Reconstruction of the Microstructure of Cyanate Ester Resin by Using

Total Page:16

File Type:pdf, Size:1020Kb

Reconstruction of the Microstructure of Cyanate Ester Resin by Using applied sciences Article Reconstruction of the Microstructure of Cyanate Ester Resin by Using Prepared Cyanate Ester Resin Nanoparticles and Analysis of the Curing Kinetics Using the Avrami Equation of Phase Change Hongtao Cao, Beijun Liu, Yiwen Ye, Yunfang Liu * and Peng Li * Research Institute of Carbon Fiber and Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; [email protected] (H.C.); [email protected] (B.L.); [email protected] (Y.Y.) * Correspondence: [email protected] (Y.L.); [email protected] (P.L.); Tel.: +86-010-644-34914 (Y.L.) Received: 4 May 2019; Accepted: 5 June 2019; Published: 10 June 2019 Featured Application: The addition of the BADCy resin nanoparticles can accelerate the formation of the microgels in the BADCy resin prepolymer. The kinetic paraments of systems with different BADCy resin nanoparticles contents were obtained using the Avrami equation and Arrhenius equation and explained the formation and growth of the microgels. Abstract: Bisphenol A dicyanate (BADCy) resin nanoparticles were synthesized by precipitation polymerization and used to modulate the microstructure of the BADCy resin matrix. A microscopic mechanism model was used to characterize the curing process of BADCy resin systems with different contents of the prepared nanoparticles. Due to the curing process of the thermosetting resin being analogous to the crystallization process of the polymer, the Avrami equation was used to analyze the microscopic mechanism of the curing process. The reactive functional groups, structure, and size of the prepared BADCy resin nanoparticles were characterized by FT-IR, SEM, and TEM, respectively. The kinetic parameters of different systems were then obtained using the Avrami equation, and they adequately explained the microscopic mechanism of the curing process. The results showed that the Avrami equation effectively described the formation and growth of gel particles during the curing process of the BADCy resins. The addition of nanoparticles can affect the curing behavior and curing rate. Since the reaction between the BADCy resin nanoparticles and the matrix is dominant, the formation process of the gel particles was neglected. This phenomenon can be understood as the added BADCy resin nanoparticles replacing the formation of gel particles. The reasons for accelerated curing were analyzed from the perspective of thermodynamics and kinetics. Besides this, the Arrhenius equation for non-isothermal conditions correctly accounted for the change in the cross-linked mechanism in the late-stage curing process. A comparison of the theoretical prediction with the experimental data shows that the Avrami theory of phase change can simulate the curing kinetics of different BADCy resin systems well and explain the effects of BADCy resin nanoparticles on the formation of the microstructure. Keywords: bisphenol a dicyanate resin; Avrami equation; Arrhenius equation; curing behavior 1. Introduction Cyanate ester (CE) resins are novel high-performance thermosetting resins similar to epoxy (EP) and bimaleimide (BMI) that have been developed in recent decades [1]. CE monomers contain two Appl. Sci. 2019, 9, 2365; doi:10.3390/app9112365 www.mdpi.com/journal/applsci Appl.Appl. Sci. Sci.2019 2019,,9 9,, 2365 x 2 2of of 15 15 or more -OCN functional groups which can form a highly symmetrical triazine ring structure after or more -OCN functional groups which can form a highly symmetrical triazine ring structure after the curing reaction [2]. It is the chemical nature of the CE monomers and the unique structure of the the curing reaction [2]. It is the chemical nature of the CE monomers and the unique structure of the cured resin that give rise to a series of properties, such as excellent mechanical properties, a high glass curedtransition resin thattemperature, give rise tolow a series contractibility of properties, rate, such low as water excellent absorption, mechanical and properties, ultralow a dielectric high glass transitionconstant temperature,and dielectric low loss contractibility values [3–6]. rate, Compared low water with absorption, other thermosetting and ultralow resins, dielectric CEs constant have andexcellent dielectric overall loss performance. values [3–6]. Therefore, Compared CEs with are other a proven thermosetting replacement resins, for thermosets, CEs have excellent such as epoxy overall performance.or polyimide, Therefore, in