Kmcb-Abstract-Book-2019-Final

Total Page:16

File Type:pdf, Size:1020Kb

Kmcb-Abstract-Book-2019-Final VIII April 27 – May 1, 2019 2 Eight Kinetoplastid Molecular Cell Biology Meeting April 27 – May 1, 2019 Hosted by the Marine Biological Laboratory Woods Hole, Massachusetts, USA The meeting was founded by George A.M. Cross in 2005 Organizers George A.M. Cross 2005-2011 Christian Tschudi 2013-2019 3 KMCBM 2019 Acknowledgements The organizer wishes to thank: The Program Committee Barbara Burleigh (Harvard T. H. Chan School of Public Health, Boston, USA) James D. Bangs (University at Buffalo, Buffalo, USA) Stephen M. Beverley (Washington University School of Medicine, St. Louis, USA) Keith R. Matthews (The University of Edinburgh, Edinburgh, Scotland, UK) The Staff at MBL: Paul Anderson and the MBL Housing and Conference Staff for registration and housing; All the IT AV Support staff and the staff in Sodexo Food Service at the MBL. Cover Design: Markus Engstler 4 KMCBM 2019 Program Saturday, April 27 02:00 – 05:00 Arrival, Registration and Poster Session A setup 04:00 – 06:30 Greeting and Dinner 07:00 – 09:00 Session I: VSG (chair: Mark Carrington) 09:00 – 11:00 Mixer Sunday, April 28 07:00 – 08:30 Breakfast 08:45 – 11:45 Session II: Biochemistry/Metabolism (chair: Ken Stuart) 12:00 – 01:30 Lunch 02:00 – 04:30 Session III: Cell Biology (chair: Kimberly Paul) 06:00 – 07:00 Dinner 07:00 – 09:00 POSTER PRESENTATIONS: Session A 09:00 – 11:00 Mixer & Poster A/B Changeover Monday, April 29 07:00 – 08:30 Breakfast 08:45 – 11:45 Session IV: Pathogenesis I (chair: Luisa Figueiredo) 12:00 – 01:30 Lunch 01:30 – 06:00 Free Time 06:00 – 07:00 Dinner 07:00 – 09:00 POSTER PRESENTATIONS: Session B 09:00 – 11:00 Mixer & Poster B/C Changeover 5 Tuesday, April 30 07:00 – 08:30 Breakfast 08:45 – 11:45 Session V: Cell Cycle/Cytokenisis (chair: Michele Klingbeil) 12:00 – 01:30 Lunch 02:00 – 04:30 Session VI: Gene Expression (chair: Ruslan Afasizhev) 06:00 – 07:00 Dinner 07:00 – 09:00 POSTER PRESENTATIONS: Session C 09:00 – 11:00 Mixer Wednesday, May 1 07:00 – 08:30 Breakfast 08:45 – 11:15 Session VII: Pathogenesis II (chair: Megan Povelones) 12:00 – 01:30 Lunch or lunch boxes ROOMS MUST BE VACATED BY 10:00 AM ON WEDNESDAY 6 In Memoriam: Paul T. Englund, Ph.D. 1938-2019 C.C. Wang, Ph.D. 1936-2017 7 8 SESSION I: VSG Mark Carrington, Chair. Saturday 7:00 pm 04/27/19 9 1A Identification of novel ESB associated proteins in bloodstream form Trypanosoma brucei Budzak, James Jones, Robert (Sir Alexander Fleming Building, Dept. of Life Sciences, Imperial College London, U.K.); Tschudi, Christian; Kolev, Nikolay G. (Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06536, USA.); Rudenko, Gloria (Sir Alexander Fleming Building, Dept. of Life Sciences, Imperial College London, U.K.) 1B A chromatin-associated VEX/CAF-1 complex drives VSG single gene choice and epigenetic inheritance in Trypanosoma brucei Faria, Joana Glover, Lucy; Hutchinson, Sebastian (Institut Pasteur Paris); Boehm, Cordula; C. Field, Mark; Horn, David (Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee) 1C m6A methylation of the polyA-tail regulates VSG transcript stability in trypanosomes Viegas, Idalio Rodrigues, João; Macedo, Juan (Instituto de Medicina Molecular); Aresta Branco, Francisco (Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany.); Jaffrey, Samie (Department of Pharmacology, Weill Cornell Medicine, Cornell University); Figueiredo, Luisa (Instituto de Medicina Molecular) 1D Trypanosoma brucei RAP1 has an RNA binding activity that is essential for VSG monoallelic expression Gaurav, Amit K. Afrin, Marjia (Cleveland State University); Yang, Xian; Pan, Xuehua (The Hong Kong Polytechnic University); Sandhu, Ranjodh (University of California, Davis); Zhao, Yanxiang (The Hong Kong Polytechnic University); Li, Bibo (Cleveland State University) 1E Active expression site ESAGs are not essential in vitro, but their presence alters VSG switching Chamberlain, James Gadelha, Catarina (University of Nottingham, Nottingham, United Kingdom) 1F Developmental competence and antigen switch frequency can be uncoupled in Trypanosoma brucei McWilliam, Kirsty