The Evolution of Research Techniques in Premature Infant Nutrition

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Research Techniques in Premature Infant Nutrition Nutrition of the Low Birthweight Infant, edited by B. L. Salle and P. R. Swyer. Nestle Nutrition Workshop Series, Vol. 32. Nestec Ltd., Vevey/Raven Press, Ltd., New York © 1993. The Evolution of Research Techniques in Premature Infant Nutrition Buford L. Nichols, Jr. USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Texas 77030, USA THE RISE OF THE TECHNOLOGY OF PREMATURE INFANT CARE Tarnier, the French obstetrician, developed an incubator for premature infant care after seeing young chickens in an incubator at the Paris Zoo in 1878. The premature infant incubator was demonstrated in a series of technologic exhibits at World's Fairs and Expositions between 1897 and 1932. When the incubators were demonstrated for the public, premature infants were used in the display; although the drama of the presentation appealed to the general public, it appalled the medical community. Louise Recht, the nurse who managed the incubators, had been trained by Budin and used a variety of techniques to feed the infants. She demonstrated Tarnier's method of intragastric gavage and Monti's method of feeding with nasal spoons. The milk fed to the infants had usually been donated (1,2). In 1929, Pirquet, surveying the hospital management of premature infants, stated, "the main difficulty encountered in the rearing of premature children is primarily a nutritional one" (3). This chapter reviews the scientific development of premature infant feeding during an era when premature infants were placed on exhibition. I shall focus on the methods used to determine the nutritional needs of premature infants. THE ORIGINS OF NUTRITIONAL SCIENCE In the fifth century, Hippocrates is believed to have said, "Growing bodies have the most innate heat; they therefore require the most food, for otherwise, their bodies are wasted." This quotation from the age of antiquity sets the stage for the work of the 17th century Belgian iatrochemist Van Helmont, who used the chemical methods of his day to study problems of health. The 18th century English discoveries of carbon dioxide by Black in 1757, oxygen by Priestley in 1774, and the development of animal calorimetry by Crawford in 1779 provided the foundation for the brilliant work of Lavoisier. In 1777, Lavoisier confirmed Priestley's experimental finding that oxygen 31 32 EVOLUTION OF RESEARCH TECHNIQUES was exhausted by respiration if a sparrow were placed in a bell jar. The process was identical to that associated with the oxidation of metals. Using an ice calorimeter, Lavoisier measured the quantity of heat produced by the combustion of carbon into CO2. He continued these studies of carbon oxidation in guinea pigs and humans. After collecting gas in a closed system filled with water and inverted over a water bath, Lavoisier measured the volume of air caught and added phosphorus metal. The burning of the metal completely used up the oxygen, after which potash was intro- duced to remove the carbon dioxide. The remaining gas was analyzed by differences in the water level after treatment (4). The fourth century recognition of the primary elements of air, earth, fire, and water presaged the concept that air was important to life processes (4). This concept met with skepticism from Van Helmont, who combined chemistry with medicine (as had Paracelsus) and began the development of nutrition science as we know it. He coined the word "gas." In the early 18th century Stephen Hales of England included a chapter on "Analysis of Air" in his book Vegetable Statistics. Hales invented a "pedestal apparatus" bell jar to show for the first time that air became "fixed" by many organic and inorganic materials. The School of Pneumatic Chemists in England based much of its research on the work of Hales and flourished in its use of the "pedestal apparatus." In 1756, Joseph Black, one of Hales' disciples, discovered that "fixed air" or carbon dioxide was present in the mineral dolomite. Pneumatic chemistry, an area of study guided by Robert Boyle, contributed the physical laws governing the properties of gas and the discovery of "inflammable air" or hydrogen by Cavendish in 1766. Joseph Priestley described the "different kinds of air" and reported his discovery of "respirable air" or oxygen in 1772 (5). Hales' pedestal apparatus was modified by the French chemist Rouelle to allow the collection of gases. Using the technique, gases were generated in a distillation flask and the volume was estimated by the drop of the water level in the bell jar. Lavoisier used Hales' apparatus to measure the interaction of both inorganic and organic material with the volume of air to show that gases play a quantitative role in chemical reactions. He thus became the first to grasp the significance of air to chemical transformations. He used a gravimetric balance to demonstrate weight gain during the oxidation of