Molecular Pathology of Uveal Melanoma SE Coupland Et Al 231

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Pathology of Uveal Melanoma SE Coupland Et Al 231 Eye (2013) 27, 230–242 & 2013 Macmillan Publishers Limited All rights reserved 0950-222X/13 www.nature.com/eye 1 1 2 CAMBRIDGE OPHTHALMOLOGICAL SYMPOSIUM Molecular SE Coupland , SL Lake , M Zeschnigk and BE Damato3 pathology of uveal melanoma Abstract Introduction Like other cancers, uveal melanomas (UM) Uveal melanoma (UM) is the most common are characterised by an uncontrolled, clonal, primary adult intraocular cancer. More than cellular proliferation, occurring as a result 90% involve the choroid, the remainder being of numerous genetic, and epigenetic confined to iris and ciliary body. UM affects aberrations. Signalling pathways known approximately six individuals per million per to be disrupted in UM include: (1) the year in the United Kingdom, with the age at retinoblastoma pathway, probably as a result diagnosis peaking at 50–60 years. It is markedly of cyclin D1 overexpression; p53 signalling, different to cutaneous melanoma in its clinical possibly as a consequence of MDM2 and molecular genetic features. Concerning overexpression; and the P13K/AKT and predisposition to UM, rare reports of families mitogen-activated protein kinase/extracellular with an excess of UM cases have been signal-related kinase pathway pathways that published.1–3 Recent evidence suggests that are disturbed as a result of PTEN and patients with a cancer susceptibility may have GNAQ/11 mutations, respectively. higher frequencies of UM compared with the Characteristic chromosomal abnormalities are normal population.4 Other risk factors are 1Pathology, Department of common and include 6p gain, associated with congenital ocular melanocytosis, Molecular and Clinical a good prognosis, as well as 1p loss, 3 loss, melanocytoma, and neurofibromatosis. Cancer Medicine, University and 8q gain, which correlate with high There is a wide range of therapeutic options of Liverpool, Liverpool, UK mortality. These are identified by techniques for the treatment of primary UM. These include 2Institute for Human such as fluorescence in situ hybridisation, various forms of radiotherapy, surgical Genetics, comparative genomic hybridisation, resection, and phototherapy.5 The 5-year local- Universita¨ tsklinikum Essen, microsatellite analysis, multiplex ligation- tumour control rates in most specialised Essen, Germany dependent probe amplification, and single- treatment centres exceed 90%. Despite this, nucleotide polymorphisms. UM can also be almost 50% of patients with UM will develop 3Department of Molecular and Clinical Cancer categorised by their gene expression profiles disseminated disease, predominantly in the Medicine, Liverpool Ocular as class 1 or class 2, the latter correlating liver, but also in the lungs (24% of patients) and Oncology Centre, University with poor survival, as do BRCA1-associated bone (16%).6 Early surgical removal of of Liverpool, Liverpool, UK protein-1 (BAP1) inactivating mutations. metastases has improved patient survival in Genetic testing of UM has enhanced some cases;7,8 however, in general, the Correspondence: prognostication, especially when results are prognosis of UM patients with metastatic SE Coupland, Pathology, Department of Molecular integrated with histological and clinical data. disease is currently poor because of the lack of and Clinical Cancer The identification of abnormal signalling effective chemotherapeutic agents. Medicine, University of pathways, genes and proteins in UM opens Intense efforts have been made in the last Liverpool, 6th Floor Duncan the way for target-based therapies, improving decades to understand the molecular genetics Building, Daulby Street, prospects for conserving vision and involved in the development and the Liverpool L69 3GA, UK Tel: þ 44 (0)151 706 5885; prolonging life. progression of UM, to recognise those that are Fax: þ 44 (0)151 706 5859. Eye (2013) 27, 230–242; doi:10.1038/eye.2012.255; likely to metastasise, and to identify signalling E-mail: s.e.coupland@ published online 7 December 2012 pathways and possible ‘druggable’ molecules in liverpool.ac.uk the neoplastic melanocytes, which can be Keywords: uveal melanoma; cytogenetics; targeted using systemic therapies. Some of the Received: 5 November 2012 molecular alterations; signalling pathways; early genetic events causing