Plasma Membrane Coat and a Coated Vesicle-Associated Reticulum of Membranes: Their Structure and Possible Interrelationship in Chara Corallina

Total Page:16

File Type:pdf, Size:1020Kb

Plasma Membrane Coat and a Coated Vesicle-Associated Reticulum of Membranes: Their Structure and Possible Interrelationship in Chara Corallina Plasma Membrane Coat and a Coated Vesicle-associated Reticulum of Membranes: Their Structure and Possible Interrelationship in Chara corallina THOMAS C . PESACRETA and WILLIAM J . LUCAS Department of Botany, University of California, Davis, California 95616 ABSTRACT Primary fixation with buffered glutaraldehyde plus 2 .0 mM CaC12 and 0.1% tannic acid results in the preservation of certain portions of the plasma membrane coat of Chara when seen with the electron microscope. Such a coat is not observable after fixation with glutaraldehyde alone . The coat appears to be present on all the above ground, vegetative cells of the male plant. Within complex invaginations of the plasma membrane, which are known as charasomes, the coat has two structural components, a central core that is either tubular or solid and a fibrous or granular peripheral region that surrounds the core. The coat material appears to be at least partially derived, via exocytosis, from the contents of single membrane-bound organelles known as glycosomes. Glycosomes seem to originate from within an assemblage of membranes and coated vesicles that can be described, in purely structural terms, as a partially coated reticulum. Such a reticulum is distinguishable from Golgi stacks because the reticulum (a) is not composed of stacked membranes, (b) is extensively involved with large, clearly detailed coated vesicles and coated invaginations, (c) is closely associated with glycosomes, and (d) is only slightly stained by the zinc-iodide-osmium tetraoxide reagent. Chara corallina is a member of the Characeae, a family of compressed by a turgor pressure of-0.7 mPa. While the plant large-celled algae that have been studiedby many investigators cell wall can resist turgor pressurealong the "smooth" portions with regard to processes such as ion transport (1), cyclosis (2), of the plasma membrane, it is doubtful that a conventional and cell wall growth (3). In an earlier series of articles from cell wall is present in the periplasm of the charasome (6). our laboratory (4-6), the ultrastructure of Chara was exam- Preliminary evidence that the periplasm of Chara does con- ined with special attention being given to studying the devel- tain some structural components has been presented (6). Such opment of the charasomes. Barton originated the term char- work did not consider the influence ofdivalent cations on the asome (7) to denote a multi-tiered complex of anastomosing structure of the charasome, nor was the structure of other tubules that are part of the plasma membrane of Chara. portions ofthe plasma membrane considered. In animal cells, Periplasm is an ancillary term that refers to the apoplastic proteoglycans in the extracellular matrix are associated with space that is present within the charasome. Instead of being the plasma membrane and absorb compressive loads (10). evenly distributed over the entire cell surface, charasomes are However, to our knowledge, little information is available located in a series of circumferential bands along the length concerning the existence of a plasma membrane associated ofthese cylindrical cells (4). Given the proper conditions (8), extracellular matrix (which we shall refer to as a "plasma such bands will acidify the surrounding solution; between membrane coat" to distinguish it from the plant cell wall) of bands, the solution that is adjacent to the cell will become plant cells. Robards (11), Levering and Thomson (12), and alkaline. The precise function of charasomes is not presently Olesen (13) have published micrographs of plant cell plasma understood. However, it has been shown that enzymes that membranes that have either dense particles or linings that are are capable of using ATP are present in the charasome mem- associated with the membrane to some degree. Robards (11) brane (9) and it has been suggested that proteins that are and Olesen (13) hypothesized that such particles were cellulose involved with chloride transport may be present as well (9). synthesizing enzymes. Levering and Thomson (12) showed One of the questions regarding the charasome concerns its an extensive lining with a circular substructure that was ability to maintain an anastomosing tubular form while being located within invaginations of the plasma membrane and THE JOURNAL OF CELL BIOLOGY " VOLUME 98 APRIL 1984 1537-1545 ® The Rockefeller University Press - 0021-9525/84/04/1537/09 $1 .00 1537 that was heavily stained when compared to the cell wall. Such were fixed in a solution that contained 3.0% formaldehyde (freshly made from a paucity of information may have been brought about by paraformaldehyde), 0.5% glutaraldehyde, 10.0 mM CaCIZ, and 50.0 