phosphorus or sulfur and weight loss when metal oxides were reduced by high temperatures provided by a giant magnifying glass. Lavoisier observed changes in gas volume that correlated quantitatively with altered mass. His discovery of the law of conservation of mass was reported in 1771, after which air was understood to be a chemical participant in life processes (5). Lavoisier then turned his attention to the relationship between heat and oxidation. Using the bell jar and a calorimeter constructed with double layers of ice, he showed that when wood or charcoal was burned a quantitative equivalence of carbon and oxygen was consumed and carbon dioxide and heat were produced. This experiment was repeated with a living guinea pig to show that the same quantitative relationship between carbon dioxide and heat production existed in a living mammal. Using the Rouelle modification of Hales' pedestal apparatus, Lavoisier measured oxygen con- sumption and CO2 production in his laboratory assistant, Seguin. Lavoisier's interest EVOLUTION OF RESEARCH TECHNIQUES 33 in quantitation led to his participation in the Commission on Weights and Measures, which resulted in the centimeter-gram system of calibration units. Lavoisier contrib- uted the definition of a calorie as the unit of heat necessary to raise the temperature of one cubic centimeter of water by one degree centigrade. Lavoisier died in 1794, a casualty of the French Revolution (4). The scientific descendants of Lavoisier continued to make elemental gas analyses using an eudiometer. Justus Liebig studied under Lavoisier's student, Gay-Lussac, from whom he learned quantitative chemistry and the endiometric techniques. He returned to his native Germany to use the new methods in animal chemistry or bio- chemistry studies. When Liebig undertook the proximate analysis of animal foods, tissue constituents, and isolated chemical substances using the eudiometer, new in- sights came about in rapid succession. The discovery that nitrogen was a constituent of all living matter opened the way to protein chemistry and the concept of nutrient balance. In France, Boussingault was the first to determine carbon balance in a lactating cow. Liebig carried out a nitrogen balance study in a company of the Ducal Guards in Darmstadt, Germany (4). ENERGY NEEDS An evaluation in France of Lavoisier's theory of calories enabled the concept of food calorie content. In 1849, Regnault and Reiset (6) extended the Hales/Rouelle bell jar experiment in a closed system with a fixed supply of air. They studied the oxygen consumption and CO2 production by a dog. Their "closed system" was used to measure the carbon oxidation of infants in a large bell jar. The Regnault-Reiset apparatus for study of oxygen utilization and CO2 production was modified in 1887 by Langlois (7) in Paris and in 1894 by Mensi in Turin (Table 1). A further evolution of this methodology was reported in France in 1908 by Weiss and in 1914 in the USA by Benedict and Talbot (9,10,17). The calorimetry energy expenditure results were less than estimates derived from studies of energy intakes in term and premature infants. In 1862 Pettenkofer and Voit in Munich developed the "open system" of indirect calorimetry. They designed a room with controlled ventilation in which an experimental subject was placed and CO2 production measured by a gravimetric procedure (18). The equipment was used by Forster (19) in 1877 to determine CO2 production in an infant. The methodology was modified and used in Berlin by Rubner and Langstein (11) in 23-hour calorimetry studies CO2 production by two premature infants at the Kaiserin Victoria Kinder Haus reported in 1915. Rubner criticized the previous work done in the closed system calorimeter because the measurements were of short duration and their emphasis was on basal metabolism rather than total carbon oxidation: "If respiratory investigations are to serve as a measure for the general consumption of nutrients, they must extend for day and night, so that the quantity of respiration corresponds to all functions of the infant" (20). The results were sum- marized by Levine in 1936 and 1940, who concluded that the total amount of heat 34 EVOLUTION OF RESEARCH TECHNIQUES TABLE 1. Daily energy expenditure of premature infants Total Author expenditure Year (location) Apparatus (calories/kg/d) Reference 1887 Langlois (Paris)8 Direct/Regnault-Reiset 81,109 7 1904 Hasselbalch Open/Pettenkofer-Vogt 31 8 (Copenhagen)3 1914 Benedict and Talbot Closed/Benedict 89-103 9,10 (Boston) 1915 Rubner and Langstein Open/Pettenkofer-Vogt 121-130 11 (Berlin) 1925 Marsh and Murlin Closed/Benedict 49 12 (Rochester) 1932 Schadow (Hamburg) Closed 45-54 13 1933 von Schlossman Closed 44-62 14 (Dusseldorf) 1936 Gordon et al. (New Closed/Benedict 58 15 York) 1940 Gordon et al. (New Open/gas analysis 68 16 York) Range 31-130 • Calculated by author from original data. produced by premature infants was lower than the amount of heat produced by term infants (Table 1) (15,16).