disruption of the Accepted: 5 November 2012 Published online: MLPA; GEP cell cycle and apoptotic control in uveal 7 December 2012 melanocytes have been determined, as well as Update in the molecular pathology of uveal melanoma SE Coupland et al 231 those leading to their malignant transformation and transformation and propensity to spread. It is unclear metastasis promotion. whether the ‘melanoma-initiating’ or ‘cancer stem-like’ This review summarises the current insights into the cells, recently shown to be present in UM cell lines,61 molecular mechanisms underlying UM pathogenesis, are derived directly from ocular melanocyte progenitors prognostic tests, and potential therapeutic strategies. or from more mature melanocytes that have de- differentiated. Recent analysis of gene expression data of UM would suggest that de-differentiation indeed does The hallmarks of cancer occur during UM development, but this requires further Cancer is defined as an uncontrolled, clonal proliferation investigation.11,39 It is also unclear whether the naevus of cells, which progressively acquire most if not all of the stage is a prerequisite in UM development: it has been six ‘hallmarks’ of neoplasia, as defined by Hanahan and estimated that o1 in 8000 naevi undergo malignant Weinberg in 2000, and then updated in 2011.9,10 These transformation to form UM.62 Histologically, it is hallmarks are considered to be absolute biological exceptionally rare for a residual naevus to be evident prerequisites of neoplastic cells for their survival and adjacent to or within a choroidal melanoma, supporting proliferation capacity at the primary site, and for their this observation. ability to invade and metastasise (Table 1). These features Despite this large gap in our knowledge regarding are acquired by a multistep process and include: (1) initial UM development, it has been demonstrated by insensitivity to anti-growth signals; (2) self-sufficiency in several groups that most (if not all) of the ‘hallmarks of growth signals; (3) avoiding apoptosis; (4) limitless cancer’ can be applied to UM pathogenesis (Table 1). replicative potential; (5) sustained angiogenesis; and (6) The genetic and epigenetic events involved in UM tissue invasion and metastasis. development and dissemination enable malignant uveal These six core characteristics of the malignant cell are melanocytes to proliferate and survive autonomously. acquired in different tumour types via distinct These events include: mutation or amplification of mechanisms and at various times during the course of proto-oncogenes; inactivating mutations or deletions of multistep tumourigenesis. An increasing body of tumour (and metastasis) suppressor genes; and evidence suggests that two additional ‘emerging’ chromosomal aberrations (Tables 1, 2 and 3).11 Some of hallmarks of cancer and two ‘enabling characteristics’ are these genetic alterations are considered to occur in the involved in the pathogenesis of some and perhaps all early stages of UM development; others, at later stages cancers. These were added in the revised article of (ie, prior to or at haematogeneous dissemination). It has Hanahan and Weinberg in 2011, and include: (1) been proposed that the genetic developmental pathway deregulating cellular energetics; (2) avoidance of immune of UM bifurcates at an early stage to result in two very destruction; (3) tumour-promoting inflammation and (4) distinct genetic signatures: (1) disomy 3 with genome instability and mutation (Table 1). As these chromosome 6p gain and class 1 gene expression capabilities have yet to be generalised to all tumour types profile, and (2) monosomy 3 with class 2 molecular and yet to be fully validated, they are still considered to signature and a high metastatic propensity.40,78,80,81 be provisional.10 Later genetic events in UM development are suggested to be increasing aneuploidy and alterations in chromosome 8 (eg, gains in 8q and loss of 8p; see below How do these hallmarks of cancer relate to UM? for further details). UM is considered to be a cancer arising from uveal Although this dichotomous model is helpful in melanocytes. The precursors of melanocytes are non- ‘classifying’ UM into two risk groups with respect to the pigmented melanoblasts derived from the neural crest, development of metastasis, it essentially discounts any which bypass natural tissue barriers and basement concept of clonal heterogeneity within UM, which