Expanding the Eggshell Colour Gamut: Uroerythrin and Bilirubin from Tinamou (Tinamidae) Eggshells Randy Hamchand1, Daniel Hanley2, Richard O
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Urobiliverdin, a New Bile Pigment Deriving from Uroporphyrin Eva Benedikt and Hans-Peter Köst Botanisches Institut, Universität München, Menzingerstr
Urobiliverdin, a New Bile Pigment Deriving from Uroporphyrin Eva Benedikt and Hans-Peter Köst Botanisches Institut, Universität München, Menzingerstr. 67, D-8000 München 19, Bundesrepublik Deutschland Z. Naturforsch. 38 c, 753-757 (1983); received May 4, 1983 Semisynthetic Bile Pigments, Urobiliverdin III, Coprobiliverdin III, Biliverdin IX, Uroporphyrin III 5-Aminolevulinic acid is incubated with a crude enzyme extract from Rhodopseudomonas spheroides, mutant R 26. The formed porphyrins (main product: uroporphyrin III) are isolated. Incorporation of iron, ring-splitting by coupled oxydation and subsequent iron removal leads to a mixture of pigments, from which urobiliverdin, a new bile pigment with eight carboxylic acid side chains, is isolated. It is characterized by its chromatographic behaviour, chromic acid degra dation and UV-vis spectroscopy. Introduction the photosynthetic bacteria, Rhodopseudomonas spheroides, mutant R26 was a gift from Prof. Naturally occurring open chained tetrapyrrolic H. Scheer, Munich. Marker porphyrins were pur systems (bile pigments) usually bear two carboxylic chased from Porphyrin products (Logan, USA). acid side chains, namely propionic acid side chains. Chromic acid degradation was performed accord Examples are phycocyanobilin [1-5], phycoerythro- ing to the procedure developed by Rüdiger [21]; the bilin [5, 6], phytochromobilin [7, 8], the biliar pig degradation products were separated on silicagel 60 ment bilirubin ([9], here older literature) and sterco- coated HPTLC plates (E. Merck, Darmstadt, FRG) bilin [9] which is encountered in the faeces. using the solvent system chloroform-ethyl acetate- All of these pigments probably derive from proto cyclohexane = 6:3:1. The imides formed were heme as has been shown experimentally in a identified by comparison with authentic standards. -
Spectroscopy of Porphyrins
BORIS F. KIM and JOSEPH BOHANDY SPECTROSCOPY OF PORPHYRINS Porphyrins are an important class of compounds that are of interest in molecular biology because of the important roles they play in vital biochemical systems such as biochemical energy conversion in animals, oxygen transport in blood, and photosynthetic energy conversion in plants. We are studying the physical properties of the energy states of porphyrins using the techniques of ex perimental and theoretical spectroscopy with the aim of contributing to a basic understanding of their biochemical behavior. INTRODUCTION Metalloporphin Porphyrins are a class of complex organic chemical compounds found in such diverse places as crude oil, plants, and human beings. They are, in most cases, tailored to carry out vital chemical transformations in intricate biochemical or biophysical systems. They are the key constituents of chlorophyll in plants and of hemoglobin in animals. Without them, life would y be impossible. t Free base porphin These molecules display a wide range of chemical and physical properties that depend on the structural details of the particular porphyrin molecule. All por ~x phyrins are vividly colored and absorb light in the visible and ultraviolet regions of the spectrum. Some exhibit luminescence, paramagnetism, photoconduc tion, or semiconduction. Spme are photosensitizers Wavelength (nanometers) or catalysts. Scientists from several disciplines have been interested in unraveling the principles that cause Fig. 1-The chemical structures for the two forms of por· this diversity of properties. phin are shown on the left. A carbon atom and a hydrogen The simplest compound of all porphyrins is por atom are understood to be at each apex not attached to a nitrogen atom. -