Mugnier, Monica (Johns Hopkins University); Morrison, Liam; Matthews, Keith (University of Edinburgh) TT1G TURNOVER OF VSG IN TRYPANOSOMA BRUCEI Garrison, Paige Umaer, Khan; Bush, Peter; Bangs, Jay (University at Buffalo) TT1H How DNA breaks contribute to mosaic VSG formation in Trypanosoma brucei? Romero-Meza, Gabriela Mugnier, Monica (Johns Hopkins Bloomberg School of Public Health) 10 SESSION II: Biochemistry/Metabolism Ken Stuart, Chair. Sunday 8:45 am 04/28/19 11 2A Glycerol, a new key player in the central carbon metabolism of African trypanosomes Bringaud, Frédéric MFP (CNRS UMR-5234), University of Bordeaux, Bordeaux, France 2B The Trypanosoma UDP-glucose pyrophosphorylase is active in the cytosol and glycosomes and is imported into the organelle by piggybacking Villafraz, Oriana; Baudouin, Hélène; Mazet, Muriel (MFP (CNRS UMR-5234), University of Bordeaux, Bordeaux, France); Kulyk, Hanna; Portais, Jean-Charles (LISBP (CNRS, INRA, INSA), University of Toulouse, Toulouse, France) 2C Responses to reduced glucose transport in Trypanosoma brucei: gluconeogenesis and signaling Kovarova, Julie Hutchinson, Sebastian; Horn, David (University of Dundee) 2D Trypanosoma cruzi intracellular amastigote glutamine metabolism and its impact on susceptibility to ergosterol biosynthesis inhibitors Dumoulin, Peter Burleigh, Barbara (Harvard T.H. Chan School of Public Health) 2E A foot in the door: Understanding nutrient stress tolerance and adaptive gene regulation in Leishmania donovani through the lens of a purine- responsive transporter Licon, Haley Soysa, Radika (University of Washington); Landfear, Scott; Yates, Phillip (Oregon Health and Science University) 2F Remodeling the mitochondrial proteome and metabolic networks of Trypanosoma brucei during in vitro insect stage differentiation Zikova, Alena Dolezelova, Eva (Biology Centre); Levin, Michal; Dejung, Mario (Institute of Molecular Biology); Kunzova, Michaela; Panicucci, Brian (Biology Centre); Janzen, Christian; Butter, Falk (University Wuerzburg) 2G Deciphering the mitochondrial quality control mechanism in Trypanosoma brucei Dewar, Caroline Oeljeklaus, Silke; Suppanz, Ida; Peikert, Christian (University of Freiburg); Mani, Jan (University of Bern); Warscheid, Bettina (University of Freiburg); Schneider, André (University of Bern) TT2H Targeting the ubiquitin system of Leishmania Mexicana Burge, Rebecca Damianou, Andreas; Catta-Preta, Carolina (The University of York); Rodenko, Boris (UbiQ); Mottram, Jeremy C. (The University of York) TT2I Identifying highly divergent glycosyltransferases in the African Trypanosome Duncan, Samuel Damerow, Manuela; Ferguson, Michael (The University of Dundee) 12 SESSION III: Cell Biology Kimberly Paul Sunday 2:00 pm 04/28/19 13 3A Cryo electron tomography with Volta phase plate reveals novel structural foundations of axoneme motility in the pathogen Trypanosoma brucei Imhof, Simon Zhang, Jiayan (Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA); Wang, Hui (California NanoSystems Institute, UCLA); Huy Bui, Khanh (Department of Anatomy and Cell Biology, McGill University, Montreal, CA); Nguyen, Hoangkim (Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA); Atanosov, Ivo; Hui, Wong; Zhou, Hong (California NanoSystems Institute, UCLA); Hill, Kent (Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA) 3B The Leishmania flagellum attachment zone is critical for flagellar pocket shape and development in the sand fly and pathogenicity in the host Sunter, Jack Yanase, Ryuji (University of Hyogo); Wang, Ziyin (University of Oxford); Catta- Preta, Carolina (University of York); Moreira-Leite, Flavia (University of Oxford); Myskova, Jitka; Pruzinova, Katerina; Volf, Petr (Charles University); Mottram, Jeremy (University of York); Gull, Keith (University of Oxford) 3C Structural studies of the interaction between FPC3 and FPC4, two components of the flagellar pocket collar in Trypanosoma brucei Pivovarova, Yulia Majneri, Paul; Lesigang, Johannes (Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Austria); Robinson, Derrick R.; Bonhivers, Melanie (CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France); Dong, Gang (Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Austria) 3D Characterization of TAP110, a mitochondrial protein associated with the TAC, in Trypanosoma brucei Amodeo, Simona Schimanski, Bernd; Ochsenreiter, Torsten (University of Bern, Switzerland) 3E Processing and targeting of cathepsin L (TbCatL) to the lysosome in Trypanosoma brucei Koeller, Carolina M. Bangs, James D. (University at Buffalo) TT3F Swim like your lifecycle depends on it: Investigating chemotaxis and navigation in Leishmania parasites Walrad, Pegine B. Findlay, Rachel; Osman, Mohamed (York Biomedical Research Institute); Gadelha, Hermes (Department of Mathematics); Kaye, Paul (York Biomedical Research Institute); Rogers, Matthew (London School of Hygeine and Tropical Medicine); Wilson, Laurence (Biological Physical Sciences Institute, University of York) TT3G The dual FAZ domain-localizing protein FAZ27 cooperates with FLAM3 and ClpGM6 to control morphology transitions in Trypanosoma brucei AN, TAI ZHOU, QING; HU, HUIQING; LI, ZIYIN (University of Texas Medical School)
Recommended publications
  • Download the Abstract Book
    1 Exploring the male-induced female reproduction of Schistosoma mansoni in a novel medium Jipeng Wang1, Rui Chen1, James Collins1 1) UT Southwestern Medical Center. Schistosomiasis is a neglected tropical disease caused by schistosome parasites that infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs, yet our understanding of their sexual reproduction is limited because egg production is not sustained for more than a few days in vitro. Here, we explore the process of male-stimulated female maturation in our newly developed ABC169 medium and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. By performing an RNAi screen for genes whose expression was enriched in the female reproductive organs, we identify a single nuclear hormone receptor that is required for differentiation and maturation of germ line stem cells in female gonad. Furthermore, we screen genes in non-reproductive tissues that maybe involved in mediating cell signaling during the male-female interplay and identify a transcription factor gli1 whose knockdown prevents male worms from inducing the female sexual maturation while having no effect on male:female pairing. Using RNA-seq, we characterize the gene expression changes of male worms after gli1 knockdown as well as the female transcriptomic changes after pairing with gli1-knockdown males. We are currently exploring the downstream genes of this transcription factor that may mediate the male stimulus associated with pairing.
    [Show full text]
  • Autophagy in Trypanosomatids
    Cells 2012, 1, 346-371; doi:10.3390/cells1030346 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review Autophagy in Trypanosomatids Ana Brennand 1,†, Eva Rico 2,†,‡ and Paul A. M. Michels 1,* 1 Research Unit for Tropical Diseases, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, postal box B1.74.01, B-1200 Brussels, Belgium; E-Mail: [email protected] 2 Department of Biochemistry and Molecular Biology, University Campus, University of Alcalá, Alcalá de Henares, Madrid, 28871, Spain; E-Mail: [email protected] † These authors contributed equally to this work. ‡ Present Address: Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +32-2-7647473; Fax: +32-2-7626853. Received: 28 June 2012; in revised form: 14 July 2012 / Accepted: 16 July 2012 / Published: 27 July 2012 Abstract: Autophagy is a ubiquitous eukaryotic process that also occurs in trypanosomatid parasites, protist organisms belonging to the supergroup Excavata, distinct from the supergroup Opistokontha that includes mammals and fungi. Half of the known yeast and mammalian AuTophaGy (ATG) proteins were detected in trypanosomatids, although with low sequence conservation. Trypanosomatids such as Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are responsible for serious tropical diseases in humans. The parasites are transmitted by insects and, consequently, have a complicated life cycle during which they undergo dramatic morphological and metabolic transformations to adapt to the different environments.
