Consumption of Bird Eggs by Invasive
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Contributions to the Natural History and Distribution of Dasypeltis
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Herpetozoa Jahr/Year: 2017 Band/Volume: 30_1_2 Autor(en)/Author(s): Jimenez-Robles Octavio, Leon Raul, Soto Cardenas Manuel, Rebollo Baudilio, Martinez Gabriel Artikel/Article: Contributions to the natural history and distribution of Dasypeltis sahelensis TRAPE & MANÉ, 2006, in Morocco 80-86 All_Short_Notes_(Seiten 59-112):SHORT_NOTE.qxd 07.08.2017 19:05 Seite 22 80 SHORT NOTE HERPETOZOA 30 (1/2) Wien, 30. Juli 2017 SHORT NOTE Ministry of Enviroment), pp. 14, 214. BARAN , İ. & quences.- Molecular Ecology, Oxford; 14: 2433-2443. IlgAZ , Ç. & A vcI , A. & K uMluTAş , Y. & OlguN , K. ScHREIBER , E. (1912): Herpetologia Europaea. Eine (2012): Türkiye amfibi ve sürüngenleri [Amphibians systematische Bearbeitung der Amphibien und and reptiles of Turkey]. Ankara (TÜBİTAK Popüler Reptilien welche bisher in Europa aufgefunden sind. Bilim Kitapları), pp. 208. BARAN , İ. & Y IlMAZ , İ. & 2nd edition. Jena (gustav Fischer), pp. X, 960. KETE , R. & D uR Muş , H. (1992) : Batı ve orta Karadeniz SINDAcO , R. & J EREMčENKO , v. K. (2008): The reptiles Bölgesinin herpetofaunası.- Turkish Journal of Zoology, of the western Palearctic. 1. Annotated checklist and Ankara; 16: 275-288. BAşOğlu , M. & B ARAN , İ. distributional atlas of the turtles, crocodiles, amphis - (1977): Türkiye sürüngenleri. Kısım I. Kaplumbağa ve baenians and lizards of Europe, North Africa, Middle kertenkeleler.- Ege Üniversitesi Fen Fakültesi Kitaplar East and central Asia.latina (Edizioni Belvedere), pp. Serisi, İzmir; 76: vI, 272. BERgMANN , J. & N ORSTRöM , 579. SINDAcO , R. & v ENcHI , A. & c ARPANETO , g. M. M. (1990): Neues über Podarcis taurica (PAllAS , 1814) & B OlOgNA , M. -
Incubating and Hatching Eggs
EPS-001 7/13 Incubating and Hatching Eggs Gregory S. Archer and A. Lee Cartwright* hether eggs come from a common chicken Factors that affect hatchability or an exotic bird, you must store and incu- W Breeder Hatchery bate them carefully for a successful hatch. Envi- Breeder nutrition Sanitation ronmental conditions, handling, sanitation, and Disease Egg storage record keeping are all important factors when it Mating activity Egg damage comes to incubating and hatching eggs. Egg damage Incubation—Management of Correct male and female setters and hatchers Fertile egg quality body weight Chick handling A fertile egg is alive; each egg contains living cells Egg sanitation that can become a viable embryo and then a chick. Egg storage Eggs are fragile and a successful hatch begins with undamaged eggs that are fresh, clean, and fertile. Collecting and storing fertile eggs You can produce fertile eggs yourself or obtain Fertile eggs must be collected carefully and stored them elsewhere. While commercial hatcheries properly until they are incubated. Keeping the produce quality eggs that are highly fertile, many eggs at proper storage temperatures keeps the do not ship small quantities. If you mail order embryo from starting and stopping development, eggs, be sure to pick them up promptly from your which increases embryo mortality. Collecting receiving area. Hatchability will decrease if eggs eggs frequently and storing them properly delays are handled poorly or get too hot or too cold in embryo development until you are ready to incu- transit. bate them. If you produce the eggs on site, you must care for the breeding stock properly to ensure maximum Egg storage reminders fertility. -
Mercury and Selenium Contamination in Waterbird Eggs and Risk to Avian Reproduction at Great Salt Lake, Utah