Recommended publications
  • An Efficient Vacuum Apparatus for Microtechnic
    AN EFFICIENT VACUUM APPARATUS FOR MICROTECHNIC EUGENE B. WITTLAKE1 The Ohio State University From time to time notes on vacuum apparatus and its applications to micro- technic have been published. These papers, with the exception of very few instances, do not deal with the actual measurement and control of vacuum, the effect of vacuum on tissues and the pumping of tissues in reagents not miscible with water and water vapor. It seemed necessary, therefore, to check the above conditions and to determine, if possible, their relation to fixation, dehydration and infiltration of paraffin in plant material in the "in vacuo" process. Lebowich (4) in 1936 developed a soap-wax medium for the simultaneous dehydration and infiltration of human tissues. In this technic he employed a vacuum apparatus consisting of a faucet aspirator and a wide-mouthed bottle placed in an oven automatically controlled for temperature. Later Moritz (5) modified Lebowich's vacuum pump. Instead of using the expensive equipment which Lebowich had at his disposal, Moritz attained the same end with ordinary laboratory equipment obtainable by any technician. In the same paper he presented a modification of Lebowich's dehydration schedule. In the technics of both of these men a vacuum apparatus was used to definite advantage in regard to time and thoroughness of preparation of tissues. In April 1940 Chermock and Hance (2) announced the use of a vacuum pump for general micrology. Their principle dehydration agent was "methyl cellosolve" which they used in a vacuum apparatus of simple and convenient construction. Their accessory devices were a thermometer and a water trap.
    [Show full text]
  • Construction and Application of a Novel Combination Glove Box Deposition System to the Study of Air-Sensitive Materials by Tunneling Spectroscopy
    Construction and application of a novel combination glove box deposition system to the study of air-sensitive materials by tunneling spectroscopy Cite as: Review of Scientific Instruments 55, 1120 (1984); https://doi.org/10.1063/1.1137895 Submitted: 27 February 1984 . Accepted: 20 March 1984 . Published Online: 04 June 1998 K. W. Hipps, and Ursula Mazur ARTICLES YOU MAY BE INTERESTED IN A Versatile, Inert Atmosphere Vacuum Glove Box Review of Scientific Instruments 40, 414 (1969); https://doi.org/10.1063/1.1683961 Inelastic electron tunneling spectroscopy in molecular junctions: Peaks and dips The Journal of Chemical Physics 121, 11965 (2004); https://doi.org/10.1063/1.1814076 Review of Scientific Instruments 55, 1120 (1984); https://doi.org/10.1063/1.1137895 55, 1120 © 1984 American Institute of Physics. Construction and application of a novel combination glove box deposition system to the study of air-sensitive materials by tunneling spectroscopy K. W. Hipps and Ursula Mazur Department of Chemistry and Chemical Physics Program, Washington State University, Pullman, Washington 99164-4630 (Received 27 February 1984; accepted for publication 20 March 1984) The construction and application of a high-vacuum deposition system housed in a recirculating, catalytically scrubbed, inert-atmosphere glove box is reported. This system is specifically applied to the fabrication of tunnel diodes used in a surface vibrational spectroscopy called inelastic electron tunneling spectroscopy or lETS. Through the use of this inert-atmosphere adsorption/ fabrication system, tunneling spectra have been obtained from a variety of air-sensitive compounds adsorbed on aluminum oxide. Up to now, spectra of some of the species reported here have been unattainable by the adsorption techniques used in lETS.