mM so- dium cacodylate with the pH adjusted to 6.8 by adding a few drops of 1 .0 N the existence offactors similar to those that made visualization HCI. After a postaldehyde wash in distilled water they were placed in the ZIO of the lamina rara of animal cells difficult, until the proper solution described by Parker and Hawes (20), except that the temperature of fixation techniques were discovered (14). the solution was kept at 30 .0°C for 18.0 h. For osmium impregnation the cells In animal cells, proteoglycans of the extracellular matrix were placed in 2.0% Os0a at 30 .0°C for 18.0 h. Sections were viewed without are synthesized within the endoplasmic reticulum and the poststaining. Golgi complex, and are then further processed afterexocytosis RESULTS (10). Supportive evidence for the existence of a generally similar delivery system, in other plant cells, comes from Preservation of the Plasma Membrane Coat studies that show that exocytosis ofGolgi vesicles that contain While primary fixation with glutaraldehyde alone results in wall scales (15) and mucilage (16) can occur. It should be the absence of visible material within the periplasm (4-6), the noted that some ambiguity is present in contemporary scien- inclusion of tannic acid and calcium chloride in the fixative tific literature concerning the implication ofthe phrase "Golgi results in the preservation of the plasma membrane coat vesicles." Such ambiguity mainly stems from the studies of (PMC) both within the periplasm and on the external surface Novikoff et al. (17), who have interposed the concept of a of the plasma membrane outside the charasome (Fig. 1). GERL into previously constructed schemes of endomem- Because the PMC has been preserved, the periplasmic tubules brane flow. The GERL contains an assemblage of vesicles appear to be denser than the symplastic tubules; this is the and lamellae that are structurally similar to, but which some- reverse of the image that is seen after fixation with glutaral- times differ in their enzyme content from, the immediately dehyde alone. adjacent vesicles and lamellae of the Golgi complex. While Two structural components, a core and a matrix that sur- usage ofthe term GERL is becoming common in the scientific rounds the core, comprise the PMC (Fig. 1). In some in- literature, some workers still prefer to think of the GERL as stances, the core appears as a discrete rod or tube with a being part of the Golgi complex (18). diameter of -130.0-180.0 f1. Frequently, the core is associ- Here we describe the effect of fixative composition on the ated with radial extensions that bridge the space between the complex structure of the plasma membrane coat of Chara. In core and the plasma membrane. Matrix materials of variable addition, we present micrographs that support the contention structure always surround the core. Discrete particles are that at least some of the material of the plasma membrane evident in some areas ofthe matrix. In other cases, the matrix coat is derived from a partially coated reticulum of mem- is simply a dense, amorphous material that in some places branes rather than being directly derived from the Golgi obscures the structure of the core. stacks. Finally, we describe the distinctive structure and stain- Outside the charasome, the matrix appears as a dense ing characteristics of the partially coated reticulum and show fibrogranular material that is attached to the external surface its close association with both coated vesicles and glycosomes. of the plasma membrane; core material is only occasionally MATERIALS AND METHODS observed (Fig. 1). In areas where charasomes are not present and the plasma membrane is closely appressed to the cell Material and Growing Conditions: Plants of Chara corallina wall, it is difficult to perceive any structural distinction be- Klein ex Wild ., em. R.D.W. (= C. australis R. Br.), obtained from subcultures tween the PMC and the wall. But, when the cell is intention- that had been maintained in our laboratory for more than 5.0 years, were grown in the laboratory under fluorescent lamps at 21 .0-23.0 in 120-1 ally plasmolysed during fixation, the presence of the PMC containers in solutions containing 3.0 mM Na*, 0.2 mM K*, 0.1-0.2 mM and its attachment to the plasma membrane are evident (Fig. Cat *, 1.5 mM Cl-, and ~2.0 HC03 (pH 8.5-9.5). Only male plants were used . 2). Such a PMC is present on all the cell types of vegetative, In all cases, cells were exised from the parent plants during the afternoon, male Chara plants (with the possible exception of rhizoids, incubated in culture media for 1.0 h and then were transferred to our labora- tory's standard physiological testing solution that was composed of 1.0 mM which we have not studied). NaCl, 0.2 mM KCI, 0.2 mM CaSOa, and 1.0 mM NaHC0, (pH 8.0). Extensive We found that the preservation of PMC core material is testing by one of us (W. J. Lucas) has shown that Chara cells remain viable quite sensitive to the presence of calcium in the fixative.