PDF File Includes: Main Text Figures 1 to 4 Supplemental Text Supplemental Figures S1 to S8 Supplemental Tables
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.414581; this version posted December 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE Takayuki Nagaea, Masashi Unnob, Taiki Koizumic, Yohei Miyanoirid, Tomotsumi Fujisawab, Kento Masuif, Takanari Kamof, Kei Wadae, Toshihiko Ekif, Yutaka ItoC, Yuu Hirosef and Masaki Mishimac aSynchrotron Radiation Research Center, Nagoya University, Chikusa, Nagoya 464-8603, Japan; bDepartment of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan; cDepartment of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan; dInstitute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan; eDepartment of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan; fDepartment of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan 1To whom correspondence should be addressed 1Masaki Mishima Email: [email protected] 1Yuu Hirose Email: [email protected] 1 Masashi Unno Email: [email protected] Takayuki Nagae: 0000-0001-7016-5183 Tomotsumi Fujisawa: 0000-0002-3282-6814 Masashi Unno: 0000-0002-5016-6274 Yohei Miyanoiri: 0000-0001-6889-5160 Yuu Hirose: 0000-0003-1116-8979 Kei Wada: 0000-0001-7631-4151 Yutaka Ito: 0000-0002-1030-4660 Masaki Mishima: 0000-0001-7626-7287 Classification Biological Sciences Keywords cyanobacteriochrome, phytochrome, bilin, NMR, crystallography Author Contributions MM, YH, and MU designed the research and wrote the manuscript. -
Northwest Argentina (Custom Tour) 13 – 24 November, 2015 Tour Leader: Andrés Vásquez Co-Guided by Sam Woods
Northwest Argentina (custom tour) 13 – 24 November, 2015 Tour leader: Andrés Vásquez Co-guided by Sam Woods Trip Report by Andrés Vásquez; most photos by Sam Woods, a few by Andrés V. Elegant Crested-Tinamou at Los Cardones NP near Cachi; photo by Sam Woods Introduction: Northwest Argentina is an incredible place and a wonderful birding destination. It is one of those locations you feel like you are crossing through Wonderland when you drive along some of the most beautiful landscapes in South America adorned by dramatic rock formations and deep-blue lakes. So you want to stop every few kilometers to take pictures and when you look at those shots in your camera you know it will never capture the incredible landscape and the breathtaking feeling that you had during that moment. Then you realize it will be impossible to explain to your relatives once at home how sensational the trip was, so you breathe deeply and just enjoy the moment without caring about any other thing in life. This trip combines a large amount of quite contrasting environments and ecosystems, from the lush humid Yungas cloud forest to dry high Altiplano and Puna, stopping at various lakes and wetlands on various altitudes and ending on the drier upper Chaco forest. Tropical Birding Tours Northwest Argentina, Nov.2015 p.1 Sam recording memories near Tres Cruces, Jujuy; photo by Andrés V. All this is combined with some very special birds, several endemic to Argentina and many restricted to the high Andes of central South America. Highlights for this trip included Red-throated -
Researchers Document Aviary Eggshell with Iridescence for the First Time 10 December 2014, by Bob Yirka
Researchers document aviary eggshell with iridescence for the first time 10 December 2014, by Bob Yirka they found to be made of calcium phosphate, calcium carbonate, and some other yet to be identified organic compounds) which gave the egg its glossy sheen. When they removed the cuticle from a portion of an egg sample—they found that it was blue underneath, but that the iridescence was gone. Thus, they concluded that the iridescent blue was due to a combination of the pigment and Photographs (a–c) of T. major, E. elegans and N. cuticle. maculosa nests. Average length breadth of eggs (a–c): 58 48 mm, 53 39 mm and 40 29 mm. Photo credits: The