has membranes of the eye when migrating during been demonstrated by several groups using differing embryogenesis. As with processes occurring in the skin, methods.82–86 Furthermore, it does not fit well with the the melanoblasts mature into melanocytes within the concept of clonal evolution.87,88 Recent evidence does uvea, and/or give rise to melanocytic stem cells, which indeed suggest that this model may be too simple, and maintain the ocular melanocytic ‘system’. Although it is that different clones of malignant melanocytes may known that melanocytic stem cells reside in the hair evolve and co-exist within UM, with some having the bulge in the skin,60 the location of uveal melanocytic potential to override or dominate others.79 This has been stem cells is still unknown. observed in longitudinal studies using next-generation It is hypothesised
Recommended publications
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • DDEF1 Monoclonal Antibody (M01), Clone 2G7
    Produktinformation Diagnostik & molekulare Diagnostik Laborgeräte & Service Zellkultur & Verbrauchsmaterial Forschungsprodukte & Biochemikalien Weitere Information auf den folgenden Seiten! See the following pages for more information! Lieferung & Zahlungsart Lieferung: frei Haus Bestellung auf Rechnung SZABO-SCANDIC Lieferung: € 10,- HandelsgmbH & Co KG Erstbestellung Vorauskassa Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 Zuschläge F. +43(0)1 489 3961-7 [email protected] • Mindermengenzuschlag www.szabo-scandic.com • Trockeneiszuschlag • Gefahrgutzuschlag linkedin.com/company/szaboscandic • Expressversand facebook.com/szaboscandic DDEF1 monoclonal antibody (M01), clone 2G7 Catalog # : H00050807-M01 規格 : [ 100 ug ] List All Specification Application Image Product Mouse monoclonal antibody raised against a partial recombinant Western Blot (Cell lysate) Description: DDEF1. Immunogen: DDEF1 (NP_060952, 1030 a.a. ~ 1129 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Sequence: VQSRDAIQKQASEDSNDLTPTLPETPVPLPRKINTGKNKVRRVKTIYDCQ ADNDDELTFIEGEVIIVTGEEDQEWWIGHIEGQPERKGVFPVSFVHILSD enlarge Western Blot (Cell lysate) Host: Mouse Reactivity: Human, Rat Isotype: IgG2a Kappa Quality Control Antibody Reactive Against Recombinant Protein. enlarge Testing: Western Blot (Recombinant protein) Immunofluorescence enlarge Sandwich ELISA (Recombinant Western Blot detection against Immunogen (36.74 KDa) . protein) Storage Buffer: In 1x PBS, pH 7.4 Storage Store at -20°C or lower. Aliquot to avoid repeated freezing
    [Show full text]
  • Integrative Analysis of Genomic Amplification-Dependent Expression
    Oncogene (2020) 39:4118–4131 https://doi.org/10.1038/s41388-020-1279-3 ARTICLE Integrative analysis of genomic amplification-dependent expression and loss-of-function screen identifies ASAP1 as a driver gene in triple-negative breast cancer progression 1 1 1 2 2 Jichao He ● Ronan P. McLaughlin ● Lambert van der Beek ● Sander Canisius ● Lodewyk Wessels ● 3 3 3 1 1 Marcel Smid ● John W. M. Martens ● John A. Foekens ● Yinghui Zhang ● Bob van de Water Received: 26 September 2019 / Revised: 14 March 2020 / Accepted: 17 March 2020 / Published online: 31 March 2020 © The Author(s) 2020. This article is published with open access Abstract The genetically heterogeneous triple-negative breast cancer (TNBC) continues to be an intractable disease, due to lack of effective targeted therapies. Gene amplification is a major event in tumorigenesis. Genes with amplification-dependent expression are being explored as therapeutic targets for cancer treatment. In this study, we have applied Analytical Multi- scale Identification of Recurring Events analysis and transcript quantification in the TNBC genome across 222 TNBC tumors and identified 138 candidate genes with positive correlation in copy number gain (CNG) and gene expression. siRNA-based 1234567890();,: 1234567890();,: loss-of-function screen of the candidate genes has validated EGFR, MYC, ASAP1, IRF2BP2, and CCT5 genes as drivers promoting proliferation in different TNBC cells. MYC, ASAP1, IRF2BP2, and CCT5 display frequent CNG and concurrent expression over 2173 breast cancer tumors (cBioPortal dataset). More frequently are MYC and ASAP1 amplified in TNBC tumors (>30%, n = 320). In particular, high expression of ASAP1, the ADP-ribosylation factor GTPase-activating protein, is significantly related to poor metastatic relapse-free survival of TNBC patients (n = 257, bc-GenExMiner).