Recommended publications
  • Download the Abstract Book
    1 Exploring the male-induced female reproduction of Schistosoma mansoni in a novel medium Jipeng Wang1, Rui Chen1, James Collins1 1) UT Southwestern Medical Center. Schistosomiasis is a neglected tropical disease caused by schistosome parasites that infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs, yet our understanding of their sexual reproduction is limited because egg production is not sustained for more than a few days in vitro. Here, we explore the process of male-stimulated female maturation in our newly developed ABC169 medium and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. By performing an RNAi screen for genes whose expression was enriched in the female reproductive organs, we identify a single nuclear hormone receptor that is required for differentiation and maturation of germ line stem cells in female gonad. Furthermore, we screen genes in non-reproductive tissues that maybe involved in mediating cell signaling during the male-female interplay and identify a transcription factor gli1 whose knockdown prevents male worms from inducing the female sexual maturation while having no effect on male:female pairing. Using RNA-seq, we characterize the gene expression changes of male worms after gli1 knockdown as well as the female transcriptomic changes after pairing with gli1-knockdown males. We are currently exploring the downstream genes of this transcription factor that may mediate the male stimulus associated with pairing.
    [Show full text]
  • Autophagy in Trypanosomatids
    Cells 2012, 1, 346-371; doi:10.3390/cells1030346 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review Autophagy in Trypanosomatids Ana Brennand 1,†, Eva Rico 2,†,‡ and Paul A. M. Michels 1,* 1 Research Unit for Tropical Diseases, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, postal box B1.74.01, B-1200 Brussels, Belgium; E-Mail: [email protected] 2 Department of Biochemistry and Molecular Biology, University Campus, University of Alcalá, Alcalá de Henares, Madrid, 28871, Spain; E-Mail: [email protected] † These authors contributed equally to this work. ‡ Present Address: Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +32-2-7647473; Fax: +32-2-7626853. Received: 28 June 2012; in revised form: 14 July 2012 / Accepted: 16 July 2012 / Published: 27 July 2012 Abstract: Autophagy is a ubiquitous eukaryotic process that also occurs in trypanosomatid parasites, protist organisms belonging to the supergroup Excavata, distinct from the supergroup Opistokontha that includes mammals and fungi. Half of the known yeast and mammalian AuTophaGy (ATG) proteins were detected in trypanosomatids, although with low sequence conservation. Trypanosomatids such as Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are responsible for serious tropical diseases in humans. The parasites are transmitted by insects and, consequently, have a complicated life cycle during which they undergo dramatic morphological and metabolic transformations to adapt to the different environments.
    [Show full text]
  • The Cytological Events and Molecular Control of Life Cycle Development of Trypanosoma Brucei in the Mammalian Bloodstream
    pathogens Review The Cytological Events and Molecular Control of Life Cycle Development of Trypanosoma brucei in the Mammalian Bloodstream Eleanor Silvester †, Kirsty R. McWilliam † and Keith R. Matthews * Institute for Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, King’s Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; [email protected] (E.S.); [email protected] (K.R.McW.) * Correspondence: [email protected]; Tel.: +44-131-651-3639 † These authors contributed equally to this work. Received: 23 May 2017; Accepted: 22 June 2017; Published: 28 June 2017 Abstract: African trypanosomes cause devastating disease in sub-Saharan Africa in humans and livestock. The parasite lives extracellularly within the bloodstream of mammalian hosts and is transmitted by blood-feeding tsetse flies. In the blood, trypanosomes exhibit two developmental forms: the slender form and the stumpy form. The slender form proliferates in the bloodstream, establishes the parasite numbers and avoids host immunity through antigenic variation. The stumpy form, in contrast, is non-proliferative and is adapted for transmission. Here, we overview the features of slender and stumpy form parasites in terms of their cytological and molecular characteristics and discuss how these contribute to their distinct biological functions. Thereafter, we describe the technical developments that have enabled recent discoveries that uncover how the slender to stumpy transition is enacted in molecular terms. Finally, we highlight new understanding of how control of the balance between slender and stumpy form parasites interfaces with other components of the infection dynamic of trypanosomes in their mammalian hosts.