researchers can't say for sure why the bird Karsten Thomsen, Sam Houston and Shirley eggs have such features as they would appear to Sekarajasingham. Journal of the Royal Society Interface, draw attention to them, rather than help keep them Published 10 December 2014 . DOI: 10.1098/rsif.2014.1210 hidden. It seems possible that the iridescence actually causes the eggs to be more difficult to see in their particular environment to a particular type of prey. More likely, the researchers suggest is that (Phys.org)—A team of researchers with members eggs that stand out can be more easily spotted or from New Zealand, Czech Republic and the U.S. differentiated from other eggs from birds of the has documented for the first time an example of an same species, which could serve as a means of aviary egg that has iridescence. In their paper encouraging males to assist with incubation. -
Paint by Benjamin Moore: 1) Walls: HC79 Greenbrier Beige Eggshell 2) Ceiling: HC 79 Greenbrier Beige Eggshell
Master Bath All Stone by Walker Zanger Spa Tub Area: 1) Deck: Winter Cloud marble tiles, with Cote d’or Crème rail mld honed 2) 18” wall splash: SI Lagos Gold pol mosaics, with L&M #262 ¾ x ¾ ridge liner for trim 3) Facing of spa: SI Lagos Gold pol mosaics Steps: Alhambra limestone slab, with step risers of SI Lagos Gold pol mosaics Shower: 1) Walls to ceiling: Cote d’or Crème antique planking, with Via Forte Fiesole molding and with L&M #262 ¾ x ¾ ridge liner to trim the shower 2) Shower window frame: Via Forte Ghirlanda liner, trimmed with Cote d’or Crème rail mld honed 3) Bench: Winter Cloud marble slab 4) Niches (two): SI Lagos Gold pol niche back wall trimmed with Cote d’or Crème rail mld honed and Cote d’or Crème antique planking 5) Floor: Alhambra limestone tiles same as main floor but smaller tiles Floor and Toilet Floor: Alhambra limestone tiles 16 x 16 x 3/8, with 2 rows of SI Lagos Gold pol mosaics between and border of Alhambra limestone tiles Vanities by Crystal Cabinets; Hardware by Rocky Mountain: 1) Door Style: Grandview, Inset OC Edge 2) Wood: Walnut 3) Stain: Wheaton 4) Niche vanity: entire wall with camber top and have a border of wood to match vanity 5) 2nd vanity: wood (to match vanity) framed mirror attached to wall – (wall sconces and switch in the mirror) 6) Tops: Walker Zanger Winter Cloud marble slab, with Winter Cloud marble slab 6” splash Paint by Benjamin Moore: 1) Walls: HC79 Greenbrier Beige eggshell 2) Ceiling: HC 79 Greenbrier Beige eggshell Wood Moulding: !1 1) Type C 2) Crown moldings painted 25% HC79 -
Eudromia Formosa)
ISSN 0326-1778 y ISSN 1853-6581 HISTORIA NATURAL Tercera Serie Volumen 6 (1) 2016/25-39 NOTAS ECOLÓGICAS SOBRE LA MARTINETA CHAQUEÑA (Eudromia formosa) Ecological notes on the Quebracho crested tinamou (Eudromia formosa) Rebeca Lobo Allende1 y Patricia Capllonch2 1Universidad Nacional de Chilecito, Campus Los Sarmientos, Ruta Los Peregrinos s/n (F5360CKB) Los Sarmientos, Chilecito, La Rioja, Argentina. [email protected] 2Cátedra de Biornitología Argentina y Centro Nacional de Anillado de Aves (CENAA), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205 (4000) Tucumán, Argentina. [email protected] HISTORIA NATURAL Tercera Serie Volumen 6 (1) 2016/13-24 25 LOBO ALLENDE R. Y CAPLLONCH P. Resumen. Estudiamos el uso del hábitat de la Martineta Chaqueña (Eudromia formosa) en el oeste de la provincia de Santiago del Estero, Argentina. Realizamos 202 censos (34 otoño e invierno 2002, 36 primavera 2002, 71 verano 2002-2003, 33 otoño e invierno 2003, 10 verano 2004 y 18 otoño e invierno 2004). El éxito de muestreo (al menos un individuo por muestra) fue del 72%. Encontramos 12 individuos en 1000 hectáreas durante la época no reproductiva distribuidos en 5 grupos y 22 individuos a fines de enero (época reproductiva). A diferencia deE. elegans, los grupos eran de no más de 4 individuos, generalmente de 3. Cada grupo en sus aproximadas 200 ha de territorio recorren las sendas lentamente mientras buscan alimento. Prefieren el bosque de quebrachos y algarrobos pero usan también otros ambientes, además penetran en los campos cultivados en busca de insectos. A fines de la primavera y comienzos del verano, en concordancia con la llegada de las lluvias, aumentó un 80% el número de individuos y se observó que a los residentes se unieron individuos de áreas vecinas. -