    [Show full text]
  • Download Validation Data
    PrimePCR™Assay Validation Report Gene Information Gene Name ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 Gene Symbol ASAP1 Organism Human Gene Summary This gene encodes an ADP-ribosylation factor (ARF) GTPase-activating protein. The GTPase-activating activity is stimulated by phosphatidylinositol 45-biphosphate (PIP2) and is greater towards ARF1 and ARF5 and lesser for ARF6. This gene maybe involved in regulation of membrane trafficking and cytoskeleton remodeling. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. Gene Aliases AMAP1, CENTB4, DDEF1, KIAA1249, PAG2, PAP, ZG14P RefSeq Accession No. NC_000008.10, NT_008046.16 UniGene ID Hs.655552 Ensembl Gene ID ENSG00000153317 Entrez Gene ID 50807 Assay Information Unique Assay ID qHsaCIP0028499 Assay Type Probe - Validation information is for the primer pair using SYBR® Green detection Detected Coding Transcript(s) ENST00000518721, ENST00000343135, ENST00000357668, ENST00000524124 Amplicon Context Sequence AAGGTTCTGCGTTTTGCTAGTCAGACAGGATATGAACAAAGGACACTGGAAAGA CCCCCTTCCTTTCAGGCTGTCCTTCGATGTGGCCAATCCACCACTCCTGGTCCTC TTCCCCTGTGACGATAATCACTTCTCCCTCGATGAATGTGAGCTCGTCATCGTTG TCTGCCTGG Amplicon Length (bp) 143 Chromosome Location 8:131066961-131070281 Assay Design Intron-spanning Purification Desalted Validation Results Efficiency (%) 94 R2 0.9994 cDNA Cq 20.2 cDNA Tm (Celsius) 84 Page 1/5 PrimePCR™Assay Validation Report gDNA Cq 38.05 Specificity (%) 100 Information to assist with data interpretation is provided at the end of this report.