    [Show full text]
  • Kmcb-Abstract-Book-2019-Final
    VIII April 27 – May 1, 2019 2 Eight Kinetoplastid Molecular Cell Biology Meeting April 27 – May 1, 2019 Hosted by the Marine Biological Laboratory Woods Hole, Massachusetts, USA The meeting was founded by George A.M. Cross in 2005 Organizers George A.M. Cross 2005-2011 Christian Tschudi 2013-2019 3 KMCBM 2019 Acknowledgements The organizer wishes to thank: The Program Committee Barbara Burleigh (Harvard T. H. Chan School of Public Health, Boston, USA) James D. Bangs (University at Buffalo, Buffalo, USA) Stephen M. Beverley (Washington University School of Medicine, St. Louis, USA) Keith R. Matthews (The University of Edinburgh, Edinburgh, Scotland, UK) The Staff at MBL: Paul Anderson and the MBL Housing and Conference Staff for registration and housing; All the IT AV Support staff and the staff in Sodexo Food Service at the MBL. Cover Design: Markus Engstler 4 KMCBM 2019 Program Saturday, April 27 02:00 – 05:00 Arrival, Registration and Poster Session A setup 04:00 – 06:30 Greeting and Dinner 07:00 – 09:00 Session I: VSG (chair: Mark Carrington) 09:00 – 11:00 Mixer Sunday, April 28 07:00 – 08:30 Breakfast 08:45 – 11:45 Session II: Biochemistry/Metabolism (chair: Ken Stuart) 12:00 – 01:30 Lunch 02:00 – 04:30 Session III: Cell Biology (chair: Kimberly Paul) 06:00 – 07:00 Dinner 07:00 – 09:00 POSTER PRESENTATIONS: Session A 09:00 – 11:00 Mixer & Poster A/B Changeover Monday, April 29 07:00 – 08:30 Breakfast 08:45 – 11:45 Session IV: Pathogenesis I (chair: Luisa Figueiredo) 12:00 – 01:30 Lunch 01:30 – 06:00 Free Time 06:00 – 07:00 Dinner 07:00
    [Show full text]
  • Cell & Molecular Biology
    BSC ZO- 102 B. Sc. I YEAR CELL & MOLECULAR BIOLOGY DEPARTMENT OF ZOOLOGY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY BSCZO-102 Cell and Molecular Biology DEPARTMENT OF ZOOLOGY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY Phone No. 05946-261122, 261123 Toll free No. 18001804025 Fax No. 05946-264232, E. mail [email protected] htpp://uou.ac.in Board of Studies and Programme Coordinator Board of Studies Prof. B.D.Joshi Prof. H.C.S.Bisht Retd.Prof. Department of Zoology Department of Zoology DSB Campus, Kumaun University, Gurukul Kangri, University Nainital Haridwar Prof. H.C.Tiwari Dr.N.N.Pandey Retd. Prof. & Principal Senior Scientist, Department of Zoology, Directorate of Coldwater Fisheries MB Govt.PG College (ICAR) Haldwani Nainital. Bhimtal (Nainital). Dr. Shyam S.Kunjwal Department of Zoology School of Sciences, Uttarakhand Open University Programme Coordinator Dr. Shyam S.Kunjwal Department of Zoology School of Sciences, Uttarakhand Open University Haldwani, Nainital Unit writing and Editing Editor Writer Dr.(Ms) Meenu Vats Dr.Mamtesh Kumari , Professor & Head Associate. Professor Department of Zoology, Department of Zoology DAV College,Sector-10 Govt. PG College Chandigarh-160011 Uttarkashi (Uttarakhand) Dr.Sunil Bhandari Asstt. Professor. Department of Zoology BGR Campus Pauri, HNB (Central University) Garhwal. Course Title and Code : Cell and Molecular Biology (BSCZO 102) ISBN : 978-93-85740-54-1 Copyright : Uttarakhand Open University Edition : 2017 Published By : Uttarakhand Open University, Haldwani, Nainital- 263139 Contents Course 1: Cell and Molecular Biology Course code: BSCZO102 Credit: 3 Unit Block and Unit title Page number Number Block 1 Cell Biology or Cytology 1-128 1 Cell Type : History and origin.