applications CEs are in the a proven aerospace, replacement electronics, for thermosets,and communications such as epoxy industries or polyimide, [4,7–11]. in applicationsCE monomers in the aerospace, polymerize electronics, via a ring-forming and communications reaction under industries the [conditions4,7–11]. of heating or catalysts.CE monomers Simmon first polymerize proposed via the a ring-forming self-polymeri reactionzation mechanism under the conditions of CE resins of heatingin the absence or catalysts. of a Simmoncatalyst first[12]. proposed The curing the reaction self-polymerization of the CE resins mechanism was initiated of CEresins and catalyzed in the absence by impurities of a catalyst in the [12 ]. Themonomer curing or reaction moisture of in the the CE environment. resins was initiated However, and this catalyzed process proceeds by impurities with difficulty in the monomer when the or moisturepurity of inthe the monomer environment. is high [13]. However, Active hydrogen this process containing proceeds compounds, with difficulty such as when phenols, the purityamines, of theand monomer imidazole, is in high concert [13]. with Active metal hydrogen ions can containing catalyze the compounds, curing of CE such resins as phenols,[14]. This amines, reaction and is imidazole,depicted in in concertFigure 1. with A metalrange ionsof such can catalyzemetal ions the curinghas been of CE reported, resins [ 14including]. This reaction chromium is depicted [15], inmanganese Figure1. A [16], range iron of such[17], metalcobalt ions[18], hastin been[19], reported,zinc [20], includingand copper chromium [21]. However, [ 15], manganese the metal ion [16 ], ironcompounds [17], cobalt have [18 poor], tin solubility [19], zinc in [ 20the], CE and resins copper and [ 21promote]. However, the hydrolysis the metal reaction ion compounds of the triazine have poorring solubilityas well; as in a theresult, CE these resins metal andpromote salts are therare hydrolysisly used as reactiona catalyst. of Alternative the triazine catalytic ring as well;systems as a result,have always these metal been salts an important are rarely useddirection as a catalyst.of research. Alternative At present, catalytic room systems temperature have always ionic liquids been an important(RTILs) and direction organically of research. modified At layered present, silicate room have temperature been proved ionic to liquidsaccelerate (RTILs) CE resin and curing organically [22– modified24]. layered silicate have been proved to accelerate CE resin curing [22–24]. FigureFigure 1.1. Self-polymerizationSelf-polymerization mechanism of cyanate ester ester in in the the presence presence of of catalysts. catalysts. PhysicalPhysical and and structural structural changes changes a ffaffectect the the polymerization polymerization kinetics kinetics and and the the structure. structure. Therefore, Therefore, the identificationthe identification of relevant of relevant kinetic models kinetic can models provide can insight provide into theinsight curing into process the of curing thermosetting process resin of systems.thermosetting In the curingresin systems. process, In identifying the curing each process, step of identifying the chemical each reaction step of is the very chemical difficult. reaction Especially, is invery the difficult. late curing Especially, stage, the in the diff usionlate curing factor stage, plays the a controllingdiffusion factor role. plays Thus, a controlling the phenomenological role. Thus, model,the phenomenological rather than the mechanismmodel, rather model, than isthe used me [chanism25]. The model, Kamal kineticis used model[25]. The considers Kamal bothkinetic the autocatalyticmodel considers behavior both andthe theautocatalytic n-stage reaction, behavior and and it canthe ben-stage used toreaction, describe and the it curing can be process used to of thermosettingdescribe the curing resins process precisely of [ 26thermosetting]. However, theseresins models precisely are [26]. limited However, to describing these models the curing are limited reaction processto describing and do the not curing give specificreactionphysical process and meaning do not to give the specific parameters. physical Previous meaning studies to the demonstrated parameters. thatPrevious the Avrami studies equation demonstrated considerably that the illustrated Avrami equa thetion isothermal considerably and non-isothermal illustrated the isothermal curing behavior and ofnon-isothermal thermosetting curing resins [behavior25,27–29 ].of thermosetting resins [25,27–29]. TheThe essence essence ofof thermosettingthermosetting resinresin curing is the cross-linked chemical chemical reaction reaction of of linear linear polymer polymer chains.chains. Meanwhile, Meanwhile, this this is is accompanied accompanied by by microphase microphase separation, separation, the the shift shift of theof the glass glass transition, transition, and otherand processes,other processes, eventually eventually forming forming a three-dimensional a three-dimensional