    [Show full text]
  • The Cytological Events and Molecular Control of Life Cycle Development of Trypanosoma Brucei in the Mammalian Bloodstream
    pathogens Review The Cytological Events and Molecular Control of Life Cycle Development of Trypanosoma brucei in the Mammalian Bloodstream Eleanor Silvester †, Kirsty R. McWilliam † and Keith R. Matthews * Institute for Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, King’s Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; [email protected] (E.S.); [email protected] (K.R.McW.) * Correspondence: [email protected]; Tel.: +44-131-651-3639 † These authors contributed equally to this work. Received: 23 May 2017; Accepted: 22 June 2017; Published: 28 June 2017 Abstract: African trypanosomes cause devastating disease in sub-Saharan Africa in humans and livestock. The parasite lives extracellularly within the bloodstream of mammalian hosts and is transmitted by blood-feeding tsetse flies. In the blood, trypanosomes exhibit two developmental forms: the slender form and the stumpy form. The slender form proliferates in the bloodstream, establishes the parasite numbers and avoids host immunity through antigenic variation. The stumpy form, in contrast, is non-proliferative and is adapted for transmission. Here, we overview the features of slender and stumpy form parasites in terms of their cytological and molecular characteristics and discuss how these contribute to their distinct biological functions. Thereafter, we describe the technical developments that have enabled recent discoveries that uncover how the slender to stumpy transition is enacted in molecular terms. Finally, we highlight new understanding of how control of the balance between slender and stumpy form parasites interfaces with other components of the infection dynamic of trypanosomes in their mammalian hosts.
    [Show full text]
  • Cell & Molecular Biology
    BSC ZO- 102 B. Sc. I YEAR CELL & MOLECULAR BIOLOGY DEPARTMENT OF ZOOLOGY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY BSCZO-102 Cell and Molecular Biology DEPARTMENT OF ZOOLOGY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY Phone No. 05946-261122, 261123 Toll free No. 18001804025 Fax No. 05946-264232, E. mail [email protected] htpp://uou.ac.in Board of Studies and Programme Coordinator Board of Studies Prof. B.D.Joshi Prof. H.C.S.Bisht Retd.Prof. Department of Zoology Department of Zoology DSB Campus, Kumaun University, Gurukul Kangri, University Nainital Haridwar Prof. H.C.Tiwari Dr.N.N.Pandey Retd. Prof. & Principal Senior Scientist, Department of Zoology, Directorate of Coldwater Fisheries MB Govt.PG College (ICAR) Haldwani Nainital. Bhimtal (Nainital). Dr. Shyam S.Kunjwal Department of Zoology School of Sciences, Uttarakhand Open University Programme Coordinator Dr. Shyam S.Kunjwal Department of Zoology School of Sciences, Uttarakhand Open University Haldwani, Nainital Unit writing and Editing Editor Writer Dr.(Ms) Meenu Vats Dr.Mamtesh Kumari , Professor & Head Associate. Professor Department of Zoology, Department of Zoology DAV College,Sector-10 Govt. PG College Chandigarh-160011 Uttarkashi (Uttarakhand) Dr.Sunil Bhandari Asstt. Professor. Department of Zoology BGR Campus Pauri, HNB (Central University) Garhwal. Course Title and Code : Cell and Molecular Biology (BSCZO 102) ISBN : 978-93-85740-54-1 Copyright : Uttarakhand Open University Edition : 2017 Published By : Uttarakhand Open University, Haldwani, Nainital- 263139 Contents Course 1: Cell and Molecular Biology Course code: BSCZO102 Credit: 3 Unit Block and Unit title Page number Number Block 1 Cell Biology or Cytology 1-128 1 Cell Type : History and origin.