Natural History and Breeding Behavior of the Tinamou, Nothoprocta Ornata
THE AUK A QUARTERLY JOURNAL OF ORNITHOLOGY VoL. 72 APRIL, 1955 No. 2 NATURAL HISTORY AND BREEDING BEHAVIOR OF THE TINAMOU, NOTHOPROCTA ORNATA ON the high mountainous plain of southern Peril west of Lake Titicaca live three speciesof the little known family Tinamidae. The three speciesrepresent three different genera and grade in size from the small, quail-sizedNothura darwini found in the farin land and grassy hills about Lake Titicaca between 12,500 and 13,300 feet to the large, pheasant-sized Tinamotis pentlandi in the bleak country between 14,000 and 16,000 feet. Nothoproctaornata, the third species in this area and the one to be discussedin the present report, is in- termediate in size and generally occurs at intermediate elevations. In Peril we have encountered Nothoproctabetween 13,000 and 14,300 feet. It often lives in the same grassy areas as Nothura; indeed, the two speciesmay be flushed simultaneouslyfrom the same spot. This is not true of Nothoproctaand the larger tinamou, Tinamotis, for although at places they occur within a few hundred yards of each other, Nothoproctais usually found in the bunch grassknown locally as ichu (mostly Stipa ichu) or in a mixture of ichu and tola shrubs, whereas Tinamotis usually occurs in the range of a different bunch grass, Festuca orthophylla. The three speciesof tinamous are dis- tinguished by the inhabitants, some of whom refer to Nothura as "codorniz" and to Nothoproctaas "perdiz." Tinamotis is always called "quivia," "quello," "keu," or some similar derivative of its distinctive call. The hilly, almost treeless countryside in which Nothoproctalives in southern Peril is used primarily for grazing sheep, alpacas,llamas, and cattle. -
Electronic Spectroscopy of Free Base Porphyrins and Metalloporphyrins
Absorption and Fluorescence Spectroscopy of Tetraphenylporphyrin§ and Metallo-Tetraphenylporphyrin Introduction The word porphyrin is derived from the Greek porphura meaning purple, and all porphyrins are intensely coloured1. Porphyrins comprise an important class of molecules that serve nature in a variety of ways. The Metalloporphyrin ring is found in a variety of important biological system where it is the active component of the system or in some ways intimately connected with the activity of the system. Many of these porphyrins synthesized are the basic structure of biological porphyrins which are the active sites of numerous proteins, whose functions range from oxygen transfer and storage (hemoglobin and myoglobin) to electron transfer (cytochrome c, cytochrome oxidase) to energy conversion (chlorophyll). They also have been proven to be efficient sensitizers and catalyst in a number of chemical and photochemical processes especially photodynamic therapy (PDT). The diversity of their functions is due in part to the variety of metals that bind in the “pocket” of the porphyrin ring system (Fig. 1). Figure 1. Metallated Tetraphenylporphyrin Upon metalation the porphyrin ring system deprotonates, forming a dianionic ligand (Fig. 2). The metal ions behave as Lewis acids, accepting lone pairs of electrons ________________________________ § We all need to thank Jay Stephens for synthesizing the H2TPP 2 from the dianionic porphyrin ligand. Unlike most transition metal complexes, their color is due to absorption(s) within the porphyrin ligand involving the excitation of electrons from π to π* porphyrin ring orbitals. Figure 2. Synthesis of Zn(TPP) The electronic absorption spectrum of a typical porphyrin consists of a strong transition to the second excited state (S0 S2) at about 400 nm (the Soret or B band) and a weak transition to the first excited state (S0 S1) at about 550 nm (the Q band). -