    [Show full text]
  • 2020 NGSS High School Chemistry Supply List
    Recommended Minimum Core Inventory for NGSS High School Chemistry, Class of 32 Students Qty. Per Catalog Equipment / Supplies FREY Catalog # Total Classroom Unit $ SAFETY EQUIPMENT 1 Acid Corrosive Storage Cabinet 528445 $602.09 $602.09 1 Corrosive Storage Cabinet 528446 $1,009.95 $1,009.95 1 Chemical Spill Kit 1491078 $146.29 $146.29 Chemical Storage Reference - Ask your Frey 1 Chemical Storage Reference Scientific Representative how to safely store your chemicals with our Color Code System. 1 Emergency Shower and Eyewash 572443 $3,135.95 $2,983.95 1 Gravit-Eye Portable Eye Wash Station, 16 gallon 1320143 $333.39 $333.39 1 Fire Blanket w/ Hanging Pouch, 6' L x 5' W 1488340 $149.99 $149.99 1 Dry Chemical Fire Extinguisher 1471240 $153.79 $153.79 1 First Aid Station for 25 people 1451983 $70.09 $70.09 1 Flammables Storage Cabinet, 23-1/4" x 35" x 12 gallon, yellow 601016 $960.95 $960.95 1 Fume Hood Labconco Basic 47 526701 $10,081.49 $10,081.49 32 Indirect Vent Safety Goggles 577927 $3.89 $124.48 1 Goggle Sanitizer Cabinet 1574050 $911.99 $911.99 32 Rubberized Aprons, 27" x 42" 589239 $8.39 $268.48 EQUIPMENT / SUPPLIES 1 Balance, Ohaus Pioneer Precision, 0.001 mg, 160g capacity 2001994 $1,254.69 $1,254.69 5 Balance, Ohaus Navigator Electronic , .01g, 510g capacity 2012765 $328.79 $1,643.95 3 Beakers, 50 mL, Pyrex Vista Low Form Borosilicate, pk/12 529623 $35.09 $105.27 3 Beakers, 100 mL, Pyrex Vista Low Form Borosilicate, pk/12 529624 $35.09 $105.27 2 Beakers, 250 ml, Pyrex Vista Low Form Borosilicate pk/12 529626 $37.39 $74.78 2 Beakers,
    [Show full text]
  • PER-CAST VACUUM CASTING MACHINE No.0132 120V No.0133 240V
    PER-CAST VACUUM CASTING MACHINE No.0132 120V No.0133 240V Feature:This vacuum investment machine can also be used as a vacuum casting machine. Specifications: 0132 0133 Voltage 120V 240V Amperage 6A 3A Cycle 60Hz 50Hz Speed 1720 rpm 1420 rpm Horse power ¼ HP Phase Single Dimension 26⅜"×14³/ "×13¾" (67×36×35cm) (Bell jar not included) 16 Investment table 10⅜"×10⅜" (27×27cm) 5 Vacuum chamber Ф5 ⁄16"×7¼" (13.5×18.5cm) Vacuum pump 65 liter / min Net weight 89.1Lbs(40.5kgs) Shipping weight 93.5Lbs(42.5kgs) 1-5 Parts name 1 2 8 6 3 4 5 7 9 1 Investment table 4 Vacuum pump gauge 7 Oil filler cap 2 Vacuum chamber 5 Control handle 8 Sight glass 3 ON/OFF switch 6 Power line cord 9 Oil drain plug Accessories: A-1 A-2 A-3 A-4 No.0490 No.0130-038 No.0130-039 No.0130-042 9"Bell jar:1pc. Investment table rubber pad:1pc. Silicone rubber pad:1pc. Vacuum pump oil:600cc A-5 A-6 A-7 A-8 No.0160 No.0155-002 No.0155-001 No.0225 15"Perforated flask tong:1pc. Handle for crucible:1pc. Crucible:1pc. 3⅜"×4" Perforated flask:1pc. A-9 A-10 A-11 A-12 No.0264 No.0225-001 No.3303 No.3304 3⅜"Tree sprue base:1pc. 3⅜"Flask sleeve:1pc. 4"Adapter ring:1pc. 3⅜"Adapter ring:1pc. A-13 A-14 A-15 A-16 No.3302 No.3501 No.3503 No.3504 ½"Adapter ring:1pc.