Recommended publications
  • Second Tranche HTS Subheading Product Description 2710.19.30
    Second Tranche HTS Subheading Product Description 2710.19.30 Lubricating oils, w/or w/o additives, fr. petro oils and bitumin minerals (o/than crude) or preps. 70%+ by wt. fr. petro oils 2710.19.35 Lubricating greases from petro oil/bitum min/70%+ by wt. fr. petro. oils but n/o 10% by wt. of fatty acid salts animal/vegetable origin 2710.19.40 Lubricating greases from petro oil/bitum min/70%+ by wt. fr. petro. oils > 10% by wt. of fatty acid salts animal/vegetable origin 3403.19.10 Lubricating preparations containing 50% but less than 70% by weight of petroleum oils or of oils obtained from bituminous minerals 3403.19.50 Lubricating preparations containing less than 50% by weight of petroleum oils or of oils from bituminous minerals 3403.99.00 Lubricating preparations (incl. lubricant-based preparations), nesoi 3811.21.00 Additives for lubricating oils containing petroleum oils or oils obtained from bituminous minerals 3811.29.00 Additives for lubricating oils, nesoi 3901.10.10 Polyethylene having a specific gravity of less than 0.94 and having a relative viscosity of 1.44 or more, in primary forms 3901.10.50 Polyethylene having a specific gravity of less than 0.94, in primary forms, nesoi 3901.20.10 Polyethylene having a specific gravity of 0.94 or more and having a relative viscosity of 1.44 or more, in primary forms 3901.20.50 Polyethylene having a specific gravity of 0.94 or more, in primary forms, nesoi 3901.30.20 Ethylene copolymer: Vinyl acetate-vinyl chloride-ethylene terpoly w/ < 50% deriv of vinyl acetate, exc polymer aromatic/mod
    [Show full text]
  • TR-470: Pyridine (CASRN 110-86-1) in F344/N Rats, Wistar Rats, And
    NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF PYRIDINE (CAS NO. 110-86-1) IN F344/N RATS, WISTAR RATS, AND B6C3F1 MICE (DRINKING WATER STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 March 2000 NTP TR 470 NIH Publication No. 00-3960 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals.
    [Show full text]
  • Heats of Formation of Certain Nickel-Pyridine Complex Salts
    HEATS OF FORFATION OF CERTAIN NICKEL-PYRIDINE COLPLEX SALTS DAVID CLAIR BUSH A THESIS submitted to OREGON STATE COLLEGE in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE June l9O [4CKNOWLEDGMENT The writer wishes to acknowledge his indebtedness and gratitude to Dr. [4. V. Logan for his help and encour- agement during this investigation. The writer also wishes to express his appreciation to Dr. E. C. Gilbert for helpful suggestions on the con- struction of the calortheter, and to Lee F. Tiller for his excellent drafting and photostating of the figures and graphs. APPROVED: In Charge of ?ajor Head of Department of Chemistry Chairrian of School Graduate Comrittee Dean of Graduate School Date thesis is presented /11 ' Typed by Norma Bush TABLE OF CONTENTS HISTORICAL BACKGROUND i INTRODUCTION 2 EXPERIMENTAL 5 Preparation of the Compounds 5 Analyses of the Compounds 7 The Calorimeter Determination of the Heat Capacity 19 Determination of the Heat of Formation 22 DISCUSSION 39 41 LITERATURE CITED 42 TABLES I Analyses of the Compounds 8 II Heat Capacity of the Calorimeter 23 III Heat of Reaction of Pyridine 26 IV Sample Run and Calculation 27 V Heat of Reaction of Nickel Cyanate 30 VI Heat of Reaction of Nickel Thiocyanate 31 VII Heat of Reaction of Hexapyridinated Nickel Cyanate 32 VIII Heat of Reaction of Tetrapyridinated Nickel Thiocyanate 33 IX Heat of Formation of the Pyridine Complexes 34 FI GURES i The Calorimeter 10 2 Sample Ijector (solids) 14 2A Sample Ejector (liquids) 15 3 Heater Circuit Wiring Diagram 17 4 heat Capacity of the Calorimeter 24 5 Heat of Reaction of Pyridine 28 6 Heat of Reaction of Hexapyridinated Nickel Cyanate 35 7 Heat of Reaction of Tetrapyridinated Nickel Thiocyanate 36 8 Heat of Reaction of Nickel Cyanate 37 9 Heat of Reaction of Nickel Thiocyanate 38 HEATS OF FOW ATION OF CERTAIN NICKEL-PYRIDINE COMPLEX SALTS HISTORICAL BACKGROUND Compounds of pyridine with inorganic salts have been prepared since 1970.
