THERMAL DECOMPOSITION of CYANATE ESTER RESINS September 2001 6

Total Page:16

File Type:pdf, Size:1020Kb

THERMAL DECOMPOSITION of CYANATE ESTER RESINS September 2001 6 DOT/FAA/AR-01/32 Thermal Decomposition of Office of Aviation Research Cyanate Ester Resins Washington, D.C. 20591 September 2001 Final Report This document is available to the U.S. public through the National Technical Information Service (NTIS), Springfield, Virginia 22161. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. This document does not constitute FAA certification policy. Consult your local FAA aircraft certification office as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center’s Full-Text Technical Reports page: actlibrary.tc.faa.gov in Adobe Acrobat portable document form (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AR-01/32 4. Title and Subtitle 5. Report Date THERMAL DECOMPOSITION OF CYANATE ESTER RESINS September 2001 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Michael L. Ramirez1, Richard Walters2, Edward P. Savitski3, and Richard E. Lyon4 1Hewlett Packard 3Eastman Chemical Company 10. Work Unit No. (TRAIS) Technical Services Lab P.O. Box 1972 P.O. Box 4048 Kingsport, TN 37662-5150 Rd 110 N Bldg. 3 Aguadilla, PR 00605 4Federal Aviation Administration 11. Contract or Grant No. 2Galaxy Scientific Corporation William J. Hughes Technical Center 2500 English Creek Avenue, Bldg. C Aircraft and Airport Safety Egg Harbor Township, NJ 08234 Research and Development Division Atlantic City International Airport NJ 08405 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered U.S. Department of Transportation Final Report Federal Aviation Administration Office of Aviation Research 14. Sponsoring Agency Code Washington, DC 20591 AIR-100 15. Supplementary Notes 16. Abstract Polycyanurate networks were prepared by thermal polymerization of cyanate ester monomers containing two or more cyanate ester (–O-C≡N) functional groups. The thermal decomposition chemistry of nine different polycyanurates was studied by thermogravimetry and infrared analysis of solid films and analysis of the gases evolved during pyrolysis using infrared spectroscopy and gas chromatography-mass spectrometry. It was found that the thermal stability of the polycyanurates was essentially independent of monomer chemical structure with the major mass loss occurring at about 450°C for all materials. Analysis of the solid-state and gas phase thermal degradation chemistry indicates a thermal decomposition mechanism for polycyanurates which begins with hydrocarbon chain scission and cross-linking at temperatures between 400°-450°C with negligible mass loss, followed by decyclization of the triazine ring at 450°C that liberates volatile cyanate-ester decomposition products. The solid residue after pyrolysis increases with the aromatic content of the polymer and incorporates about two thirds of the nitrogen and oxygen present in the original material. 17. Key Words 18. Distribution Statement Polymer, Polycyanurate, Cyanate ester, Thermoset polymer, This document is available to the public through the National Thermal degradation, Fire, Flammability Technical Information Service (NTIS), Springfield, Virginia 22161. 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 20 Form DOT F1700.7 (8-72) Reproduction of completed page authorized ACKNOWLEDGEMENTS The authors are grateful to Dave Shimp for many helpful discussions and to David Esral for determining the char-forming tendency of some of the polycyanurates. Certain commercial equipment, instruments, materials, or companies are identified in this report in order to adequately specify the experimental procedure. This in no way implies endorsement or recommendation by the Federal Aviation Administration. iii/iv TABLE OF CONTENTS Page EXECUTIVE SUMMARYvii 1.INTRODUCTION1 2.EXPERIMENTAL2 2.1Materials2 2.2Thermal Analyses2 2.3Infrared Spectroscopy2 2.3.1 Solid Films 2 2.3.2 Pyrolysis Gases 3 2.4Pyrolysis-Gas Chromatography/Mass Spectrometry4 3.RESULTS AND DISCUSSION4 3.1Polymerization Chemistry4 3.2Solid-State Degradation Chemistry5 3.3Volatile Degradation Products8 4.CONCLUSIONS12 5.REFERENCES12 v LIST OF FIGURES Figure Page 1 Cyanate Ester Polymerization Reaction 1 2 Fourier Transform Infrared Cure Monitoring of B-10 Cyanate Ester Resin 5 3 Thermogravimetic Data for the Nine Polycyanurates 6 4 Mass Loss Rate Versus