    [Show full text]
  • The Flagellum and Flagellar Pocket of Trypanosomatids
    Molecular & Biochemical Parasitology 115 (2001) 1–17 www.parasitology-online.com. Reviews: Parasite cell Biology: 1 The flagellum and flagellar pocket of trypanosomatids Scott M. Landfear *, Marina Ignatushchenko Department of Molecular Microbiology and Immunology, Oregon Health Sciences Uni6ersity, Portland, OR 97201, USA Received 9 November 2000; received in revised form 26 January 2001; accepted 5 March 2001 Abstract The flagellum and flagellar pocket are distinctive organelles present among all of the trypanosomatid protozoa. Currently, recognized functions for these organelles include generation of motility for the flagellum and dedicated secretory and endocytic activities for the flagellar pocket. The flagellar and flagellar pocket membranes have long been recognized as morphologically separate domains that are component parts of the plasma membrane that surrounds the entire cell. The structural and functional specialization of these two membranes has now been underscored by the identification of multiple proteins that are targeted selectively to each of these domains, and non-membrane proteins have also been identified that are targeted to the internal lumina of these organelles. Investigations on the functions of these organelle-specific proteins should continue to shed light on the unique biological activities of the flagellum and flagellar pocket. In addition, work has begun on identifying signals or modifications of these proteins that direct their targeting to the correct subcellular location. Future endeavors should further refine our knowledge of targeting signals and begin to dissect the molecular machinery involved in transporting and retaining each polypeptide at its designated cellular address. © 2001 Elsevier Science B.V. All rights reserved. Keywords: Trypanosomatid protozoa; Flagellum; Flagellar Pocket; Organelle-specific proteins; Review 1.
    [Show full text]
  • Glycosome Biogenesis in Trypanosomes and the De Novo Dilemma
    REVIEW Glycosome biogenesis in trypanosomes and the de novo dilemma Sarah Bauer, Meredith T. Morris* Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America * [email protected] Abstract Trypanosomatid parasites, including Trypanosoma and Leishmania, are the causative a1111111111 agents of lethal diseases threatening millions of people around the world. These organisms a1111111111 compartmentalize glycolysis in essential, specialized peroxisomes called glycosomes. Per- a1111111111 oxisome proliferation can occur through growth and division of existing organelles and de a1111111111 a1111111111 novo biogenesis from the endoplasmic reticulum. The level that each pathway contributes is debated. Current evidence supports the concerted contribution of both mechanisms in an equilibrium that can vary depending on environmental conditions and metabolic require- ments of the cell. Homologs of a number of peroxins, the proteins involved in peroxisome biogenesis and matrix protein import, have been identified in T. brucei. Based on these find- OPEN ACCESS ings, it is widely accepted that glycosomes proliferate through growth and division of existing Citation: Bauer S, Morris MT (2017) Glycosome organelles; however, to our knowledge, a de novo mechanism of biogenesis has not been biogenesis in trypanosomes and the de novo dilemma. PLoS Negl Trop Dis 11(4): e0005333. directly demonstrated. Here, we review recent findings that provide support for the existence https://doi.org/10.1371/journal.pntd.0005333 of an endoplasmic reticulum (ER)-derived de novo pathway of glycosome biogenesis in T. Editor: Christian Tschudi, Yale School of Public brucei. Two studies recently identified PEX13.1, a peroxin involved in matrix protein import, Health, UNITED STATES in the ER of procyclic form T.