Prepared in cooperation with the U.S. Fish and Wildlife Service Mercury and Selenium Contamination in Waterbird Eggs and Risk to Avian Reproduction at Great Salt Lake, Utah Open-File Report 2015–1020 U.S. Department of the Interior U.S. Geological Survey Cover: Franklin’s gulls nesting at Bear River Migratory Bird Refuge, Great Salt Lake, Utah. Photograph taken by Josh Ackerman in 2012. Mercury and Selenium Contamination in Waterbird Eggs and Risk to Avian Reproduction at Great Salt Lake, Utah By Joshua T. Ackerman, Mark P. Herzog, C. Alex Hartman, John Isanhart, Garth Herring, Sharon Vaughn, John F. Cavitt, Collin A. Eagles-Smith, Howard Browers, Chris Cline, and Josh Vest Prepared in cooperation with the U.S. Fish and Wildlife Service Open-File Report 2015–1020 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. -
Embryonic Exposure to Oestrogen Causes Eggshell Thinning and Altered Shell Gland Carbonic Anhydrase Expression in the Domestic Hen
REPRODUCTIONRESEARCH Embryonic exposure to oestrogen causes eggshell thinning and altered shell gland carbonic anhydrase expression in the domestic hen C Berg, A Blomqvist1, L Holm1, I Brandt, B Brunstro¨m and Y Ridderstra˚le1 Department of Environmental Toxicology, Uppsala University, Norbyva¨gen 18 A, 753 36 Uppsala, Sweden and 1Department of Anatomy and Physiology, Swedish University of Agricultural Sciences, Box 7045, 750 07 Uppsala, Sweden Correspondence should be addressed to C Berg; Email: [email protected] Abstract Eggshell thinning among wild birds has been an environmental concern for almost half a century. Although the mechanisms for contaminant-induced eggshell thinning are not fully understood, it is generally conceived to originate from exposure of the laying adult female. Here we show that eggshell thinning in the domestic hen is induced by embryonic exposure to the syn- thetic oestrogen ethynyloestradiol. Previously we reported that exposure of quail embryos to ethynyloestradiol caused histo- logical changes and disrupted localization of carbonic anhydrase in the shell gland in the adult birds, implying a functional disturbance in the shell gland. The objective of this study was to examine whether in ovo exposure to ethynyloestradiol can affect eggshell formation and quality in the domestic hen. When examined at 32 weeks of age, hens exposed to ethynyloestra- diol in ovo (20 ng/g egg) produced eggs with thinner eggshells and reduced strength (measured as resistance to deformation) compared with the controls. These changes remained 14 weeks later, confirming a persistent lesion. Ethynyloestradiol also caused a decrease in the number of shell gland capillaries and in the frequency of shell gland capillaries with carbonic anhy- drase activity. -
Saving the Mountain Chicken
Saving the mountain chicken Long-Term Recovery Strategy for the Critically Endangered mountain chicken 2014-2034 Adams, S L, Morton, M N, Terry, A, Young, R P, Dawson, J, Martin, L, Sulton, M, Hudson, M, Cunningham, A, Garcia, G, Goetz, M, Lopez, J, Tapley, B, Burton, M and Gray, G. Front cover photograph Male mountain chicken. Matthew Morton / Durrell (2012) Back cover photograph Credits All photographs in this plan are the copyright of the people credited; they must not be reproduced without prior permission. Recommended citation Adams, S L, Morton, M N, Terry, A, Young, R P, Dawson, J, Martin, L, Sulton, M, Cunningham, A, Garcia, G, Goetz, M, Lopez, J, Tapley, B, Burton, M, and Gray, G. (2014). Long-Term Recovery Strategy for the Critically Endangered mountain chicken 2014-2034. Mountain Chicken Recovery Programme. New Information To provide new information to update this Action Plan, or correct any errors, e-mail: Jeff Dawson, Amphibian Programme Coordinator, Durrell Wildlife Conservation Trust, [email protected] Gerard Gray, Director, Department of Environment, Ministry of Agriculture, Land, Housing and Environment, Government of Montserrat. [email protected] i Saving the mountain chicken A Long-Term Recovery Strategy for the Critically Endangered mountain chicken 2014-2034 Mountain Chicken Recovery Programme ii Forewords There are many mysteries about life and survival on Much and varied research and work needs continue however Montserrat for animals, plants and amphibians. In every case before our rescue mission is achieved. The chytrid fungus survival has been a common thread in the challenges to life remains on Montserrat and currently there is no known cure. -