Temperature for PT-30 6 5 Temperature Resolved FTIR Spectra of B-10 Polycyanurate Film During Heating 8 6 Temperature Resolved Gas Phase FTIR Spectra of B-10 Polycyanurate Volatile Decomposition Products 9 7 Temperature Resolved Gas Phase FTIR Spectra of BPC Polycyanurate Volatile Decomposition Products 9 LIST OF TABLES Table Page 1 Cyanate Ester Monomers 3 2 Thermal Properties of Polycyanurates 5 3 Wavenumbers of the –OCN Group Absorbance Doublet for the Volatile Decomposition Products 10 4 Percentages of Volatile Decomposition Products Identified by Mass Spectroscopy for Six Polycyanurates 11 vi EXECUTIVE SUMMARY Polycyanurate networks were prepared by thermal polymerization of cyanate ester monomers containing two or more cyanate ester (–O-C≡N) functional groups. The thermal decomposition chemistry of nine different polycyanurates was studied by thermogravimetry, infrared analysis of solid films, and analysis of the gases evolved during pyrolysis using infrared spectroscopy and gas chromatography-mass spectrometry. It was found that the thermal stability of the polycyanurates was essentially independent of monomer chemical structure with the major mass loss occurring at about 450°C for all materials. Analysis of the solid-state and gas phase thermal degradation chemistry indicates a thermal decomposition mechanism for polycyanurates which begins with hydrocarbon chain scission and cross-linking at temperatures between 400°-450°C with negligible mass loss, followed by decyclization of the triazine ring at 450°C that liberates volatile cyanate-ester decomposition products. The solid residue after pyrolysis increases with the aromatic content of the polymer and incorporates about two thirds of the nitrogen and oxygen present in the original material. vii/viii 1. INTRODUCTION. Polycyanurates are addition-cured thermoset polymers that exhibit good [1-4] to outstanding [5 and 6] fire resistance. Because the ignition and fire resistance of solid polymers are governed by short term thermal stability and anaerobic degradation chemistry [7-10], the following study was conducted to understand these processes in polycyanurates. Polycyanurates are formed when three cyanate ester monomers containing the –O-C≡N functional group undergo a thermally initiated cyclotrimerization (addition) reaction [11 and 12] to form a six-member oxygen-linked triazine ring (cyanurate) as illustrated in figure 1. R R R R OCN NCO O NO NN OCN cyanurate O R R CYANATE ESTER MONOMERS POLYCYANURATE FIGURE 1. CYANATE ESTER POLYMERIZATION REACTION The cyanurate is a thermally stable cross-link that is responsible for the high mass loss temperature (450°C) of these thermosets. Polycyanurates derived from phenol novolac cyanate esters have a high glass transition temperature Tg > 350°C approaching their thermal decomposition temperature [13 and 14]. In addition to having high thermal stability, polycyanurates form a carbonaceous char during burning that protects the underlying material and further enhances fire resistance [15 and 16]. Because cyanate ester resins polymerize by an addition reaction, no volatiles or by-products are produced during cure which can cause voids and subsequent loss of strength in the final product [14-16]. Thermogravimetric studies of polycyanurates in air have indicated that thermoxidative degradation proceeds via rapid hydrolysis of the ether oxygen bond between the phenyl and triazine rings in the presence of moisture at temperatures of 350°-420°C [17-19]. Purely thermal degradation under anaerobic conditions is claimed at higher temperature (≥ 450°C) via homolytic cleavage of the hydrocarbon backbone over a narrow temperature range (450°-500°C) independent of the chemical structure of the linking groups between the cyanurate rings [18-20]. The present study extends these previous thermogravimetric studies of polycyanurate thermal degradation to include infrared and mass spectroscopic analysis of the solid and gaseous pyrolysis products. 1 2. EXPERIMENTAL. 2.1 MATERIALS. Nine cyanate ester monomers (resins) with different chemical structures were examined in this study. The monomer structures and suppliers are shown in table 1. Five of the resins are difunctional cyanate esters derived from bisphenols, while two of the resins are multifunctional resins derived from phenol novolacs. All of the cyanate ester resins were used as received from the manufacturer without modification, purification, or catalysts. With the exception of the bisphenol C (BPC) cyanate ester, which is a research monomer at present, all of the resins examined in this study are commercial materials. The BPC polycyanurate was included in this study because