    [Show full text]
  • Role of Melatonin in the Synchronization of Asexual Forms in the Parasite Plasmodium Falciparum
    biomolecules Review Role of Melatonin in the Synchronization of Asexual Forms in the Parasite Plasmodium falciparum Maneesh Kumar Singh 1 ,Bárbara Karina de Menezes Dias 2 and Célia R. S. Garcia 1,* 1 Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; [email protected] 2 Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-11-3091-8536 Received: 15 July 2020; Accepted: 26 August 2020; Published: 27 August 2020 Abstract: The indoleamine compound melatonin has been extensively studied in the regulation of the circadian rhythm in nearly all vertebrates. The effects of melatonin have also been studied in Protozoan parasites, especially in the synchronization of the human malaria parasite Plasmodium falciparum via a complex downstream signalling pathway. Melatonin activates protein kinase A (PfPKA) and requires the activation of protein kinase 7 (PfPK7), PLC-IP3, and a subset of genes from the ubiquitin-proteasome system. In other parasites, such as Trypanosoma cruzi and Toxoplasma gondii, melatonin increases inflammatory components, thus amplifying the protective response of the host’s immune system and affecting parasite load. The development of melatonin-related indole compounds exhibiting antiparasitic properties clearly suggests this new and effective approach as an alternative treatment. Therefore, it is critical to understand how melatonin confers stimulatory functions in host–parasite biology. Keywords: melatonin; Apicomplexa; rhythm; signalling 1. Introduction Malaria is a disease associated with a remarkably high mortality rate in its endemic areas, which have subtropical climates.
    [Show full text]
  • The Autophagy Machinery in Human-Parasitic Protists; Diverse Functions for Universally Conserved Proteins
    cells Review The Autophagy Machinery in Human-Parasitic Protists; Diverse Functions for Universally Conserved Proteins Hirokazu Sakamoto 1,2,* , Kumiko Nakada-Tsukui 3 and Sébastien Besteiro 4,* 1 Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan 2 Department of Biomedical Chemistry, The University of Tokyo, Tokyo 113-8654, Japan 3 Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; [email protected] 4 LPHI, Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France * Correspondence: [email protected] (H.S.); [email protected] (S.B.) Abstract: Autophagy is a eukaryotic cellular machinery that is able to degrade large intracellular components, including organelles, and plays a pivotal role in cellular homeostasis. Target materials are enclosed by a double membrane vesicle called autophagosome, whose formation is coordinated by autophagy-related proteins (ATGs). Studies of yeast and Metazoa have identified approximately 40 ATGs. Genome projects for unicellular eukaryotes revealed that some ATGs are conserved in all eukaryotic supergroups but others have arisen or were lost during evolution in some specific lineages. In spite of an apparent reduction in the ATG molecular machinery found in parasitic protists, it has become clear that ATGs play an important role in stage differentiation or organelle maintenance, sometimes with an original function that is unrelated to canonical degradative autophagy. In this review, we aim to briefly summarize the current state of knowledge in parasitic protists, in the light of the latest important findings from more canonical model organisms. Determining the roles of ATGs Citation: Sakamoto, H.; Nakada-Tsukui, K.; Besteiro, S.
    [Show full text]
  • 3Rd Annual Student Research Symposium
    3rd Annual Student Research Symposium July 30th, 2021 Feasibility and Limited Efficacy of a Tandem Cycling Community Exer- cise Program on Physiological Health, Functional Health, Therapeutic Relationships, and Quality of Life in Persons and Care Partners affected by Parkinson’s Disease Abstract: “Background: The therapeutic effects of forced aerobic exercise cycling on Par- kinson’s Disease is well established, as is the link between Parkinson’s Disease (PD) patients’ health, and the health of their primary caregivers. Purpose:To examine the feasibility and limited efficacy of combining the two into Greggory a novel therapy where patient and caregiver undergo an 8-week training regimen Adams of VR tandem cycling aimed to improve physiological and psychological health. Methods: Ten patient dyads (PD and caregiver) will undergo 16 sessions of VR tandem cycling for 8 weeks, 2x/week. They will be clinically evaluated pre/ post-intervention for physiologic benchmarks such as Heart Rate Variability (HRV), and Stress Response via 48-hr heart rate monitoring and Kubios software. Psychological benchmarks will be determined by Parkinson’s Disease Quality of Life Measurement System (PD-QOL), Montreal Cognitive Assessment (MoCA), and a Dyadic Relationship Scale among others. Statistically significant differences will be established at p<0.05. Results: We hypothesize that HRV, sleep quality, and stress response will improve. PD-QOL and the Dyadic Relationship Scale and other QOL metrics are expected to improve for both caregiver and patient. The MoCA and Hoen and Yar scales are not expected to change due to primarily being used as exclusion criteria, how- ever the Unified Parkinson Disease Rating Scale (UPDRS) metrics are expected to improve for the patient.
