-level anticyclone located over India that weakens the Indian monsoon circulation, and vice versa for a cold tropical Atlantic Ocean. The tropical Atlantic Ocean can also induce changes in the Indian Ocean sea surface temperatures (SSTs), especially along the coast of Africa and in the western side of the Indian basin. Additionally, it can influence the tropical Pacific Ocean via an atmospheric teleconnection that is associated with the Atlantic Walker circulation. Although the Pacific El Ni˜no does not contemporaneously correlate with the Atlantic Ni˜no, anomalous warming or cooling of the two equatorial oceans can form an inter-basin SST gradient that induces surface zonal wind anomalies over equatorial South America and other regions in both ocean basins.
    [Show full text]