Recommended publications
  • Second Tranche HTS Subheading Product Description 2710.19.30
    Second Tranche HTS Subheading Product Description 2710.19.30 Lubricating oils, w/or w/o additives, fr. petro oils and bitumin minerals (o/than crude) or preps. 70%+ by wt. fr. petro oils 2710.19.35 Lubricating greases from petro oil/bitum min/70%+ by wt. fr. petro. oils but n/o 10% by wt. of fatty acid salts animal/vegetable origin 2710.19.40 Lubricating greases from petro oil/bitum min/70%+ by wt. fr. petro. oils > 10% by wt. of fatty acid salts animal/vegetable origin 3403.19.10 Lubricating preparations containing 50% but less than 70% by weight of petroleum oils or of oils obtained from bituminous minerals 3403.19.50 Lubricating preparations containing less than 50% by weight of petroleum oils or of oils from bituminous minerals 3403.99.00 Lubricating preparations (incl. lubricant-based preparations), nesoi 3811.21.00 Additives for lubricating oils containing petroleum oils or oils obtained from bituminous minerals 3811.29.00 Additives for lubricating oils, nesoi 3901.10.10 Polyethylene having a specific gravity of less than 0.94 and having a relative viscosity of 1.44 or more, in primary forms 3901.10.50 Polyethylene having a specific gravity of less than 0.94, in primary forms, nesoi 3901.20.10 Polyethylene having a specific gravity of 0.94 or more and having a relative viscosity of 1.44 or more, in primary forms 3901.20.50 Polyethylene having a specific gravity of 0.94 or more, in primary forms, nesoi 3901.30.20 Ethylene copolymer: Vinyl acetate-vinyl chloride-ethylene terpoly w/ < 50% deriv of vinyl acetate, exc polymer aromatic/mod
    [Show full text]
  • TR-470: Pyridine (CASRN 110-86-1) in F344/N Rats, Wistar Rats, And
    NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF PYRIDINE (CAS NO. 110-86-1) IN F344/N RATS, WISTAR RATS, AND B6C3F1 MICE (DRINKING WATER STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 March 2000 NTP TR 470 NIH Publication No. 00-3960 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals.
    [Show full text]
  • Heats of Formation of Certain Nickel-Pyridine Complex Salts
    HEATS OF FORFATION OF CERTAIN NICKEL-PYRIDINE COLPLEX SALTS DAVID CLAIR BUSH A THESIS submitted to OREGON STATE COLLEGE in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE June l9O [4CKNOWLEDGMENT The writer wishes to acknowledge his indebtedness and gratitude to Dr. [4. V. Logan for his help and encour- agement during this investigation. The writer also wishes to express his appreciation to Dr. E. C. Gilbert for helpful suggestions on the con- struction of the calortheter, and to Lee F. Tiller for his excellent drafting and photostating of the figures and graphs. APPROVED: In Charge of ?ajor Head of Department of Chemistry Chairrian of School Graduate Comrittee Dean of Graduate School Date thesis is presented /11 ' Typed by Norma Bush TABLE OF CONTENTS HISTORICAL BACKGROUND i INTRODUCTION 2 EXPERIMENTAL 5 Preparation of the Compounds 5 Analyses of the Compounds 7 The Calorimeter Determination of the Heat Capacity 19 Determination of the Heat of Formation 22 DISCUSSION 39 41 LITERATURE CITED 42 TABLES I Analyses of the Compounds 8 II Heat Capacity of the Calorimeter 23 III Heat of Reaction of Pyridine 26 IV Sample Run and Calculation 27 V Heat of Reaction of Nickel Cyanate 30 VI Heat of Reaction of Nickel Thiocyanate 31 VII Heat of Reaction of Hexapyridinated Nickel Cyanate 32 VIII Heat of Reaction of Tetrapyridinated Nickel Thiocyanate 33 IX Heat of Formation of the Pyridine Complexes 34 FI GURES i The Calorimeter 10 2 Sample Ijector (solids) 14 2A Sample Ejector (liquids) 15 3 Heater Circuit Wiring Diagram 17 4 heat Capacity of the Calorimeter 24 5 Heat of Reaction of Pyridine 28 6 Heat of Reaction of Hexapyridinated Nickel Cyanate 35 7 Heat of Reaction of Tetrapyridinated Nickel Thiocyanate 36 8 Heat of Reaction of Nickel Cyanate 37 9 Heat of Reaction of Nickel Thiocyanate 38 HEATS OF FOW ATION OF CERTAIN NICKEL-PYRIDINE COMPLEX SALTS HISTORICAL BACKGROUND Compounds of pyridine with inorganic salts have been prepared since 1970.