    [Show full text]
  • Comparative Analyses of Gene Copy Number and Mrna Expression in GBM Tumors And
    Title page Comparative analyses of gene copy number and mRNA expression in GBM tumors and GBM xenografts J. Graeme Hodgson # *, Ru-Fang Yeh #, Amrita Ray, Nicholas J Wang, Ivan Smirnov, Mamie Yu, Sujatmi Hariono, Joachim Silber, Heidi S. Feiler, Joe W. Gray, Paul T. Spellman, Scott R. Vandenberg, Mitchel S. Berger, C. David James Departments of Neurological Surgery (JGH, IS, MY, SH, JS, SRV, MSB, CDJ), Pathology (SRV), and Epidemiology and Biostatistics (RY) University of California, San Francisco, CA 94143. Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720 (AR, NJW, HSF, JWG, PTS) # These authors contributed equally to this work Running title: Genomic analyses of a GBM xenograft tumor panel * Corresponding Author J. Graeme Hodgson Dept. Neurological Surgery UC San Francisco San Francisco, CA 94143-0808 Phone: 415-476-3630 Fax: 415-476-8218 e-mail: [email protected] Abstract Development of model systems that recapitulate the molecular heterogeneity observed amongst GBM tumors will expedite the testing of targeted molecular therapeutic strategies for GBM treatment. In this study, we profiled DNA copy number and mRNA expression in 21 independent GBM tumor lines maintained as subcutaneous xenografts (GBMX), and compared GBMX molecular signatures to those observed in GBM clinical specimens derived from The Cancer Genome Atlas (TCGA). The predominant copy number signature in both tumor groups was defined by chromosome-7-gain/chromosome-10-loss, a poor prognosis genetic signature. We also observed, at frequencies similar to that detected in TCGA GBMs genomic amplification and overexpression of known GBM oncogenes such as EGFR, MDM2, CDK6 and MYCN, and novel genes including NUP107, SLC35E3, MMP1, MMP13 and DDX1.
    [Show full text]
  • Supplementary Tables S1-S3
    Supplementary Table S1: Real time RT-PCR primers COX-2 Forward 5’- CCACTTCAAGGGAGTCTGGA -3’ Reverse 5’- AAGGGCCCTGGTGTAGTAGG -3’ Wnt5a Forward 5’- TGAATAACCCTGTTCAGATGTCA -3’ Reverse 5’- TGTACTGCATGTGGTCCTGA -3’ Spp1 Forward 5'- GACCCATCTCAGAAGCAGAA -3' Reverse 5'- TTCGTCAGATTCATCCGAGT -3' CUGBP2 Forward 5’- ATGCAACAGCTCAACACTGC -3’ Reverse 5’- CAGCGTTGCCAGATTCTGTA -3’ Supplementary Table S2: Genes synergistically regulated by oncogenic Ras and TGF-β AU-rich probe_id Gene Name Gene Symbol element Fold change RasV12 + TGF-β RasV12 TGF-β 1368519_at serine (or cysteine) peptidase inhibitor, clade E, member 1 Serpine1 ARE 42.22 5.53 75.28 1373000_at sushi-repeat-containing protein, X-linked 2 (predicted) Srpx2 19.24 25.59 73.63 1383486_at Transcribed locus --- ARE 5.93 27.94 52.85 1367581_a_at secreted phosphoprotein 1 Spp1 2.46 19.28 49.76 1368359_a_at VGF nerve growth factor inducible Vgf 3.11 4.61 48.10 1392618_at Transcribed locus --- ARE 3.48 24.30 45.76 1398302_at prolactin-like protein F Prlpf ARE 1.39 3.29 45.23 1392264_s_at serine (or cysteine) peptidase inhibitor, clade E, member 1 Serpine1 ARE 24.92 3.67 40.09 1391022_at laminin, beta 3 Lamb3 2.13 3.31 38.15 1384605_at Transcribed locus --- 2.94 14.57 37.91 1367973_at chemokine (C-C motif) ligand 2 Ccl2 ARE 5.47 17.28 37.90 1369249_at progressive ankylosis homolog (mouse) Ank ARE 3.12 8.33 33.58 1398479_at ryanodine receptor 3 Ryr3 ARE 1.42 9.28 29.65 1371194_at tumor necrosis factor alpha induced protein 6 Tnfaip6 ARE 2.95 7.90 29.24 1386344_at Progressive ankylosis homolog (mouse)
    [Show full text]
  • Structural Basis of the Recognition of the SAMP Motif of Adenomatous Polyposis Coli by the Src-Homology 3 Domain†,‡