    [Show full text]
  • The Flagellum and Flagellar Pocket of Trypanosomatids
    Molecular & Biochemical Parasitology 115 (2001) 1–17 www.parasitology-online.com. Reviews: Parasite cell Biology: 1 The flagellum and flagellar pocket of trypanosomatids Scott M. Landfear *, Marina Ignatushchenko Department of Molecular Microbiology and Immunology, Oregon Health Sciences Uni6ersity, Portland, OR 97201, USA Received 9 November 2000; received in revised form 26 January 2001; accepted 5 March 2001 Abstract The flagellum and flagellar pocket are distinctive organelles present among all of the trypanosomatid protozoa. Currently, recognized functions for these organelles include generation of motility for the flagellum and dedicated secretory and endocytic activities for the flagellar pocket. The flagellar and flagellar pocket membranes have long been recognized as morphologically separate domains that are component parts of the plasma membrane that surrounds the entire cell. The structural and functional specialization of these two membranes has now been underscored by the identification of multiple proteins that are targeted selectively to each of these domains, and non-membrane proteins have also been identified that are targeted to the internal lumina of these organelles. Investigations on the functions of these organelle-specific proteins should continue to shed light on the unique biological activities of the flagellum and flagellar pocket. In addition, work has begun on identifying signals or modifications of these proteins that direct their targeting to the correct subcellular location. Future endeavors should further refine our knowledge of targeting signals and begin to dissect the molecular machinery involved in transporting and retaining each polypeptide at its designated cellular address. © 2001 Elsevier Science B.V. All rights reserved. Keywords: Trypanosomatid protozoa; Flagellum; Flagellar Pocket; Organelle-specific proteins; Review 1.
    [Show full text]
  • Glycosome Biogenesis in Trypanosomes and the De Novo Dilemma
    REVIEW Glycosome biogenesis in trypanosomes and the de novo dilemma Sarah Bauer, Meredith T. Morris* Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America * [email protected] Abstract Trypanosomatid parasites, including Trypanosoma and Leishmania, are the causative a1111111111 agents of lethal diseases threatening millions of people around the world. These organisms a1111111111 compartmentalize glycolysis in essential, specialized peroxisomes called glycosomes. Per- a1111111111 oxisome proliferation can occur through growth and division of existing organelles and de a1111111111 a1111111111 novo biogenesis from the endoplasmic reticulum. The level that each pathway contributes is debated. Current evidence supports the concerted contribution of both mechanisms in an equilibrium that can vary depending on environmental conditions and metabolic require- ments of the cell. Homologs of a number of peroxins, the proteins involved in peroxisome biogenesis and matrix protein import, have been identified in T. brucei. Based on these find- OPEN ACCESS ings, it is widely accepted that glycosomes proliferate through growth and division of existing Citation: Bauer S, Morris MT (2017) Glycosome organelles; however, to our knowledge, a de novo mechanism of biogenesis has not been biogenesis in trypanosomes and the de novo dilemma. PLoS Negl Trop Dis 11(4): e0005333. directly demonstrated. Here, we review recent findings that provide support for the existence https://doi.org/10.1371/journal.pntd.0005333 of an endoplasmic reticulum (ER)-derived de novo pathway of glycosome biogenesis in T. Editor: Christian Tschudi, Yale School of Public brucei. Two studies recently identified PEX13.1, a peroxin involved in matrix protein import, Health, UNITED STATES in the ER of procyclic form T.
    [Show full text]
  • Role of Melatonin in the Synchronization of Asexual Forms in the Parasite Plasmodium Falciparum
    biomolecules Review Role of Melatonin in the Synchronization of Asexual Forms in the Parasite Plasmodium falciparum Maneesh Kumar Singh 1 ,Bárbara Karina de Menezes Dias 2 and Célia R. S. Garcia 1,* 1 Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; [email protected] 2 Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-11-3091-8536 Received: 15 July 2020; Accepted: 26 August 2020; Published: 27 August 2020 Abstract: The indoleamine compound melatonin has been extensively studied in the regulation of the circadian rhythm in nearly all vertebrates. The effects of melatonin have also been studied in Protozoan parasites, especially in the synchronization of the human malaria parasite Plasmodium falciparum via a complex downstream signalling pathway. Melatonin activates protein kinase A (PfPKA) and requires the activation of protein kinase 7 (PfPK7), PLC-IP3, and a subset of genes from the ubiquitin-proteasome system. In other parasites, such as Trypanosoma cruzi and Toxoplasma gondii, melatonin increases inflammatory components, thus amplifying the protective response of the host’s immune system and affecting parasite load. The development of melatonin-related indole compounds exhibiting antiparasitic properties clearly suggests this new and effective approach as an alternative treatment. Therefore, it is critical to understand how melatonin confers stimulatory functions in host–parasite biology. Keywords: melatonin; Apicomplexa; rhythm; signalling 1. Introduction Malaria is a disease associated with a remarkably high mortality rate in its endemic areas, which have subtropical climates.