    [Show full text]
  • High School Chemistry
    RECOMMENDED MINIMUM CORE INVENTORY TO SUPPORT STANDARDS-BASED INSTRUCTION HIGH SCHOOL GRADES SCIENCES High School Chemistry Quantity per Quantity per lab classroom/ Description group adjacent work area SAFETY EQUIPMENT 2 Acid storage cabinet (one reserved exclusively for nitric acid) 1 Chemical spill kit 1 Chemical storage reference book 5 Chemical waste containers (Categories: corrosives, flammables, oxidizers, air/water reactive, toxic) 1 Emergency shower 1 Eye wash station 1 Fire blanket 1 Fire extinguisher 1 First aid kit 1 Flammables cabinet 1 Fume hood 1/student Goggles 1 Goggles sanitizer (holds 36 pairs of goggles) 1/student Lab aprons COMPUTER ASSISTED LEARNING 1 Television or digital projector 1 VGA Adapters for various digital devices EQUIPMENT/SUPPLIES 1 box Aluminum foil 100 Assorted rubber stoppers 1 Balance, analytical (0.001g precision) 5 Balance, electronic or manual (0.01g precision) 1 pkg of 50 Balloons, latex 4 Beakers, 50 mL 4 Beakers, 100 mL 2 Beakers, 250 mL Developed by California Science Teachers Association to support the implementation of the California Next Generation Science Standards. Approved by the CSTA Board of Directors November 17, 2015. Quantity per Quantity per lab classroom/ Description group adjacent work area 2 Beakers, 400 or 600 mL 1 Beakers, 1000 mL 1 Beaker tongs 1 Bell jar 4 Bottle, carboy round, LDPE 10 L 4 Bottle, carboy round, LDPE 4 L 10 Bottle, narrow mouth, 1000 mL 20 Bottle, narrow mouth, 125 mL 20 Bottle, narrow mouth, 250 mL 20 Bottle, narrow mouth, 500 mL 10 Bottle, wide mouth, 125
    [Show full text]
  • XXXIK-The Collection and Examination of the Gases Produced by Bacteria from Certain Media
    View Article Online / Journal Homepage / Table of Contents for this issue 322 PAKES AND JOLLYMAN : COLLECTION AND EXAMINATION XXXIK-The Collection and Examination of the Gases produced by Bacteria from certain Media. By WALTERCHARLES CROSS PAKES and WALTERHENRY JOLLY AN. DURINGthe course of an investigation upon the bacterial flora of the water of a certain well, several specimens of bacteria were isolated which belonged to the group of Bacillus jhorescens Ziquefcccielzs. The determination of the cultural reactions enabled us to divide these into two groups, (1) that which produced gas, and (2) that which produced no gas in media containing nitrate. These were provisionally designated 5.0.7 and S.0.6 respectively. In order to obtain more information concerning the former of these, it was decided to analyse the gas produced . As the various forms of apparatus hitherto described for the purpose of the collection of gas thus produced did not seem to be sufficiently accurate or suitable for our purpose, we designed one which is both simple and accurate. It was necessary to have an apparatus which fulfilled the following conditions : (1) A relatively large amount of medium must be used-from 300 to 500 C.C. (2) The gas receiver must have a capacity of at least 600 C.C. (3) It must be easy to inoculate the medium without any chance of accidental contamination. (4) The receiver must be fitted with taps so that a part or the whole of the gas can be removed during the course of the experiment with- out chance of contamination.
    [Show full text]
  • Fuel, Water and Gas Analysis for Steam Users
    FUE L WAT ER A N D , GAS A NA LY S IS M US ER S FOR STEA , BY H N B C K H W I E S F. C . O . R A $ , A u tl wr o S mok P r v n ti n e a tc f e e e o , t , e W ith 50 Illustratio ns . LONDO N. ARC IB CONSTAB E C LTD D . H AL L 8: O . 1 0 9 7 . 1 4 1 0 2 5 AP R 1 5 1910 9 9 52 0 T H N 1 M A$$ $ P REFA C E . TEAM-USERS have shown a tendency in the past to - - neglect the boiler house for the engine room , and have concentrated their efforts for the improvement of the e ffi ciency of the plant almost exclusively upon the latter . A study of the losses incurred during the conversion of the thermal energy stored in coal into the thermal energy o f - steam , will show that it is in the boiler house that the greater preventable losses are occurring , and that the ratio ma y be expressed by the numbers 25 and 5. It is however , now beginning to be recognized that a s cientifically managed boiler-house is a sine quanon for the e i conom c generation of steam power , and considerable attention is being given by steam-engineers to this portion of their power generating plant . The chemical examination of the fuel , water, and of the waste gases has been found to be of great service in attain ing the highest efficiency from the boiler plant but no fi work has hitherto been published , at once scienti c and - practical , covering the ground required by the boiler house en lneer g .