    Biochemistry 2010, 49, 5143–5153 5143 DOI: 10.1021/bi100563z Structural Basis of the Recognition of the SAMP Motif of Adenomatous Polyposis Coli by the Src-Homology 3 Domain†,‡ ^ Shuji Kaieda,§ Chiyuki Matsui, ) Yuko Mimori-Kiyosue, and Takahisa Ikegami*,§ §Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan, KAN) Research Institute, Inc., 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan, and ^RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan Received April 13, 2010; Revised Manuscript Received May 27, 2010 ABSTRACT: Elucidation of the basis of interactions between biological molecules is essential for the under- standing of living systems. Src-homology 3 (SH3) domains play critical roles in interaction networks of proteins by recognizing a proline-rich sequence motif, PxxP. There are, however, several SH3 domains that specifically bind to polypeptide chains without the conventional recognition sequence. The SH3 domain of DDEF1 associates with the SAMP motifs of the adenomatous polyposis coli (APC) tumor suppressor. The SAMP motifs are indispensable for the normal function of APC in tumor suppression. Here we present the structural basis of the interaction between the DDEF1-SH3 domain and the APC-SAMP motifs. We determined the solution structures of the DDEF1-SH3 domain both in a free state and in a complex with APC-SAMP. As the affinity of the interaction was not sufficiently high for the determination of the complex structure in solution by conventional methods, we utilized a fusion protein of the DDEF1-SH3 domain and APC-SAMP.
    [Show full text]
  • Pathway Entry Into the T Lymphocyte Developmental Molecular Dissection of Prethymic Progenitor
    The Journal of Immunology Molecular Dissection of Prethymic Progenitor Entry into the T Lymphocyte Developmental Pathway1 C. Chace Tydell,2 Elizabeth-Sharon David-Fung,2,3 Jonathan E. Moore, Lee Rowen,4 Tom Taghon,5 and Ellen V. Rothenberg6 Notch signaling activates T lineage differentiation from hemopoietic progenitors, but relatively few regulators that initiate this program have been identified, e.g., GATA3 and T cell factor-1 (TCF-1) (gene name Tcf7). To identify additional regulators of T cell specification, a cDNA library from mouse Pro-T cells was screened for genes that are specifically up-regulated in intrathymic T cell precursors as compared with myeloid progenitors. Over 90 genes of interest were iden- tified, and 35 of 44 tested were confirmed to be more highly expressed in T lineage precursors relative to precursors of B and/or myeloid lineage. To a remarkable extent, however, expression of these T lineage-enriched genes, including zinc finger transcription factor, helicase, and signaling adaptor genes, was also shared by stem cells (Lin؊Sca-1؉Kit؉CD27؊) and multipotent progenitors (Lin؊Sca-1؉Kit؉CD27؉), although down-regulated in other lineages. Thus, a major fraction of these early T lineage genes are a regulatory legacy from stem cells. The few genes sharply up-regulated between multipotent progenitors and Pro-T cell stages included those encoding transcription factors Bcl11b, TCF-1 (Tcf7), and HEBalt, Notch target Deltex1, Deltex3L, Fkbp5, Eva1, and Tmem131. Like GATA3 and Deltex1, Bcl11b, Fkbp5, and Eva1 were dependent on Notch/Delta signaling for induction in fetal liver precursors, but only Bcl11b and HEBalt were up-regulated between the first two stages of intrathymic T cell development (double negative 1 and double negative 2) corresponding to T lineage specification.