    [Show full text]
  • Biogenesis of Glycosomes of Trypanosoma Brucei
    Proc. Natl. Acad. Sci. USA Vol. 85, pp. 2598-2602, April 1988 Cell Biology Biogenesis of glycosomes of Trypanosoma brucei: An in vitro model of 3-phosphoglycerate kinase import (in vitro transcription of cloned DNA/in vitro translation/proteinase K digestion/signal sequence) HARRY F. DOVEY*, MARILYN PARSONSt*, AND CHING C. WANG*§ *Department of Pharmaceutical Chemistry, University of California, School of Pharmacy, San Francisco, CA 94143; tSeattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109; and tDepartment of Pathobiology, University of Washington, Seattle, WA 98195 Communicated by Y. W. Kan, November 23, 1987 (receivedfor review August 3, 1987) ABSTRACT Glycosomes are intracellular, membrane- ined thus far, in vitro translation ofmRNA yields GPs with the bound microbody organelles of trypanosomes and leishmania. same molecular weights as the mature products inside the Nine glycolytic enzymes are the major protein components of glycosome (6), suggesting that the import may not involve the glycosomes of Trypanosoma brucei long-slender blood- proteolytic processing. Thus, this process appears similar to stream forms. Glycosomal proteins are believed to be synthe- the biogenesis of other microbodies, such as the peroxisomes sized in the cytoplasm and inserted across the glycosomal of yeast and mammals (7-9) and the glyoxysomes of plants membrane posttranslationally. We have developed an in vitro (10), and differs from the biogenesis of mitochondria and protein import assay for the study of glycosomal biogenesis in chloroplasts where posttranslational protein import generally T. brucei. All nine glycosomal glycolytic enzymes were detect- involves proteolytic cleavage of specific leader sequences able by immunoprecipitation and gel analysis of radiolabeled (11-13).
    [Show full text]
  • Glycosome Heterogeneity, Import Complex, and Metabolism in Trypanosoma Brucei
    Clemson University TigerPrints All Dissertations Dissertations May 2021 Glycosome Heterogeneity, Import Complex, and Metabolism in Trypanosoma brucei Christina L. Wilkinson Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Wilkinson, Christina L., "Glycosome Heterogeneity, Import Complex, and Metabolism in Trypanosoma brucei" (2021). All Dissertations. 2817. https://tigerprints.clemson.edu/all_dissertations/2817 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. GLYCOSOME HETEROGENEITY, IMPORT COMPLEX, AND METABOLISM IN TRYPANOSOMA BRUCEI A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Genetics by Christina Wilkinson May 2021 Accepted by: Meredith Morris, Committee Chair Kimberly Paul Julia Frugoli Zhicheng Dou i ABSTRACT The kinetoplastid parasite Trypanosoma brucei is responsible for both human African trypanosomiasis (HAT) and the wasting disease nagana found in cattle. Unique to kinetoplastids are the specialized peroxisomes, named glycosomes, which compartmentalize the first several steps of glycolysis and gluconeogenesis, nucleotide sugar biosynthesis, and many other metabolic processes. There are many studies surrounding the heterogeneity and complexity of glycosomes as well as how these organelles proliferate and import their proteins. Here, I first explored new methods to analyze glycosome heterogeneity by flow cytometry. The advancement of flow cytometry has yielded methods that enable the identification of vesicles between 30-1000 nm in diameter. I adapted these techniques for the identification of glycosome populations by flow cytometry and the isolation of distinct populations via organelle sorting.
    [Show full text]