    [Show full text]
  • Intramolecular Alkoxycyanation and Alkoxyacylation Reactions: New Types of Alkene Difunctionalizations for the Construction of Oxygen Heterocycles John P
    Angewandte. Highlights DOI: 10.1002/anie.201204470 Alkene Difunctionalization Intramolecular Alkoxycyanation and Alkoxyacylation Reactions: New Types of Alkene Difunctionalizations for the Construction of Oxygen Heterocycles John P. Wolfe* alkenes · catalysis · heterocycles · ketones · nitriles Saturated oxygen heterocycles, such as tetrahydrofurans and not require an exogenous carbon electrophile.[6,7] Instead, the dihydrobenzofurans, are important motifs in a myriad of carbon electrophile is covalently attached to the cyclizing biologically active compounds, including natural products and oxygen atom in the substrate, and the carboalkoxylations are pharmaceutical targets. Therefore, there has been consider- accomplished through activation of this CÀO bond by the able interest in the development of new synthetic methods for catalyst. Importantly, these two approaches lead to the the construction of these important structures.[1] Many tradi- formation of dihydrobenzofuran derivatives that bear func- tional approaches to the generation of these compounds tional groups (ketones or nitriles), which are convenient involve ring formation through intramolecular SN2 reactions handles for further elaboration of the molecule, and cannot be and related strategies. However, these approaches typically directly installed by using previously developed alkene lead to the formation of only one bond during ring closure and carboalkoxylation methods. often require somewhat complicated substrates.[1] The method of the Douglas group involves the use of Late transition metal catalyzed alkene carboalkoxylations a cationic RhI complex to catalyze the intramolecular are a subclass of alkene difunctionalization reactions[2] that alkoxyacylation of acylated 2-allylphenol derivatives have considerable utility for the construction of tetrahydro- (Scheme 2).[6] These reactions afford 2-acylmethyl dihydro- furans, dihydrobenzofurans, and related oxygen heterocycles.
    [Show full text]
  • United States Patent Office Patented Dec
    3,631,000 United States Patent Office Patented Dec. 28, 1971 2 SUMMARY OF THE INVENTION 3,631,000 SOCYANURATE-CONTAINING POLYSOCYA We have found that superior isocyanurate-containing NATES AND METHOD OF PREPARATION polyisocyanates are inexpensively prepared by the two Perry A. Argabright and Brian L. Philips, Littleton, Colo., step process of: (1) chloroalkylating a mono-substituted and Vernon J. Sinkey, South St. Paul, Minn., assignors benzene compound, and (2) reacting the polychloro to Marathon Oil Company, Findlay, Ohio alkylated benzene-substituted compounds with a metal No Drawing. Filed June 4, 1969, Ser. No. 830,541 cyanate in the conjoint presence of a bromide or iodide Int. C. C08g 22/18, 22/44 of an alkali metal or an alkaline earth metal, and in the U.S. C. 260-77.5 NC 1. Claims presence of an aprotic solvent, herein defined. The mole IO ratio of metal cyanate to the chloride in the polychloro alkylated benzene-substituted compound is from about ABSTRACT OF THE DESCLOSURE 0.8 to about 1.5 to produce the polyisocyanates. These Improved organic polyisocyanates are prepared by re polyisocyanate compositions are starting materials for acting chlorinated benzene-substituted compounds, espe Various polymeric systems, e.g. a rigid polyurethane foam cially chloromethylated aromatics, with metal cyanates in 5 produced by conventional polymerization or copolymeri the presence of a metal iodide or bromide and in the zation with an appropriate monomer (e.g. a polyester or presence of a dipolar aprotic solvent where the mole ratio polyether based polyol). Particularly preferred products of cyanate in the metal cyanate to chlorine in the chlo are polyurethane and polyurea foams, coatings, elasto rine-containing benzene-substituted compound is from mers and adhesives.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,697,009 Deschler Et Al