    [Show full text]
  • Intramolecular Alkoxycyanation and Alkoxyacylation Reactions: New Types of Alkene Difunctionalizations for the Construction of Oxygen Heterocycles John P
    Angewandte. Highlights DOI: 10.1002/anie.201204470 Alkene Difunctionalization Intramolecular Alkoxycyanation and Alkoxyacylation Reactions: New Types of Alkene Difunctionalizations for the Construction of Oxygen Heterocycles John P. Wolfe* alkenes · catalysis · heterocycles · ketones · nitriles Saturated oxygen heterocycles, such as tetrahydrofurans and not require an exogenous carbon electrophile.[6,7] Instead, the dihydrobenzofurans, are important motifs in a myriad of carbon electrophile is covalently attached to the cyclizing biologically active compounds, including natural products and oxygen atom in the substrate, and the carboalkoxylations are pharmaceutical targets. Therefore, there has been consider- accomplished through activation of this CÀO bond by the able interest in the development of new synthetic methods for catalyst. Importantly, these two approaches lead to the the construction of these important structures.[1] Many tradi- formation of dihydrobenzofuran derivatives that bear func- tional approaches to the generation of these compounds tional groups (ketones or nitriles), which are convenient involve ring formation through intramolecular SN2 reactions handles for further elaboration of the molecule, and cannot be and related strategies. However, these approaches typically directly installed by using previously developed alkene lead to the formation of only one bond during ring closure and carboalkoxylation methods. often require somewhat complicated substrates.[1] The method of the Douglas group involves the use of Late transition metal catalyzed alkene carboalkoxylations a cationic RhI complex to catalyze the intramolecular are a subclass of alkene difunctionalization reactions[2] that alkoxyacylation of acylated 2-allylphenol derivatives have considerable utility for the construction of tetrahydro- (Scheme 2).[6] These reactions afford 2-acylmethyl dihydro- furans, dihydrobenzofurans, and related oxygen heterocycles.
    [Show full text]
  • United States Patent Office Patented Dec
    3,631,000 United States Patent Office Patented Dec. 28, 1971 2 SUMMARY OF THE INVENTION 3,631,000 SOCYANURATE-CONTAINING POLYSOCYA We have found that superior isocyanurate-containing NATES AND METHOD OF PREPARATION polyisocyanates are inexpensively prepared by the two Perry A. Argabright and Brian L. Philips, Littleton, Colo., step process of: (1) chloroalkylating a mono-substituted and Vernon J. Sinkey, South St. Paul, Minn., assignors benzene compound, and (2) reacting the polychloro to Marathon Oil Company, Findlay, Ohio alkylated benzene-substituted compounds with a metal No Drawing. Filed June 4, 1969, Ser. No. 830,541 cyanate in the conjoint presence of a bromide or iodide Int. C. C08g 22/18, 22/44 of an alkali metal or an alkaline earth metal, and in the U.S. C. 260-77.5 NC 1. Claims presence of an aprotic solvent, herein defined. The mole IO ratio of metal cyanate to the chloride in the polychloro alkylated benzene-substituted compound is from about ABSTRACT OF THE DESCLOSURE 0.8 to about 1.5 to produce the polyisocyanates. These Improved organic polyisocyanates are prepared by re polyisocyanate compositions are starting materials for acting chlorinated benzene-substituted compounds, espe Various polymeric systems, e.g. a rigid polyurethane foam cially chloromethylated aromatics, with metal cyanates in 5 produced by conventional polymerization or copolymeri the presence of a metal iodide or bromide and in the zation with an appropriate monomer (e.g. a polyester or presence of a dipolar aprotic solvent where the mole ratio polyether based polyol). Particularly preferred products of cyanate in the metal cyanate to chlorine in the chlo are polyurethane and polyurea foams, coatings, elasto rine-containing benzene-substituted compound is from mers and adhesives.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,697,009 Deschler Et Al