Nutrional Ecology in Social Insects
NUTRIONAL ECOLOGY IN SOCIAL INSECTS Laure-Anne Poissonnier Thesis submitted the 16th of July 2018 for the degree of Doctor of Philosophy Department of Agricultural Science School of Agriculture, Food and Wine Faculty of Sciences, The University of Adelaide Supervisors: Jerome Buhl and Audrey Dussutour “If all mankind were to disappear, the world would regenerate back to the rich state of equilibrium that existed ten thousand years ago. If insects were to vanish, the environment would collapse into chaos.” E.O.Wilson Table of Contents Tables of contents i Abstract v Declaration vii Acknowledgements ix Statements of authorship x Chapter 1 – General introduction 1 1. Nutrition is a complex process that influences and links all living organisms 3 2. Towards an integrative approach to study nutrition, the Nutritional Geometric Framework 4 2.a. Nutrient regulation 5 2.b. Nutrient effects on life history traits and feeding rules 8 3. Nutrition and sociality 10 3.a. Nutrition and immunity in social insects 12 3.a. Humoral and cellular defence against pathogens in insects 13 3.b Behavioural strategies used by social insects to fight parasites 14 3.c Physiological strategies used by social insects to fight parasites 16 3.d Role of nutrition in insects’ immunity 16 4. Nutrition in insect colonies 18 4.a. Self-organisation and foraging in social insects 19 4.b. Ending mass recruitment 21 4.c. Modulating recruitment according to food quality 22 4.d. Information exchange and food sharing between castes 23 4.e. Distribution of nutrients in the colony 25 4.f. The insight brought by NGF studies in social insect nutrition 29 5. -
'Entomophagy': an Evolving Terminology in Need of Review
"Entomophagy" an evolving terminology in need of review Evans, Joshua David; Alemu, Mohammed Hussen; Flore, Roberto; Frøst, Michael Bom; Halloran, Afton Marina Szasz; Jensen, Annette Bruun; Maciel Vergara, Gabriela; Meyer- Rochow, V.B.; Münke-Svendsen, C.; Olsen, Søren Bøye; Payne, C.; Roos, Nanna; Rozin, P.; Tan, H.S.G.; van Huis, Arnold; Vantomme, Paul; Eilenberg, Jørgen Published in: Journal of Insects as Food and Feed DOI: 10.3920/JIFF2015.0074 Publication date: 2015 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Evans, J. D., Alemu, M. H., Flore, R., Frøst, M. B., Halloran, A. M. S., Jensen, A. B., Maciel Vergara, G., Meyer- Rochow, V. B., Münke-Svendsen, C., Olsen, S. B., Payne, C., Roos, N., Rozin, P., Tan, H. S. G., van Huis, A., Vantomme, P., & Eilenberg, J. (2015). "Entomophagy": an evolving terminology in need of review. Journal of Insects as Food and Feed, 1(4), 293-305. https://doi.org/10.3920/JIFF2015.0074 Download date: 26. Sep. 2021 Wageningen Academic Journal of Insects as Food and Feed, 2015; 1(4): 293-305 Publishers ‘Entomophagy’: an evolving terminology in need of review J. Evans1*, M.H. Alemu2, R. Flore1, M.B. Frøst1, A. Halloran3, A.B. Jensen4, G. Maciel-Vergara4, V.B. Meyer-Rochow5,6, C. Münke-Svendsen7, S.B. Olsen2, C. Payne8, N. Roos3, P. Rozin9, H.S.G. Tan10, A. van Huis11, P. Vantomme12 and J. Eilenberg4 1Nordic Food Lab, University of Copenhagen, Department of Food Science, Rolighedsvej 30, 1958 Frederiksberg C, Copenhagen, Denmark; 2University of Copenhagen, -
'Entomophagy': an Evolving Terminology in Need of Review