    United States Patent (19) 11 Patent Number: 4,697,009 Deschler et al. (45) Date of Patent: Sep. 29, 1987 54 N-SILYLPROPYL-N'-ACYL-UREAS AND 58 Field of Search ........................ 556/421; 544/229; PROCESS FOR THER PRODUCTION 546/14: 548/110; 260/239 BC; 556/414; 540/487 75) Inventors: Ulrich Deschler; Peter Kleinschmit, 56) References Cited both of Hanau; Rudolf Michel, Freigericht, all of Fed. Rep. of U.S. PATENT DOCUMENTS Germany 2,857,430 10/1958 Applegath et al. ............. 556/421 X 2,907,782 10/1959 Pike ..................................... 556/421 73 Assignee: Degussa Aktiengesellschaft, 3,793,253 2/1974 Quiring et al. ... ... 556/421 X Frankfurt am Main, Fed. Rep. of 3,803,194 4/1974 Golitz et al. .................... 556/42 X Germany 3,856,756 12/1974 Wagner et al. ................. 556/421 X Primary Examiner-Paul F. Shaver 21 Appl. No.: 875,867 Attorney, Agent, or Firm-Cushman, Darby & Cushman 22 Filed: Jun. 18, 1986 57 ABSTRACT The invention is directed to N-silylpropyl-N'-acyl ureas 30 Foreign Application Priority Data and their production from an alkali cyanate, a 3-halo propylsilane and in a given case, a cyclic acidamide. By Jul. 6, 1985 IDE Fed. Rep. of Germany ....... 352.425 heating the compounds of the invention the blocked 5) Int. Cl. ................................................ C07F 7/10 isocyanate function can be set free. 52 U.S. Cl. .................................... 540/487; 556/414; 556/421; 544/229; 546/14: 548/110 16 Claims, 3 Drawing Figures U.S. Patent Sep. 29, 1987 Sheet 1 of 3 4,697,009 (z+w)/92° oQtz,oºgOOººO972OO2 4,697,009 1.
    [Show full text]
  • Synthesis and Characterization of Cyanate Ester and Its Blends With
    CHEMISTRY & CHEMICAL TECHNOLOGY Vol. 2, No. 4, 2008 Chemistry Samikannu Rakesh and Muthusamy Sarojadevi SYNTHESIS AND CHARACTERIZATION OF CYANATE ESTER AND ITS BLENDS WITH BISPHENOL DICYANATE ESTER Department of Chemistry, Anna University, Chennai-600 025, India [email protected] Received: May 05, 2008 Ó Rakesh S., Sarojadevi M. 2008 Abstract. A new keto-ene functionalized 1, 5-bis because of their superior mechanical properties which are (4-hydroxyphenyl)penta-1,4-dien-3-one (HPDO) was used in the electronic devices, high-temperature adhesive prepared from p-hydroxy benzaldehyde and acetone using and aerospace industries [1-5]. They have the boric acid as a catalyst. The prepared bisphenol was processability similar to that of epoxy resins and the converted into 1,5-bis (4-cyanatophenyl) penta-1,4-diene- thermal properties similar to those of phenolic resins. CE 3-one (CPDO) by reacting with cyanogen bromide (CNBr) resins have their own unique properties such as a good in the presence of triethylamine. The synthesized bisphenol strength, low dielectric constant, radar transparency, low and the dicyanate ester were characterized by Fourier water absorption, and superior metal adhesion [6, 7]. Curing of cyanate esters is catalyzed by heat or a transform infrared spectroscopy (FT-IR), nuclear magnetic combination of heat and catalyst [8]. The great difference resonance spectroscopy (1H-NMR and 13 in processing between epoxies and cyanate esters is that C-NMR) and elemental analysis (EA) techniques. CPDO the latter ones need relatively high curing temperature. was then blended with a commercial bisphenol-A dicyanate The high curing temperature causes high energy- ester (BADCy) at different ratios (100:0, 75:25, 50:50.