    [Show full text]
  • Plasma-Assisted Co-Evaporation of S and Se for Wide Band Gap DE-AC36-99-GO10337 Chalcopyrite Photovoltaics: Final Subcontract Report, 5B
    A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Plasma-Assisted Co-evaporation Subcontract Report NREL/SR-520-38357 of S and Se for Wide Band Gap August 2005 Chalcopyrite Photovoltaics Final Subcontract Report December 2001 — April 2005 I. Repins ITN Energy Systems, Inc. Littleton, Colorado C. Wolden Colorado School of Mines Golden, Colorado NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Plasma-Assisted Co-evaporation Subcontract Report NREL/SR-520-38357 of S and Se for Wide Band Gap August 2005 Chalcopyrite Photovoltaics Final Subcontract Report December 2001 — April 2005 I. Repins ITN Energy Systems, Inc. Littleton, Colorado C. Wolden Colorado School of Mines Golden, Colorado NREL Technical Monitor: H. Ullal Prepared under Subcontract No(s). NDJ-2-30630-11 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 This publication was reproduced from the best available copy submitted by the subcontractor and received no editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Monsanto C MLM-MU-77-72-0002
    Monsanto c MLM-MU-77-72-0002 c Proposal to Process RTNS-II Accelerator Targets for LLL E. A. Mershad, W. A. Ciift, R. E. Wieneke, D. L. Coffey, G. V. Nesslage, L. W.Metcalf and R. A. Watkins Issued: December 20,1977 DISCLAIMER a This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. MOUND FACILITY Miamisburg, Ohio 45342 operated by MONSANTO RESEARCH CORPORATION a subsidiary of Monsento Company for the U. S. DEPARTMENT OF ENERGY Contract No. EY-76-C-04-0053 1 t TABLE OF CONTENTS Page 1. INTRODUCTION 1.1. INTRODUCTION .................. 3 2. FACILITIES 2.1. FACILITIES DESCRIPTION ............. 4 2.2. FACILITY COSTS ................. 10 2.3. OPTIONAL FACILITY ................ 13 2.4. PACKAGING COSTS ................. 13 3. PROCESS OPERATIONS 3.1. INTRODUCTION .................. 16 3.2. NEW TARGET PROCESSING .............. 16 3.3. EXPENDED TARGET PROCESSING ..........
    [Show full text]
  • Controlled Environment Chamber for Synthesis
    51st Lunar and Planetary Science Conference (2020) 2366.pdf CONTROLLED ENVIRONMENT CHAMBER FOR SYNTHESIS, SPECTROSCOPY, AND X-RAY DIFFRACTION OF ENVIRONMENTALLY SENSITIVE SAMPLES: A NASA INVESTIGATOR FACILITY AT STONY BROOK UNIVERSITY. A. D. Rogers1, L. Ehm1, J. B. Parise1, and E. C. Sklute2, 1Stony Brook University, Dept. of Geoscience, 255 ESS Building, Stony Brook, NY, 11794-2100, [email protected], 2Planetary Science Institute, 1700 E. Fort Lowell Rd Suite 106, Tucson, AZ 85719 Introduction: The low atmospheric pressure and equipment. It has a temperature control range of -30°C cold temperatures characteristic of the Martian surface to 50°C, and can simultaneously control RH down to creates a set of conditions that facilities stability or <3%. It utilizes liquid nitrogen for cooling and dry meta-stability for phases that may be deliquescent un- nitrogen for humidity control. Fogging/frosting on the der terrestrial ambient conditions. Phases that are par- clear exterior is avoided by circulating dry nitrogen ticularly sensitive to relative humidity (RH), in many through double-walled acrylic. Humidity can also be cases, cannot be exposed to ambient conditions for controlled through a purge gas generator under ambient more than a few minutes without undergoing deliques- temperature conditions, for longer-term experiments cence or phase change. Thus successful analysis of that make switching out nitrogen dewars impractical. A RH/temperature-sensitive samples requires the ability 4-cm wide exterior port permits pass-through of fiber to control and vary RH and temperature (T) during optical cables and vacuum tubes as necessary. synthesis and characterization. With funding from the Instrumentation: The glovebox can be used to NASA Planetary Major Equipment program, we have house a portable XRD, Raman and VNIR spectrometer acquired and installed a Controlled Environment as needed, as well as a bell jar for vacuum-dehydration Chamber (CEC) at Stony Brook University that permits experiments.