"Entomophagy" an evolving terminology in need of review Evans, Joshua David; Alemu, Mohammed Hussen; Flore, Roberto; Frøst, Michael Bom; Halloran, Afton Marina Szasz; Jensen, Annette Bruun; Maciel Vergara, Gabriela; Meyer- Rochow, V.B.; Münke-Svendsen, C.; Olsen, Søren Bøye; Payne, C.; Roos, Nanna; Rozin, P.; Tan, H.S.G.; van Huis, Arnold; Vantomme, Paul; Eilenberg, Jørgen Published in: Journal of Insects as Food and Feed DOI: 10.3920/JIFF2015.0074 Publication date: 2015 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Evans, J. D., Alemu, M. H., Flore, R., Frøst, M. B., Halloran, A. M. S., Jensen, A. B., Maciel Vergara, G., Meyer- Rochow, V. B., Münke-Svendsen, C., Olsen, S. B., Payne, C., Roos, N., Rozin, P., Tan, H. S. G., van Huis, A., Vantomme, P., & Eilenberg, J. (2015). "Entomophagy": an evolving terminology in need of review. Journal of Insects as Food and Feed, 1(4), 293-305. https://doi.org/10.3920/JIFF2015.0074 Download date: 28. sep.. 2021 Wageningen Academic Journal of Insects as Food and Feed, 2015; 1(4): 293-305 Publishers ‘Entomophagy’: an evolving terminology in need of review J. Evans1*, M.H. Alemu2, R. Flore1, M.B. Frøst1, A. Halloran3, A.B. Jensen4, G. Maciel-Vergara4, V.B. Meyer-Rochow5,6, C. Münke-Svendsen7, S.B. Olsen2, C. Payne8, N. Roos3, P. Rozin9, H.S.G. Tan10, A. van Huis11, P. Vantomme12 and J. Eilenberg4 1Nordic Food Lab, University of Copenhagen, Department of Food Science, Rolighedsvej 30, 1958 Frederiksberg C, Copenhagen, Denmark; 2University of -
Egg Cannibalism by Passion Vine Specialist Disonycha Chevrolat Beetles
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.005611; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 1 SCIENTIFIC NOTE 2 3 Egg cannibalism by passion vine specialist Disonycha Chevrolat beetles 4 (Coleoptera: Chrysomelidae: Galerucinae: Alticini) 5 6 7 8 Colin R. Morrison1,2*, Wyatt Armstrong2, Lawrence Gilbert2 9 10 1 Graduate Program in Ecology, Evolution and Behavior, The University of Texas at Austin, 11 Austin, TX 78723 USA 12 2 Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78723 USA 13 14 15 16 17 * To whom correspondence should be addressed. 18 19 20 21 22 23 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.005611; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 2 24 Abstract 25 Cannibalistic behavior is now recognized to be an important component of nutritional ecology in 26 both carnivorous and herbivorous species, including many beetle families (Englert and Thomas 27 1970; Beaver 1974; Dickinson 1992; Bartlett 1987; Alabi et al. 2008). This habit was historically 28 viewed by an incidental outcome of unnaturally crowded laboratory situations with little 29 ecological importance (Fox 1975), but it is increasingly acknowledged that cannibalism 30 represents a potentially advantageous behavior (Richardson et al. -
Expanding the Eggshell Colour Gamut: Uroerythrin and Bilirubin from Tinamou (Tinamidae) Eggshells Randy Hamchand1, Daniel Hanley2, Richard O
www.nature.com/scientificreports OPEN Expanding the eggshell colour gamut: uroerythrin and bilirubin from tinamou (Tinamidae) eggshells Randy Hamchand1, Daniel Hanley2, Richard O. Prum3 & Christian Brückner1* To date, only two pigments have been identifed in avian eggshells: rusty-brown protoporphyrin IX and blue-green biliverdin IXα. Most avian eggshell colours can be produced by a mixture of these two tetrapyrrolic pigments. However, tinamou (Tinamidae) eggshells display colours not easily rationalised by combination of these two pigments alone, suggesting the presence of other pigments. Here, through extraction, derivatization, spectroscopy, chromatography, and mass spectrometry, we identify two novel eggshell pigments: yellow–brown tetrapyrrolic bilirubin from the guacamole- green eggshells of Eudromia elegans, and red–orange tripyrrolic uroerythrin from the purplish-brown eggshells of Nothura maculosa. Both pigments are known porphyrin catabolites and are found in the eggshells in conjunction with biliverdin IXα. A colour mixing model using the new pigments and biliverdin reproduces the respective eggshell colours. These discoveries expand our understanding of how eggshell colour diversity is