    [Show full text]
  • The Autophagy Machinery in Human-Parasitic Protists; Diverse Functions for Universally Conserved Proteins
    cells Review The Autophagy Machinery in Human-Parasitic Protists; Diverse Functions for Universally Conserved Proteins Hirokazu Sakamoto 1,2,* , Kumiko Nakada-Tsukui 3 and Sébastien Besteiro 4,* 1 Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan 2 Department of Biomedical Chemistry, The University of Tokyo, Tokyo 113-8654, Japan 3 Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; [email protected] 4 LPHI, Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France * Correspondence: [email protected] (H.S.); [email protected] (S.B.) Abstract: Autophagy is a eukaryotic cellular machinery that is able to degrade large intracellular components, including organelles, and plays a pivotal role in cellular homeostasis. Target materials are enclosed by a double membrane vesicle called autophagosome, whose formation is coordinated by autophagy-related proteins (ATGs). Studies of yeast and Metazoa have identified approximately 40 ATGs. Genome projects for unicellular eukaryotes revealed that some ATGs are conserved in all eukaryotic supergroups but others have arisen or were lost during evolution in some specific lineages. In spite of an apparent reduction in the ATG molecular machinery found in parasitic protists, it has become clear that ATGs play an important role in stage differentiation or organelle maintenance, sometimes with an original function that is unrelated to canonical degradative autophagy. In this review, we aim to briefly summarize the current state of knowledge in parasitic protists, in the light of the latest important findings from more canonical model organisms. Determining the roles of ATGs Citation: Sakamoto, H.; Nakada-Tsukui, K.; Besteiro, S.
    [Show full text]
  • 3Rd Annual Student Research Symposium
    3rd Annual Student Research Symposium July 30th, 2021 Feasibility and Limited Efficacy of a Tandem Cycling Community Exer- cise Program on Physiological Health, Functional Health, Therapeutic Relationships, and Quality of Life in Persons and Care Partners affected by Parkinson’s Disease Abstract: “Background: The therapeutic effects of forced aerobic exercise cycling on Par- kinson’s Disease is well established, as is the link between Parkinson’s Disease (PD) patients’ health, and the health of their primary caregivers. Purpose:To examine the feasibility and limited efficacy of combining the two into Greggory a novel therapy where patient and caregiver undergo an 8-week training regimen Adams of VR tandem cycling aimed to improve physiological and psychological health. Methods: Ten patient dyads (PD and caregiver) will undergo 16 sessions of VR tandem cycling for 8 weeks, 2x/week. They will be clinically evaluated pre/ post-intervention for physiologic benchmarks such as Heart Rate Variability (HRV), and Stress Response via 48-hr heart rate monitoring and Kubios software. Psychological benchmarks will be determined by Parkinson’s Disease Quality of Life Measurement System (PD-QOL), Montreal Cognitive Assessment (MoCA), and a Dyadic Relationship Scale among others. Statistically significant differences will be established at p<0.05. Results: We hypothesize that HRV, sleep quality, and stress response will improve. PD-QOL and the Dyadic Relationship Scale and other QOL metrics are expected to improve for both caregiver and patient. The MoCA and Hoen and Yar scales are not expected to change due to primarily being used as exclusion criteria, how- ever the Unified Parkinson Disease Rating Scale (UPDRS) metrics are expected to improve for the patient.
    [Show full text]
  • Biogenesis of Glycosomes of Trypanosoma Brucei
    Proc. Natl. Acad. Sci. USA Vol. 85, pp. 2598-2602, April 1988 Cell Biology Biogenesis of glycosomes of Trypanosoma brucei: An in vitro model of 3-phosphoglycerate kinase import (in vitro transcription of cloned DNA/in vitro translation/proteinase K digestion/signal sequence) HARRY F. DOVEY*, MARILYN PARSONSt*, AND CHING C. WANG*§ *Department of Pharmaceutical Chemistry, University of California, School of Pharmacy, San Francisco, CA 94143; tSeattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109; and tDepartment of Pathobiology, University of Washington, Seattle, WA 98195 Communicated by Y. W. Kan, November 23, 1987 (receivedfor review August 3, 1987) ABSTRACT Glycosomes are intracellular, membrane- ined thus far, in vitro translation ofmRNA yields GPs with the bound microbody organelles of trypanosomes and leishmania. same molecular weights as the mature products inside the Nine glycolytic enzymes are the major protein components of glycosome (6), suggesting that the import may not involve the glycosomes of Trypanosoma brucei long-slender blood- proteolytic processing. Thus, this process appears similar to stream forms. Glycosomal proteins are believed to be synthe- the biogenesis of other microbodies, such as the peroxisomes sized in the cytoplasm and inserted across the glycosomal of yeast and mammals (7-9) and the glyoxysomes of plants membrane posttranslationally. We have developed an in vitro (10), and differs from the biogenesis of mitochondria and protein import assay for the study of glycosomal biogenesis in chloroplasts where posttranslational protein import generally T. brucei. All nine glycosomal glycolytic enzymes were detect- involves proteolytic cleavage of specific leader sequences able by immunoprecipitation and gel analysis of radiolabeled (11-13).