    [Show full text]
  • Vacuum in the 17Th Century and Onward the Beginning of Experimental Sciences Donald M
    HISTORY CORNER A SHORT HISTORY: VACUUM IN THE 17TH CENTURY AND ONWARD THE BEGINNING OF Experimental SCIENCES Donald M. Mattox, Management Plus Inc., Albuquerque, N.M. acuum as defined as a space with nothing in it (“perfect Early Vacuum Equipment vacuum”) was debated by the early Greek philosophers. The early period of vacuum technology may be taken as the V The saying “Nature abhors a vacuum” (horror vacui) is gener- 1640s to the 1850s. In the 1850s, invention of the platinum- ally attributed to Aristotle (Athens ~350 BC). Aristotle argued to-metal seal and improved vacuum pumping technology al- that vacuum was logically impossible. Plato (Aristotle’s teach- lowed the beginning of widespread studies of glow discharges er) argued against there being such a thing as a vacuum since using “Geissler tubes”[6]. Invention of the incandescent lamp “nothing” cannot be said to exist. Hero (Heron) of Alexandria in the 1850s provided the incentive for development of indus- (Roman Egypt) attempted using experimental techniques to trial scale vacuum technology[7]. create a vacuum (~50 AD) but his attempts failed although he did invent the first steam engine (“Heron’s steam engine”) and Single-stroke Mercury-piston Vacuum Pump “Heron’s fountain,” often used in teaching hydraulics. Hero It was the latter part of 1641 that Gasparo Berti demonstrated wrote extensively about siphons in his book Pneumatica and his water manometer, which consisted of a lead pipe about 10 noted that there was a maximum height to which a siphon can meters tall with a glass flask cemented to the top of the pipe “lift” water.
    [Show full text]
  • MT 220-04 (06/01/04) 1 of 5 METHODS of SAMPLING AND
    MT 220-04 (06/01/04) METHODS OF SAMPLING AND TESTING MT 220-04 SPECIFIC GRAVITY OF SOILS (Modified AASHTO T 100) 1 Scope 1.1 This method covers determination of the specific gravity of soils by means of a pycnometer. When the soil is composed of particles larger than the 4.75 mm (No. 4) sieve, the method outlined in MT 205 Specific Gravity and Absorption of Coarse Aggregate shall be followed. When the soil is composed of particles both larger and smaller than the 4.75 mm sieve, the sample shall be separated on the 4.75 mm sieve and the appropriate test method used on each portion. The specific gravity value for the soil shall be the weighted average of the two values (See Note 1). When the specific gravity value is to be used in calculations in connection with the hydrometer portion of AASHTO T 88, Particle-Size Analysis of Soils, it is intended that the specific gravity test be made on that portion of the soil that passes the 2.00 mm (No. 10) sieve. 1.2 The following applies to all specified limits in this standard: For the purposes of determining conformance with these specifications, an observed value or a calculated value shall be rounded off "to the nearest unit" in the last right-hand place of figures used in expressing the limiting value. Note 1 – The weighted average specific gravity should be calculated using the following equation: Gavg = 1 R1 P1 _______ + ______ 100G1 100G2 where: Gavg = weighted average specific gravity of soils composed of particles larger and smaller than the 4.75 mm (No.
    [Show full text]