achieved. We suggest that the ability of these pigments to photo- degrade may have an adaptive value for the tinamous. Birds’ eggs are found in an expansive variety of shapes, sizes, and colourings 1. Te diverse array of appearances found across Aves is achieved—in large part—through a combination of structural features, solid or patterned colorations, the use of two diferent dyes, and diferential pigment deposition. Eggshell pigments are embedded within the white calcium carbonate matrix of the egg and within a thin outer proteinaceous layer called the cuticle2–4. Tese pigments are believed to play a key role in crypsis5,6, although other, possibly dynamic 7,8, roles in inter- and intra-species signalling5,9–12 are also possible. -
Birds and Mammals)
6-3.1 Compare the characteristic structures of invertebrate animals... and vertebrate animals (...birds and mammals). Also covers: 6-1.1, 6-1.2, 6-1.5, 6-3.2, 6-3.3 Birds and Mammals sections More Alike than Not! Birds and mammals have adaptations that 1 Birds allow them to live on every continent and in 2 Mammals every ocean. Some of these animals have Lab Mammal Footprints adapted to withstand the coldest or hottest Lab Bird Counts conditions. These adaptations help to make Virtual Lab How are birds these animal groups successful. adapted to their habitat? Science Journal List similar characteristics of a mammal and a bird. What characteristics are different? 254 Theo Allofs/CORBIS Start-Up Activities Birds and Mammals Make the following Foldable to help you organize information about the Bird Gizzards behaviors of birds and mammals. You may have observed a variety of animals in your neighborhood. Maybe you have STEP 1 Fold one piece of paper widthwise into thirds. watched birds at a bird feeder. Birds don’t chew their food because they don’t have teeth. Instead, many birds swallow small pebbles, bits of eggshells, and other hard materials that go into the gizzard—a mus- STEP 2 Fold down 2.5 cm cular digestive organ. Inside the gizzard, they from the top. (Hint: help grind up the seeds. The lab below mod- From the tip of your els the action of a gizzard. index finger to your middle knuckle is about 2.5 cm.) 1. Place some cracked corn, sunflower seeds, nuts or other seeds, and some gravel in an STEP 3 Fold the rest into fifths. -
Notice Warning Concerning Copyright Restrictions P.O
Publisher of Journal of Herpetology, Herpetological Review, Herpetological Circulars, Catalogue of American Amphibians and Reptiles, and three series of books, Facsimile Reprints in Herpetology, Contributions to Herpetology, and Herpetological Conservation Officers and Editors for 2015-2016 President AARON BAUER Department of Biology Villanova University Villanova, PA 19085, USA President-Elect RICK SHINE School of Biological Sciences University of Sydney Sydney, AUSTRALIA Secretary MARION PREEST Keck Science Department The Claremont Colleges Claremont, CA 91711, USA Treasurer ANN PATERSON Department of Natural Science Williams Baptist College Walnut Ridge, AR 72476, USA Publications Secretary BRECK BARTHOLOMEW Notice warning concerning copyright restrictions P.O. Box 58517 Salt Lake City, UT 84158, USA Immediate Past-President ROBERT ALDRIDGE Saint Louis University St Louis, MO 63013, USA Directors (Class and Category) ROBIN ANDREWS (2018 R) Virginia Polytechnic and State University, USA FRANK BURBRINK (2016 R) College of Staten Island, USA ALISON CREE (2016 Non-US) University of Otago, NEW ZEALAND TONY GAMBLE (2018 Mem. at-Large) University of Minnesota, USA LISA HAZARD (2016 R) Montclair State University, USA KIM LOVICH (2018 Cons) San Diego Zoo Global, USA EMILY TAYLOR (2018 R) California Polytechnic State University, USA GREGORY WATKINS-COLWELL (2016 R) Yale Peabody Mus. of Nat. Hist., USA Trustee GEORGE PISANI University of Kansas, USA Journal of Herpetology PAUL BARTELT, Co-Editor Waldorf College Forest City, IA 50436, USA TIFFANY