    [Show full text]
  • Irradiated Benzene Ice Provides Clues to Meteoritic Organic Chemistry ⇑ Michael P
    Icarus 226 (2013) 1201–1209 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Irradiated benzene ice provides clues to meteoritic organic chemistry ⇑ Michael P. Callahan a,b, , Perry A. Gerakines a,b, Mildred G. Martin a,b,c, Zan Peeters d, Reggie L. Hudson a,b a Solar System Exploration Division, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD 20771, USA b Goddard Center for Astrobiology, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD 20771, USA c Catholic University of America, Washington, DC 20064, USA d Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA article info abstract Article history: Aromatic hydrocarbons account for a significant portion of the organic matter in carbonaceous chondrite Received 21 December 2012 meteorites, as a component of both the low molecular weight, solvent-extractable compounds and the Revised 24 July 2013 insoluble organic macromolecular material. Previous work has suggested that the aromatic compounds Accepted 27 July 2013 in carbonaceous chondrites may have originated in the radiation-processed icy mantles of interstellar Available online 13 August 2013 dust grains. Here we report new studies of the organic residue made from benzene irradiated at 19 K by 0.8 MeV protons. Polyphenyls with up to four rings were unambiguously identified in the residue Keywords: by gas chromatography–mass spectrometry. Atmospheric pressure photoionization Fourier transform Astrobiology mass spectrometry was used to determine molecular composition, and accurate mass measurements Cosmic rays Cosmochemistry suggested the presence of polyphenyls, partially hydrogenated polyphenyls, and other complex aromatic Experimental techniques compounds.
    [Show full text]
  • The Millimeter Wave Spectrum of Methyl Cyanate: a Laboratory Study and Astronomical Search in Space?,?? L
    A&A 591, A75 (2016) Astronomy DOI: 10.1051/0004-6361/201628140 & c ESO 2016 Astrophysics The millimeter wave spectrum of methyl cyanate: a laboratory study and astronomical search in space?,?? L. Kolesniková1, J. L. Alonso1, C. Bermúdez1, E. R. Alonso1, B. Tercero2, J. Cernicharo2, and J.-C. Guillemin3 1 Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011 Valladolid, Spain e-mail: [email protected] 2 Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, 28049 Cantoblanco, Spain 3 Institut des Sciences Chimiques de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France Received 15 January 2016 / Accepted 15 March 2016 ABSTRACT Aims. The recent discovery of methyl isocyanate (CH3NCO) in Sgr B2(N) and Orion KL makes methyl cyanate (CH3OCN) a potential molecule in the interstellar medium. The aim of this work is to fulfill the first requirement for its unequivocal identification in space, i.e. the availability of transition frequencies with high accuracy. Methods. The room-temperature rotational spectrum of methyl cyanate was recorded in the millimeter wave domain from 130 to 350 GHz. All rotational transitions revealed A-E splitting owing to methyl internal rotation and were globally analyzed using the ERHAM program. 00 00 Results. The data set for the ground torsional state of methyl cyanate exceeds 700 transitions within J = 10−35 and Ka = 0−13 and newly derived spectroscopic constants reproduce the spectrum close to the experimental uncertainty.
    [Show full text]
  • Chapter 1 Organic Compounds: Alkanes
    Chapter 1 Alkanes Chapter 1 Organic Compounds: Alkanes Chapter Objectives: • Learn the differences between organic and inorganic compounds. • Learn how to identify isomers of organic compounds. • Learn how to write condensed, expanded, and line structures for organic compounds. • Learn how to recognize the alkane functional group in organic compounds. • Learn the IUPAC system for naming alkanes and cycloalkanes. • Learn the important physical and chemical properties of the alkanes. Mr. Kevin A. Boudreaux Angelo State University CHEM 2353 Fundamentals of Organic Chemistry Organic and Biochemistry for Today (Seager & Slabaugh) www.angelo.edu/faculty/kboudrea Organic chemistry nowadays almost drives me mad. To me it appears like a primeval tropical forest full of the most remarkable things, a dreadful endless jungle into which one does not dare enter, for there seems to be no way out. Friedrich Wöhler 2 1 Chapter 1 Alkanes 3 What Do We Mean By “Organic”? • In everyday usage, the word organic can be found in several different contexts: – chemicals extracted from plants and animals were originally called “organic” because they came from living organisms. – organic fertilizers are obtained from living organisms. – organic foods are foods grown without the use of pesticides or synthetic fertilizers. • In chemistry, the words “organic” and “organic chemistry” are defined a little more precisely: 4 2 Chapter 1 Alkanes What is Organic Chemistry? • Organic chemistry is concerned with the study of the structure and properties of compounds containing carbon. – All organic compounds contain carbon atoms. – Inorganic compounds contain no carbons. Most inorganic compounds are ionic compounds. • Some carbon compounds are not considered to be organic (mostly for historical reasons), such as CO, CO2, diamond, graphite, and salts of carbon- 2- - containing polyatomic ions (e.g., CO3 , CN ).