    United States Patent (19) 11 Patent Number: 4,697,009 Deschler et al. (45) Date of Patent: Sep. 29, 1987 54 N-SILYLPROPYL-N'-ACYL-UREAS AND 58 Field of Search ........................ 556/421; 544/229; PROCESS FOR THER PRODUCTION 546/14: 548/110; 260/239 BC; 556/414; 540/487 75) Inventors: Ulrich Deschler; Peter Kleinschmit, 56) References Cited both of Hanau; Rudolf Michel, Freigericht, all of Fed. Rep. of U.S. PATENT DOCUMENTS Germany 2,857,430 10/1958 Applegath et al. ............. 556/421 X 2,907,782 10/1959 Pike ..................................... 556/421 73 Assignee: Degussa Aktiengesellschaft, 3,793,253 2/1974 Quiring et al. ... ... 556/421 X Frankfurt am Main, Fed. Rep. of 3,803,194 4/1974 Golitz et al. .................... 556/42 X Germany 3,856,756 12/1974 Wagner et al. ................. 556/421 X Primary Examiner-Paul F. Shaver 21 Appl. No.: 875,867 Attorney, Agent, or Firm-Cushman, Darby & Cushman 22 Filed: Jun. 18, 1986 57 ABSTRACT The invention is directed to N-silylpropyl-N'-acyl ureas 30 Foreign Application Priority Data and their production from an alkali cyanate, a 3-halo propylsilane and in a given case, a cyclic acidamide. By Jul. 6, 1985 IDE Fed. Rep. of Germany ....... 352.425 heating the compounds of the invention the blocked 5) Int. Cl. ................................................ C07F 7/10 isocyanate function can be set free. 52 U.S. Cl. .................................... 540/487; 556/414; 556/421; 544/229; 546/14: 548/110 16 Claims, 3 Drawing Figures U.S. Patent Sep. 29, 1987 Sheet 1 of 3 4,697,009 (z+w)/92° oQtz,oºgOOººO972OO2 4,697,009 1.
    [Show full text]
  • Synthesis and Characterization of Cyanate Ester and Its Blends With
    CHEMISTRY & CHEMICAL TECHNOLOGY Vol. 2, No. 4, 2008 Chemistry Samikannu Rakesh and Muthusamy Sarojadevi SYNTHESIS AND CHARACTERIZATION OF CYANATE ESTER AND ITS BLENDS WITH BISPHENOL DICYANATE ESTER Department of Chemistry, Anna University, Chennai-600 025, India [email protected] Received: May 05, 2008 Ó Rakesh S., Sarojadevi M. 2008 Abstract. A new keto-ene functionalized 1, 5-bis because of their superior mechanical properties which are (4-hydroxyphenyl)penta-1,4-dien-3-one (HPDO) was used in the electronic devices, high-temperature adhesive prepared from p-hydroxy benzaldehyde and acetone using and aerospace industries [1-5]. They have the boric acid as a catalyst. The prepared bisphenol was processability similar to that of epoxy resins and the converted into 1,5-bis (4-cyanatophenyl) penta-1,4-diene- thermal properties similar to those of phenolic resins. CE 3-one (CPDO) by reacting with cyanogen bromide (CNBr) resins have their own unique properties such as a good in the presence of triethylamine. The synthesized bisphenol strength, low dielectric constant, radar transparency, low and the dicyanate ester were characterized by Fourier water absorption, and superior metal adhesion [6, 7]. Curing of cyanate esters is catalyzed by heat or a transform infrared spectroscopy (FT-IR), nuclear magnetic combination of heat and catalyst [8]. The great difference resonance spectroscopy (1H-NMR and 13 in processing between epoxies and cyanate esters is that C-NMR) and elemental analysis (EA) techniques. CPDO the latter ones need relatively high curing temperature. was then blended with a commercial bisphenol-A dicyanate The high curing temperature causes high energy- ester (BADCy) at different ratios (100:0, 75:25, 50:50.