    [Show full text]
  • Glycosome Heterogeneity, Import Complex, and Metabolism in Trypanosoma Brucei
    Clemson University TigerPrints All Dissertations Dissertations May 2021 Glycosome Heterogeneity, Import Complex, and Metabolism in Trypanosoma brucei Christina L. Wilkinson Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Wilkinson, Christina L., "Glycosome Heterogeneity, Import Complex, and Metabolism in Trypanosoma brucei" (2021). All Dissertations. 2817. https://tigerprints.clemson.edu/all_dissertations/2817 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. GLYCOSOME HETEROGENEITY, IMPORT COMPLEX, AND METABOLISM IN TRYPANOSOMA BRUCEI A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Genetics by Christina Wilkinson May 2021 Accepted by: Meredith Morris, Committee Chair Kimberly Paul Julia Frugoli Zhicheng Dou i ABSTRACT The kinetoplastid parasite Trypanosoma brucei is responsible for both human African trypanosomiasis (HAT) and the wasting disease nagana found in cattle. Unique to kinetoplastids are the specialized peroxisomes, named glycosomes, which compartmentalize the first several steps of glycolysis and gluconeogenesis, nucleotide sugar biosynthesis, and many other metabolic processes. There are many studies surrounding the heterogeneity and complexity of glycosomes as well as how these organelles proliferate and import their proteins. Here, I first explored new methods to analyze glycosome heterogeneity by flow cytometry. The advancement of flow cytometry has yielded methods that enable the identification of vesicles between 30-1000 nm in diameter. I adapted these techniques for the identification of glycosome populations by flow cytometry and the isolation of distinct populations via organelle sorting.
    [Show full text]
  • Plasma Membrane Coat and a Coated Vesicle-Associated Reticulum of Membranes: Their Structure and Possible Interrelationship in Chara Corallina
    Plasma Membrane Coat and a Coated Vesicle-associated Reticulum of Membranes: Their Structure and Possible Interrelationship in Chara corallina THOMAS C . PESACRETA and WILLIAM J . LUCAS Department of Botany, University of California, Davis, California 95616 ABSTRACT Primary fixation with buffered glutaraldehyde plus 2 .0 mM CaC12 and 0.1% tannic acid results in the preservation of certain portions of the plasma membrane coat of Chara when seen with the electron microscope. Such a coat is not observable after fixation with glutaraldehyde alone . The coat appears to be present on all the above ground, vegetative cells of the male plant. Within complex invaginations of the plasma membrane, which are known as charasomes, the coat has two structural components, a central core that is either tubular or solid and a fibrous or granular peripheral region that surrounds the core. The coat material appears to be at least partially derived, via exocytosis, from the contents of single membrane-bound organelles known as glycosomes. Glycosomes seem to originate from within an assemblage of membranes and coated vesicles that can be described, in purely structural terms, as a partially coated reticulum. Such a reticulum is distinguishable from Golgi stacks because the reticulum (a) is not composed of stacked membranes, (b) is extensively involved with large, clearly detailed coated vesicles and coated invaginations, (c) is closely associated with glycosomes, and (d) is only slightly stained by the zinc-iodide-osmium tetraoxide reagent. Chara corallina is a member of the Characeae, a family of compressed by a turgor pressure of-0.7 mPa. While the plant large-celled algae that have been studiedby many investigators cell wall can resist turgor pressurealong the "smooth" portions with regard to processes such as ion transport (1), cyclosis (2), of the plasma membrane, it is doubtful that a conventional and cell wall growth (3).
    [Show full text]