    [Show full text]
  • 1 a Brief Introduction to Traditional Bioconjugate Chemistry
    3 1 A Brief Introduction to Traditional Bioconjugate Chemistry W. Russ Algar 1.1 Introduction Bioconjugation is the process of linking or connecting a biological molecule with another moiety. These moieties may include other biomolecules (e.g., peptides), synthetic polymers (e.g., polyethylene glycol), and small molecules such as ligands (e.g., biotin), drugs, or fluorescent dyes, among a multitude of other possibilities [1]. While an extensive range of chemical reactions can be utilized for bioconjugation, the goal of this chapter is to briefly summarize some of the most stalwart and traditional reactions, highlighting important concepts and the strengths and weaknesses of each chemistry. Although there is no formal defini- tion of “traditional” bioconjugate chemistry, a majority of these chemistries will satisfy two criteria: (i) reaction with a native functional group in a biomolecule under mild aqueous conditions; and (ii) use by many researchers over many years with continued application today. In this context, the following sections of this chapter discuss the most commonly targeted functional groups in biomolecules, the most popular chemical reactions for conjugation at those functional groups, and the cross-linking strategies most frequently used with those reactions. Extensive information on traditional bioconjugate chemistries can be found in a number of valuable resources, including Hermanson’s classic tome, Bioconjugate Techniques [2], as well as similar volumes by other authors [3–5]. Importantly, this introductory chapter serves as a short primer for subsequent chapters that discuss more modern bioconjugation methods that have better chemoselec- tivity than the traditional methods discussed here. The development of such “nontraditional” chemistries has been motivated by the limitations of tradi- tional chemistries.
    [Show full text]
  • Cyanate Ester/Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites: Synthesis and Characterization†
    Chem. Mater. 2006, 18, 301-312 301 Cyanate Ester/Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites: Synthesis and Characterization† Kaiwen Liang,‡ Guizhi Li,§ Hossein Toghiani,‡ Joseph H. Koo,| and Charles U. Pittman, Jr.*,§ DaVe C. Swalm School of Chemical Engineering, Mississippi State UniVersity, Mississippi State, Mississippi 39762, Department of Chemistry, Mississippi State UniVersity, Mississippi State, Mississippi 39762, and Department of Mechanical Engineering, Texas A&M UniVersity, College Station, Texas 78712 ReceiVed July 19, 2005 Cyanate ester (PT-15, Lonza Corp.) composites containing the blended polyhedral oligomeric silsesquioxane (POSS), TriSilanolPhenyl-POSS (C42H38O12Si7), were prepared containing PT-15/POSS 99/1, 97/3, 95/5, 90/10, and 85/15 w/w ratios. The composites were characterized by FT-TR, X-ray diffraction (XRD), small-angle neutron scattering (SANS), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (X-EDS), transmission electron microscopy (TEM), dynamic mechanical thermal analysis (DMTA), and three-point bending flexural tests. TriSilanolPhenyl-POSS was throughly dispersed into uncured liquid PT-15 resin. After curing, XRD, SANS, and X-EDS measurements were consistent with partial molecular dispersion of a portion of the POSS units in the continuous matrix phase while the remainder forms POSS aggregates. Larger aggregates are formed at higher loadings. SANS, SEM, and TEM show that POSS-enriched nanoparticles are present in the PT-15/POSS composites. The storage bending moduli, E′, and the glass transition temperatures, Tg, of PT-15/POSS 99/1, 97/3, and 95/5 composites are higher than those of the pure PT-15 over the temperature range from 35 to 350 °C. The E′ values for all these composites (except for the 15 wt % POSS sample) are significantly greater than that of the pure resin at T > Tg.
    [Show full text]