    [Show full text]
  • Irradiated Benzene Ice Provides Clues to Meteoritic Organic Chemistry ⇑ Michael P
    Icarus 226 (2013) 1201–1209 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Irradiated benzene ice provides clues to meteoritic organic chemistry ⇑ Michael P. Callahan a,b, , Perry A. Gerakines a,b, Mildred G. Martin a,b,c, Zan Peeters d, Reggie L. Hudson a,b a Solar System Exploration Division, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD 20771, USA b Goddard Center for Astrobiology, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD 20771, USA c Catholic University of America, Washington, DC 20064, USA d Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA article info abstract Article history: Aromatic hydrocarbons account for a significant portion of the organic matter in carbonaceous chondrite Received 21 December 2012 meteorites, as a component of both the low molecular weight, solvent-extractable compounds and the Revised 24 July 2013 insoluble organic macromolecular material. Previous work has suggested that the aromatic compounds Accepted 27 July 2013 in carbonaceous chondrites may have originated in the radiation-processed icy mantles of interstellar Available online 13 August 2013 dust grains. Here we report new studies of the organic residue made from benzene irradiated at 19 K by 0.8 MeV protons. Polyphenyls with up to four rings were unambiguously identified in the residue Keywords: by gas chromatography–mass spectrometry. Atmospheric pressure photoionization Fourier transform Astrobiology mass spectrometry was used to determine molecular composition, and accurate mass measurements Cosmic rays Cosmochemistry suggested the presence of polyphenyls, partially hydrogenated polyphenyls, and other complex aromatic Experimental techniques compounds.
    [Show full text]
  • The Millimeter Wave Spectrum of Methyl Cyanate: a Laboratory Study and Astronomical Search in Space?,?? L
    A&A 591, A75 (2016) Astronomy DOI: 10.1051/0004-6361/201628140 & c ESO 2016 Astrophysics The millimeter wave spectrum of methyl cyanate: a laboratory study and astronomical search in space?,?? L. Kolesniková1, J. L. Alonso1, C. Bermúdez1, E. R. Alonso1, B. Tercero2, J. Cernicharo2, and J.-C. Guillemin3 1 Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011 Valladolid, Spain e-mail: [email protected] 2 Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, 28049 Cantoblanco, Spain 3 Institut des Sciences Chimiques de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France Received 15 January 2016 / Accepted 15 March 2016 ABSTRACT Aims. The recent discovery of methyl isocyanate (CH3NCO) in Sgr B2(N) and Orion KL makes methyl cyanate (CH3OCN) a potential molecule in the interstellar medium. The aim of this work is to fulfill the first requirement for its unequivocal identification in space, i.e. the availability of transition frequencies with high accuracy. Methods. The room-temperature rotational spectrum of methyl cyanate was recorded in the millimeter wave domain from 130 to 350 GHz. All rotational transitions revealed A-E splitting owing to methyl internal rotation and were globally analyzed using the ERHAM program. 00 00 Results. The data set for the ground torsional state of methyl cyanate exceeds 700 transitions within J = 10−35 and Ka = 0−13 and newly derived spectroscopic constants reproduce the spectrum close to the experimental uncertainty.
    [Show full text]
  • Chapter 1 Organic Compounds: Alkanes
    Chapter 1 Alkanes Chapter 1 Organic Compounds: Alkanes Chapter Objectives: • Learn the differences between organic and inorganic compounds. • Learn how to identify isomers of organic compounds. • Learn how to write condensed, expanded, and line structures for organic compounds. • Learn how to recognize the alkane functional group in organic compounds. • Learn the IUPAC system for naming alkanes and cycloalkanes. • Learn the important physical and chemical properties of the alkanes. Mr. Kevin A. Boudreaux Angelo State University CHEM 2353 Fundamentals of Organic Chemistry Organic and Biochemistry for Today (Seager & Slabaugh) www.angelo.edu/faculty/kboudrea Organic chemistry nowadays almost drives me mad. To me it appears like a primeval tropical forest full of the most remarkable things, a dreadful endless jungle into which one does not dare enter, for there seems to be no way out. Friedrich Wöhler 2 1 Chapter 1 Alkanes 3 What Do We Mean By “Organic”? • In everyday usage, the word organic can be found in several different contexts: – chemicals extracted from plants and animals were originally called “organic” because they came from living organisms. – organic fertilizers are obtained from living organisms. – organic foods are foods grown without the use of pesticides or synthetic fertilizers. • In chemistry, the words “organic” and “organic chemistry” are defined a little more precisely: 4 2 Chapter 1 Alkanes What is Organic Chemistry? • Organic chemistry is concerned with the study of the structure and properties of compounds containing carbon. – All organic compounds contain carbon atoms. – Inorganic compounds contain no carbons. Most inorganic compounds are ionic compounds. • Some carbon compounds are not considered to be organic (mostly for historical reasons), such as CO, CO2, diamond, graphite, and salts of carbon- 2- - containing polyatomic ions (e.g., CO3 , CN ).