    [Show full text]
  • Karyotype Aberrations and Gene Mutations Characteristics Correlated It with UM Prognosis Ying Mao1, Bin Li*1 1Beijing Institute of Ophthalmology
    New Frontiers in Ophthalmology Review Article ISSN: 2397-2092 Karyotype aberrations and gene mutations characteristics correlated it with UM prognosis Ying Mao1, Bin Li*1 1Beijing Institute of Ophthalmology. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China Abstract Researchers tried to determined it whether the prognostic of the high incidence karyotype aberrations and gene mutations that had been displayed in uveal melanoma patients. Such as what the prognosis usually was about UM patients with loss of chromosome 3 (monosomy 3), polyploidy (>2N) or gain of chromosome 8q that were combined with/without the main gene mutations of BAP1 (BRCA-associated protein 1), EIF1AX (eukaryotic translation factor 1A), GNAQ (Guanine nucleotide- binding protein, q polypeptide), GNA11 (Guanine nucleotide-binding protein, subunit alpha-11) and SF3B1 (splicing factor 3 subunit B1). Through the literatures of recent years, researchers had suggested aberration of karyotypes and mutation of genes were both made in patients with different prognostic results than we had anticipated but allowed us to reassure patients with a good prognosis. Introduction considered patients’ age, tumor location/size, local tumor invasion through the sclera and epithelioid cell types were not accuracy factors Uveal melanoma (UM) was a most prevalence malignancy tumor for making individualized clinical decisions, so they presented that located in the uveal of the eyes in adults which approximately 50% detected chromosomal alterations were more precise ways to predict of patients had metastatic hepatic disease within 2 to 15 years after the patients’ prognosis than the clinical and pathologic features [9].
    [Show full text]
  • Table S3: Analysis of Genes Induced in BAHD1 Knockdown HEK213 Cells
    Table S3: Analysis of genes induced in BAHD1 knockdown HEK213 cells. Top networks associated to genes induced in BAHD1 KD cells (Ingenuity Pathways Analysis). Associated Network Functions Molecules in Network Score Focus (Molecules in BAHD1-KD transcriptome in upper case) Molecules Cancer, Cell Cycle, Cellular Growth and Proliferation ALCAM, BCL2L11, Caspase, CDKN1C, CLEC11A, CTH, Cyclin 54 27 A, Cyclin E, DACH1, DSP, ERK, GAL, IGF2, Igfbp, IGFBP7, IL6R, KISS1R, LGALS3, Mmp, NEFM, PDGF BB, PHLDA1, Rb, RBL1, RET, RUNX2, SCARA3, SEPP1, SLC6A6, SOX8, SULF1, TAC1, TACSTD1, VCAN, WWP1 Immune Response, Respiratory Disease, Organismal Injury and ADCYAP1R1, ALOX5, Ap1, ATF1, CaMKII, COL13A1, Creb, 39 21 Abnormalities F12, F2R, FSH, hCG, IL1, INDO, ITCH, LDL, MEOX1, NFkB, NID1, NR2F2, P38 MAPK, Pka, Pkc(s), PLA2G7, PLAU, PLC, PLCD3, PRKAR1A, RAP2B, RIPK2, S1PR3, SUMO1, TANK, Tgf beta, TIMP2, Vegf Top Molecular and Cellular Functions associated to genes induced in BAHD1 KD cells (Ingenuity Pathways Analysis). Category Molecules p-value # Molecules Cell Death SAT1, IL6R, PRKAR1A, PHLDA2, RASL10A, PHLDA1, S1PR3, 1,56E-04 - 1,90E-02 43 DSP, IGF2, ADCYAP1R1, ALOX5, QKI, LGALS3, RIPK2, IGFBP7, RUNX2, CDKN1C, PLA2G7, STEAP3, F2R, PLAU, SULF1, KAT2B, RET, BCL2L11, CTH, ATF1, RBL1, DACH1, RTN1, GAL, VCAN, PACS2, TAC1, SUMO1, HLF, EMP2, CLEC11A, TANK, ACSL4, TIMP2, INDO Cellular Growth and Proliferation F12, SAT1, IL6R, PRKAR1A, SEC14L2, PHLDA2, RASL10A, 2,35E-04 - 1,90E-02 46 PHLDA1, DSP, S1PR3, IGF2, CRLF1, ADCYAP1R1, ALOX5, LAMB1, LGALS3, RIPK2, IGFBP7,
    [Show full text]
  • Exon-Level Expression Profiling and Alternative Splicing in Autism Using Lymphoblastoid Cell Lines Zohreh Talebizadeha, Richard Aldenderfera and Xue Wen Chenb