Incubating and Hatching Eggs
EPS-001 7/13 Incubating and Hatching Eggs Gregory S. Archer and A. Lee Cartwright* hether eggs come from a common chicken Factors that affect hatchability or an exotic bird, you must store and incu- W Breeder Hatchery bate them carefully for a successful hatch. Envi- Breeder nutrition Sanitation ronmental conditions, handling, sanitation, and Disease Egg storage record keeping are all important factors when it Mating activity Egg damage comes to incubating and hatching eggs. Egg damage Incubation—Management of Correct male and female setters and hatchers Fertile egg quality body weight Chick handling A fertile egg is alive; each egg contains living cells Egg sanitation that can become a viable embryo and then a chick. Egg storage Eggs are fragile and a successful hatch begins with undamaged eggs that are fresh, clean, and fertile. Collecting and storing fertile eggs You can produce fertile eggs yourself or obtain Fertile eggs must be collected carefully and stored them elsewhere. While commercial hatcheries properly until they are incubated. Keeping the produce quality eggs that are highly fertile, many eggs at proper storage temperatures keeps the do not ship small quantities. If you mail order embryo from starting and stopping development, eggs, be sure to pick them up promptly from your which increases embryo mortality. Collecting receiving area. Hatchability will decrease if eggs eggs frequently and storing them properly delays are handled poorly or get too hot or too cold in embryo development until you are ready to incu- transit. bate them. If you produce the eggs on site, you must care for the breeding stock properly to ensure maximum Egg storage reminders fertility. -
Dieter Thomas Tietze Editor How They Arise, Modify and Vanish
Fascinating Life Sciences Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthusiasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Editor Dieter Thomas Tietze Natural History Museum Basel Basel, Switzerland ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-319-91688-0 ISBN 978-3-319-91689-7 (eBook) https://doi.org/10.1007/978-3-319-91689-7 Library of Congress Control Number: 2018948152 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. -
Birds of Brazil
BIRDS OF BRAZIL - MP3 SOUND COLLECTION version 2.0 List of recordings 0001 1 Greater Rhea 1 Song 0:17 Rhea americana (20/7/2005, Chapada dos Guimaraes, Mato Grosso, Brazil, 15.20S,55.50W) © Peter Boesman 0006 1 Gray Tinamou 1 Song 0:43 Tinamus tao (15/8/2007 18:30h, Nirgua area, San Felipe, Venezuela, 10.15N,68.30W) © Peter Boesman 0006 2 Gray Tinamou 2 Song 0:24 Tinamus tao (2/1/2008 17:15h, Tarapoto tunnel road, San Martín, Peru, 06.25S,76.15W) © Peter Boesman 0006 3 Gray Tinamou 3 Whistle 0:09 Tinamus tao (15/8/2007 18:30h, Nirgua area, San Felipe, Venezuela, 10.15N,68.30W) © Peter Boesman 0007 1 Solitary Tinamou 1 Song () 0:05 Tinamus solitarius (11/8/2004 08:00h, Serra da Graciosa, Paraná, Brazil, 25.20S,48.55W) © Peter Boesman. 0009 1 Great Tinamou 1 Song 1:31 Tinamus major (3/1/2008 18:45h, Morro de Calzada, San Martín, Peru, 06.00S,77.05W) © Peter Boesman 0009 2 Great Tinamou 2 Song 0:31 Tinamus major (28/7/2009 18:00h, Pantiacolla Lodge, Madre de Dios, Peru, 12.39S,71.14W) © Peter Boesman 0009 3 Great Tinamou 3 Song 0:27 Tinamus major (26/7/2009 17:00h, Pantiacolla Lodge, Madre de Dios, Peru, 12.39S,71.14W) © Peter Boesman 0009 4 Great Tinamou 4 Song 0:46 Tinamus major (22nd July 2010 17h00, ACTS Explornapo, Loreto, Peru, 120 m. 3°10' S, 72°55' W). (Background: Thrush-like Antpitta, Elegant Woodcreeper). © Peter Boesman. 0009 5 Great Tinamou 5 Call 0:11 Tinamus major (17/7/2006 17:30h, Iracema falls, Presidente Figueiredo, Amazonas, Brazil, 02.00S,60.00W) © Peter Boesman.