    [Show full text]
  • 1 a Brief Introduction to Traditional Bioconjugate Chemistry
    3 1 A Brief Introduction to Traditional Bioconjugate Chemistry W. Russ Algar 1.1 Introduction Bioconjugation is the process of linking or connecting a biological molecule with another moiety. These moieties may include other biomolecules (e.g., peptides), synthetic polymers (e.g., polyethylene glycol), and small molecules such as ligands (e.g., biotin), drugs, or fluorescent dyes, among a multitude of other possibilities [1]. While an extensive range of chemical reactions can be utilized for bioconjugation, the goal of this chapter is to briefly summarize some of the most stalwart and traditional reactions, highlighting important concepts and the strengths and weaknesses of each chemistry. Although there is no formal defini- tion of “traditional” bioconjugate chemistry, a majority of these chemistries will satisfy two criteria: (i) reaction with a native functional group in a biomolecule under mild aqueous conditions; and (ii) use by many researchers over many years with continued application today. In this context, the following sections of this chapter discuss the most commonly targeted functional groups in biomolecules, the most popular chemical reactions for conjugation at those functional groups, and the cross-linking strategies most frequently used with those reactions. Extensive information on traditional bioconjugate chemistries can be found in a number of valuable resources, including Hermanson’s classic tome, Bioconjugate Techniques [2], as well as similar volumes by other authors [3–5]. Importantly, this introductory chapter serves as a short primer for subsequent chapters that discuss more modern bioconjugation methods that have better chemoselec- tivity than the traditional methods discussed here. The development of such “nontraditional” chemistries has been motivated by the limitations of tradi- tional chemistries.
    [Show full text]
  • Cyanate Ester/Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites: Synthesis and Characterization†
    Chem. Mater. 2006, 18, 301-312 301 Cyanate Ester/Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites: Synthesis and Characterization† Kaiwen Liang,‡ Guizhi Li,§ Hossein Toghiani,‡ Joseph H. Koo,| and Charles U. Pittman, Jr.*,§ DaVe C. Swalm School of Chemical Engineering, Mississippi State UniVersity, Mississippi State, Mississippi 39762, Department of Chemistry, Mississippi State UniVersity, Mississippi State, Mississippi 39762, and Department of Mechanical Engineering, Texas A&M UniVersity, College Station, Texas 78712 ReceiVed July 19, 2005 Cyanate ester (PT-15, Lonza Corp.) composites containing the blended polyhedral oligomeric silsesquioxane (POSS), TriSilanolPhenyl-POSS (C42H38O12Si7), were prepared containing PT-15/POSS 99/1, 97/3, 95/5, 90/10, and 85/15 w/w ratios. The composites were characterized by FT-TR, X-ray diffraction (XRD), small-angle neutron scattering (SANS), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (X-EDS), transmission electron microscopy (TEM), dynamic mechanical thermal analysis (DMTA), and three-point bending flexural tests. TriSilanolPhenyl-POSS was throughly dispersed into uncured liquid PT-15 resin. After curing, XRD, SANS, and X-EDS measurements were consistent with partial molecular dispersion of a portion of the POSS units in the continuous matrix phase while the remainder forms POSS aggregates. Larger aggregates are formed at higher loadings. SANS, SEM, and TEM show that POSS-enriched nanoparticles are present in the PT-15/POSS composites. The storage bending moduli, E′, and the glass transition temperatures, Tg, of PT-15/POSS 99/1, 97/3, and 95/5 composites are higher than those of the pure PT-15 over the temperature range from 35 to 350 °C. The E′ values for all these composites (except for the 15 wt % POSS sample) are significantly greater than that of the pure resin at T > Tg.
    [Show full text]