    Original article 1 A proof-of-concept study: exon-level expression profiling and alternative splicing in autism using lymphoblastoid cell lines Zohreh Talebizadeha, Richard Aldenderfera and Xue Wen Chenb Objective Autism is a complex, heterogeneous Conclusion The paucity of autism brain samples and neurobehavioral disorder with many causes and varying extensive phenotypic heterogeneity of autism demands degrees of severity. Some genetic implications related finding ways to also identify autism-related genomic events to autism may involve gene-regulatory processes such in accessible nonbrain resources, which may contribute as alternative splicing. Here, we assess the feasibility in biomarker identifications. This proof-of-concept study of profiling exon-level gene expression in autism using shows that the analysis of alternative splicing in the Affymetrix Human exon 1.0 ST array. lymphoblastoid cell line samples has a potential to reveal at least a subset of brain-related deregulation of splicing Methods We examined lymphoblastoid cell line-derived machinery that might be implicated in autism. Psychiatr RNAs from five patients with autism compared with five Genet 24:1–9 c 2014 Wolters Kluwer Health | Lippincott controls. Williams & Wilkins. Results Analysis of variance and Bonferroni Psychiatric Genetics 2014, 24:1–9 multiple test correction identified 57 genes exhibiting differential exon-level expression, suggesting Keywords: alternative splicing, autism, differential expression, exon array, lymphoblastoid cell lines potential changes in the resultant alternatively spliced transcripts in autism compared with controls. Genes aSection of Medical Genetics and Molecular Medicine, Children’s Mercy Hospital and University of Missouri–Kansas City School of Medicine, Kansas City, with differentially expressed exons included CYFIP1, Missouri and bDepartment of Electrical Engineering and Computer Science, a previously reported autism susceptibility gene.
    [Show full text]
  • Genomic and Epigenomic Profile of Uterine Smooth Muscle
    International Journal of Molecular Sciences Article Genomic and Epigenomic Profile of Uterine Smooth Muscle Tumors of Uncertain Malignant Potential (STUMPs) Revealed Similarities and Differences with Leiomyomas and Leiomyosarcomas Donatella Conconi 1,*,† , Serena Redaelli 1,† , Andrea Alberto Lissoni 1,2, Chiara Cilibrasi 3, Patrizia Perego 4, Eugenio Gautiero 5, Elena Sala 5, Mariachiara Paderno 1,2, Leda Dalprà 1, Fabio Landoni 1,2, Marialuisa Lavitrano 1 , Gaia Roversi 1,5 and Angela Bentivegna 1,* 1 School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; [email protected] (S.R.); [email protected] (A.A.L.); [email protected] (M.P.); [email protected] (L.D.); [email protected] (F.L.); [email protected] (M.L.); [email protected] (G.R.) 2 Clinic of Obstetrics and Gynecology, San Gerardo Hospital, 20900 Monza, Italy 3 Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK; [email protected] 4 Division of Pathology, San Gerardo Hospital, 20900 Monza, Italy; [email protected] 5 Medical Genetics Laboratory, San Gerardo Hospital, 20900 Monza, Italy; [email protected] (E.G.); [email protected] (E.S.) Citation: Conconi, D.; Redaelli, S.; * Correspondence: [email protected] (D.C.); [email protected] (A.B.); Lissoni, A.A.; Cilibrasi, C.; Perego, P.; Tel.: +39-0264488133 (A.B.) Gautiero, E.; Sala, E.; Paderno, M.; † Co-first authorship. Dalprà, L.; Landoni, F.; et al. Genomic and Epigenomic Profile of Uterine Abstract: Uterine smooth muscle tumors of uncertain malignant potential (STUMPs) represent a Smooth Muscle Tumors of Uncertain heterogeneous group of tumors that cannot be histologically diagnosed as unequivocally benign Malignant Potential (STUMPs) or malignant.
    [Show full text]